Improving ns-3 Emulation Support in Real-World
Networking Scenarios

Helder Fontes
INESC TEC and
Faculty of Engineering
University of Porto
Portugal
hfontes@inesctec.pt

ABSTRACT

A common problem in networking research and development
is the duplicate effort of writing simulation and implemen-
tation code. This duplication can be avoided through the
use of fast-prototyping methodologies, which enable reusing
simulation code in real prototyping and in production envi-
ronments. Although this functionality is already available
by using ns-3 emulation, there are still limitations regarding
the support of real network interfaces and easy configuration
of the network settings, such as IP and MAC addresses.

In this paper we propose an improved version of the ns-
3 emulation component by introducing new functionalities
that address these limitations. The new functionalities in-
clude the support of new types of real network interfaces
and the easier integration of emulation nodes with existing
networks by means of a new auto-configuration mechanism
for ns-3 nodes. Experimental results obtained in a laborato-
rial testbed and in a real vehicular network testbed demon-
strate the new functionalities proper operation, and their
backwards compatibility with previously coded ns-3 scenar-
ios.

Categories and Subject Descriptors

D.2.13 [Software Engineering|: Reusable Software—Re-
use Models; 1.6.M [Simulation and Modeling]: Miscella-
neous

General Terms

Experimentation, Verification

Keywords

ns-3, Network Simulation, Network Emulation, EmuFdNet-
Device, Vehicular Networks, Fast-Prototyping

Rui Campos
INESC TEC and
Faculty of Engineering
University of Porto
Portugal

rcampos@inesctec.pt

Manuel Ricardo
INESC TEC and
Faculty of Engineering
University of Porto
Portugal

mricardo@inesctec.pt

1. INTRODUCTION

A common problem faced in networking research and de-
velopment is the duplicate effort of writing simulation and
implementation code. When using Network Simulator 3 (ns-
3) [1], there are two main approaches to accomplish a shared
protocol model implementation and avoid code duplication:
Direct Code Execution (DCE) [9] — code developed outside
ns-3 and reused in ns-3 simulations — and fast-prototyping
[5] — code developed in ns-3 and reused in real prototypes.
DCE may be the right choice if we are reusing compati-
ble applications or protocols already developed in Linux.
However, when developing new protocols, ns-3 provides ab-
stractions that result in faster protocol development when
compared to Linux [5]. ns-3 also provides detailed logging
by using the ns-3 tracing facilities, which is an advantage
to produce detailed simulation results when compared to
protocols developed outside ns-3. This work is focused on
the fast-prototyping approach and results from our past ex-
perience on developing a routing protocol [7] that needed
to be thoroughly simulated and then implemented in a real
prototype.

The fast-prototyping methodology proposed in [5] takes
advantage of the built-in network emulation features of ns-3.
ns-3 emulation allows simulations to be executed in real time
and ns-3 nodes to use emulated network interfaces. Emu-
lated network interfaces provide direct access to the real
network interfaces of the Linux node hosting the ns-3 pro-
cess execution. From the real networks’ perspective, the ns-3
nodes are real nodes running a real network protocol.

When the fast-prototyping methodology is employed in a
controlled, static testbed, the experimental scenario is usu-
ally characterized by Ethernet or Wi-Fi real networks that
are administered by the experimenters themselves. The ex-
perimenters can then deploy emulated ns-3 nodes accessing
those real networks, with emulated network devices, using
configurations (e.g., MAC and IP addresses) that are pre-
defined for the experiment and remain constant and control-
lable during the whole experiment timeframe. Yet, when the
fast-prototyping methodology is used in a more complex and
dynamic scenario — e.g., a vehicular network — different net-
work access and usage characteristics take place.

Figure 1 depicts the use of emulation in a vehicular net-
work scenario, where two interfaces are available to access
real networks. The ppp0 interface represents the 3G connec-
tivity, and enables IP over the 3G Network. This interface
is only present in the real Linux node when there is an ac-
tive 3G connection. In practice, it is common to have this

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261074

Real Linux Node

ns-3 process
(emulation mode)

ns-3 node
Routing Protocol

EmO Em1l
ppp0 (3G) ath0 (Wi-Fi)
3G Network Wi-Fi Networks

Figure 1: Emulation in a vehicular network scenario.

interface intermittently available, due to possible intermit-
tent 3G connectivity and the dynamic IP renewal policy that
may be imposed by the operator. The athO interface rep-
resents the Wi-Fi connectivity to multiple Wi-Fi networks
available along the vehicle path, to which the real node con-
nects opportunistically. Each of these networks may have
its own administrator and assign specific dynamic IP level
settings. Also, as an access control policy, network admin-
istrators may use MAC addresses to identify the users and
provide IP level configurations.

The ns-3 emulation mode and the related emulated net-
work devices, represented by Em0 and Em1 in Figure 1, were
tested in the SITMe’s [2] multi-technology vehicular network
scenario, where the real network interfaces had characteris-
tics similar to those previously mentioned. These character-
istics precluded the use of fast-prototyping in the vehicular
network scenario due to existing ns-3 limitations.

In order to support such characteristics and overcome the
current ns-3 limitations, we propose an improved ns-3 em-
ulated interface (EmuFdNetDevice), improving its compat-
ibility and self-configuration to interact with real network
interfaces. The result is an enhanced ns-3 emulation mod-
ule that enables the use of fast-prototyping in complex and
dynamic real network scenarios, such as vehicular network.
The improved EmuFdNetDevice is backwards compatible
with previously coded scenarios. As a result of this contri-
bution, there is a work in progress to integrate the improved
EmuFdNetDevice in the official release of ns-3.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of different ns-3 communication
types, focusing on the communication between an ns-3 node
and a real network. Section 3 introduces the problem, with
a detailed description of the characteristics of the vehicular
network scenario challenging the current ns-3 EmuFdNet-
Device. Section 4 describes the improved EmuFdNetDevice.
Section 5 presents its functional evaluation using both a lab-
oratory testbed and a vehicular testbed. Finally, Section 6
draws the major conclusions and points out future research
directions.

Real Linux Node

(a) ns-3 process

ns-3 node ns-3 node

I NetDevice I I NetDevice I
| I—

0OS Net.
Stack

Phy. Net. If.

Real network

Real Linux Node Real Linux Node Real Linux Node
(b) (c) (d)

ns-3 node ns-3 node ns-3 node

I FdNetDevice I
File
Descriptor

Phy. Net. If. Phy. Net. If.

| TapFdnetpevice | | Emurdnetpevice |

Raw socket

Phy. Net. If. I

Real network Real network Real network

Figure 2: Overview of the communications pro-
vided by the ns-3 (a)NetDevice, (b)FdNetDevice,
(c)TapFdNetDevice and (d)EmuFdNetDevice.

2. OVERVIEW OF NS-3
COMMUNICATION TYPES

ns-3 is an event-driven packet level network simulator and
is largely adopted by the scientific community to evaluate
networking solutions in simulation environment. Being a
packet level simulator, ns-3 allows to produce fully detailed
simulation environments that accurately represent the real
network behaviour; for instance, each network packet ex-
changed in the simulator uses exactly the same structure
of a real packet. This realism enabled the development of
the ns-3’s emulation functionality that, in its essence, is the
ability to run a simulation scenario in real time with the ca-
pability of exchanging network traffic between real and ns-3
nodes. From the real nodes’ perspective, the ns-3 emulated
network appears as an extension of the real network, with
transparent exchange of network traffic between them.

In the real world, network nodes have network interface
cards, allowing them to connect to a network and exchange
network traffic. Likewise, in ns-3, simulated nodes are con-
nected to a network using NetDevices. Figure 2 presents
an overview of the two communication types possible when
using ns-3; internal — between ns-3 nodes (Figure 2a) — and
external — between an ns-3 node and the outside world, ei-
ther the real Linux node hosting the ns-3 node or a real
network (Figures 2b—d).

In Figure 2a two ns-3 nodes exchange network traffic over
a virtual channel using standard NetDevices, hence, the
nodes can not communicate with the outside of the ns-3 pro-
cess. In Figure 2b an ns-3 node uses a specific NetDevice —
the FdNetDevice — which allows exchanging network traffic
with the real Linux node, using a file descriptor managed
by the Operating System (OS) of the real node. In Figure
2c an ns-3 node is using a specialization of the FdNetDe-
vice — the TapFdNetDevice — designed to exchange network
traffic with the real Linux node using a tap interface. Every
write from the ns-3 node via the TapFdNetDevice appears

to the real Linux node as incoming network traffic via the
tap interface, and vice versa. Finally, in Figure 2d an ns-3
node is using another specialization of the FdNetDevice —
the EmuFdNetDevice — designed to allow direct communi-
cation to outside of the real Linux node using a raw socket
bound to a real network interface (e.g., eth0). This allows
exchanging the ns-3 node’s traffic with that specific real net-
work interface, thus enabling the emulation functionality.

The fast-prototyping methodology [5] uses the EmuFd-
NetDevice module. Figure 1 illustrates an example of a
vehicular mobile router prototype developed using the fast-
prototyping methodology, where a routing protocol imple-
mented in ns-3 is reused. The utilization of the EmuFdNet-
Devices — represented by Em0 and Em1 interfaces in Figure
1 — is important for the vehicular mobile router prototype,
as they provide direct communications to the real networks
as if it was a real node.

3. PROBLEM

In this section we introduce the problem, with a detailed
description of the characteristics of the vehicular network
scenario that cause incompatibilities with the current Emu-
FdNetDevice.

3.1 3G PPP interfaces provide IP level
communication

Point-to-Point Protocol (PPP) [8] interfaces supporting
IP over cellular networks are unsupported by ns-3. The
EmuFdNetDevice module is designed to read and write Eth-
ernet frames from/to real interfaces, not IP packets as it is
the case for these 3G PPP interfaces. As such, the EmuFd-
NetDevice must be modified and capable of detecting wheth-
er the real interface is operating at L.2 or L3 and adapt itself
accordingly. Also, when working at IP level, the EmuFdNet-
Device does not need Ethernet Address Resolution Protocol
(ARP) [6] support. This aspect needs to be addressed as
well; otherwise the installation of the Internet Stack in the
node associated to that EmuFdNetDevice will fail due to the
asserts that are made when installing the ARP protocol.

3.2 3G PPP interfaces are intermittent

3G related PPP interfaces are only available in Linux
when there is an active 3G connection established. Through-
out the experiment duration, the 3G connection can be lost
due to (1) the lack of network coverage in some geographic
areas, (2) forced reconnection by the operator to allow dy-
namic IP renewal, and (3) any sort of other communications
problems preventing communications between the PPP Cli-
ent and Server. This leads to the PPP session shutdown, and
the interface ppp0 disappears. The EmuFdNetDevice mod-
ule does not support this intermittence and has two possible
undesirable behaviors: 1) if the real interface is not available
when the emulation starts, the ns-3 aborts the execution; 2)
if the real interface is available when the emulation starts but
it disappears, the ns-3 process detects that the raw socket
was closed, stops the EmuFdNetDevice, but does nothing to
restart it.

3.3 Real MAC addresses have to be used

In a simulation scenario there is full control of the elements
interacting in the simulation. Typically ns-3 self-generated
MAC addresses are used and assigned sequentially to every
simulation node to avoid MAC address collisions. However,

when fast-prototyping is used, we may not fully control the
scenario and the interactions with other nodes. So, in order
to avoid MAC address collisions and network access control
problems, the MAC address of the real interface has to be
used by the emulated node. ns-3 does not include any MAC
cloning functionality, which results in the need for error-
prone, additional manual configurations.

3.4 1P configuration settings are dynamic

In IP networks, the interface auto-configuration provided
by Dynamic Host Configuration Protocol (DHCP) [4] is fre-
quently used. This auto-configuration mechanism allows a
node to establish IP connectivity with other nodes using
the given network settings, such as the IP address, network
mask, and default gateway, leased by a DHCP server. In a
vehicular network environment it is usual for a node to con-
nect to different networks with the same interface, or use a
mobile network that imposes IP address renewal from time
to time. In the current version of the ns-3 EmuFdNetDe-
vice, there is no mechanism to keep the network settings
updated in the emulated node whenever the real network
interface settings change. This will make the emulated node
use wrong network settings and lose communication with
other nodes.

4. PROPOSED EmuFdNetDevice

Motivated by the characteristics presented in Section 3,
our work aims to expand the functionality of ns-3 by propos-
ing an improved backwards compatible EmuFdNetDevice
module, which supports new features to further improve the
capability of running emulated and hybrid environments —
emulated and real nodes interacting — over different real net-
work scenarios.

4.1 Detection of the operating layer of real
network interfaces

The current EmuFdNetDevice is hardcoded to read and
write Ethernet frames; as such, it only supports real net-
work interfaces operating at MAC level. Conversely, the
improved EmuFdNetDevice inspects the underlying real in-
terface, checks whether it has a MAC address assigned, and
classifies the real interface as an IP or MAC level real in-
terface accordingly. This information is saved in the new
flag named m_isL2NetDevice, associated with the FdNet-
Device, which is setup during the Helper execution. When
the real network interface is operating at IP level, the im-
proved EmuFdNetDevice disables the “NeedArp” setting, in
order to avoid assertion errors when installing the Internet
Stack in the node. The automatic detection of the network
stack, associated to the underlying real interface, effectively
avoids the need for added configuration and enables back-
wards compatibility with previously coded scenarios.

4.2 Support for intermittent real interfaces

The EmuFdNetDevice was designed assuming that the
real interface to which it is bound has an identifier always
present in the Linux’s interfaces list. As explained in Section
3, this is not always true — e.g., the PPP interfaces represent-
ing 3G connections. The current EmuFdNetDevice has two
possible undesirable behaviors, which were referred in Sec-
tion 3. The improved EmuFdNetDevice expects and handles
gracefully this behavior, according to the state machine pre-
sented in Figure 3. The improved EmuFdNetDevice allows

Interface listed in Linux

ns-3
process
start

ns-3
process
stop

ns-3
process
stop

RAW socket closed

Figure 3: State machine representing how the im-
proved EmuFdNetDevice handles communication
using intermittent real interfaces.

the user to configure the support of intermittent behavior.
When the related flag — named m_isIntermitentInterface —
is set, the improved EmuFdNetDevice assumes the link is
down, allowing the emulation process to be executed even
if the real interface is not listed. In the “Link Down” state,
the simulator checks periodically whether the real interface
ID becomes listed again in the real Linux node. As soon as
the interface ID becomes listed, a new raw socket is created
and the communication is restarted, assuming the “Link Up”
state. When the raw socket is unexpectedly closed, the ns-3
process sees the socket returning “-1”. Instead of just stop-
ping the device, the improved EmuFdNetDevice assumes
again the “Link Down” state and actively tries to re-establish
communication by creating a new raw socket and binding it
to the new real interface. The ns-3 process can be stopped
from either state.

The improved EmuFdNetDevice enables the support for
intermittent real interfaces while keeping full compatibility
with previously coded scenarios. The only drawback is that
the user creating the emulation scenario must be sure about
the identifier of the real network interface. In the current
EmuFdNetDevice, the process is terminated and the user is
informed about the non-existing/erroneous interface identi-
fier. With the improved EmuFdNetDevice, if the identifier
supplied by the user is wrong and the user configures the
interface as being intermittent, the emulation process will
run without ever binding to a real interface nor informing
about the error.

4.3 MAC Address Cloning

Simulated nodes, running inside ns-3, use self-generated
MAC addresses by default — e.g., 00:00:00:00:00:01. This is
not a problem when running simulations, but can be a prob-
lem when using the emulation capability in a real network
scenario — e.g., the case of fast-prototyping network proto-
cols. In such case there will be a number of ns-3 instances
running independently from each other, with emulated ns-3
nodes acting as real nodes. Being different ns-3 instances,
means that the ns-3 mechanism for self-generating MAC ad-
dresses will assign, by default, coincident MAC addresses
(starting in 00:00:00:00:00:01) to the ns-3 nodes running in
the different instances. Manually managing the MAC ad-
dresses of each emulated node accessing a real network to
avoid MAC collisions can be difficult and error-prone. Also,
often the MAC address used by the EmuFdNetDevice has to

match the MAC address of the real interface of the real node,
in order to allow communication in the real network. Us-
ing the real interfaces’ MAC addresses could then solve the
MAC addresses collision problem and ensure compatibility
with real networks requiring the use of the MAC address of
the real interface. Because ns-3 lacks a MAC cloning feature,
a configuration option was added to the EmuFdNetDevice
instances, in order to allow automatic cloning in run time of
the MAC address of the real interface to which the specific
EmuFdNetDevice is bound. This feature is disabled by de-
fault, so that the EmuFdNetDevice operation is unchanged
when running previously coded scenarios.

4.4 IP Address Cloning

In a real network scenario, IP level network configura-
tion is often carried out using the DHCP protocol. This
is common when connecting to real networks in a vehicu-
lar scenario, where multiple networks can be used and each
network has a different IP configuration. Also, usually In-
ternet Service Providers (ISPs) do not provide fixed public
IP addresses; as an example, every time a PPP connection is
established over a public 3G operator link, a new dynamic
IP address is leased. Because the IP address changes ev-
ery time a new connection is established, even during the
same emulation process execution, the emulation scenario
rapidly becomes outdated, with an IP address associated
to the EmuFdNetDevice that is no longer valid nor corre-
sponds to the real PPP interface anymore. When the emu-
lated node tries to write packets with an outdated IP, they
can be discarded or lead to an IP address collision. In or-
der to avoid this problem, we added an IP address cloning
feature to the EmuFdNetDevice, which is enabled by config-
uration in every EmuFdNetDevice instance. When enabled,
ns-3 periodically verifies the IP address, network mask and
default gateway of the real interface and applies those set-
tings to the node running the emulated interface, success-
fully simplifying the deployment and auto-configuration of
emulated nodes in a real environment. IP address cloning is
disabled by default, assuring the EmuFdNetDevice’s behav-
ior expected by previously coded scenarios.

S. SOLUTION VALIDATION

This section describes the tests performed to validate the
proper operation of the improved EmuFdNetDevice. Two
scenarios were used to perform the tests: 1) a laboratory
testbed, used to test the new features and assist the debug
process in a controlled environment; 2) a real world testbed
using the SITMe’s project vehicular network.

5.1 Laboratory testbed

The first approach to validate the improved EmuFdNet-
Device was to conduct the experiments in a small laboratory
testbed, in order to easily test the proper operation in a fully
controlled scenario.

Figure 4 presents the components that characterize the
laboratory testbed, which is composed by two Real Linux
x86 nodes:

Real Node #1 is a multi-interface real network node host-
ing an ns-3 emulated node. The real node has two
physical Ethernet interfaces: 1) ethO, auto-configured
at IP level using the DHCP client; 2) ethl, to estab-
lish a PPPoE connection from the PPPoE Client to

Real Linux Node #1 Real Linux Node #2
ns-3 node
—— p—— Packet Capture
NetDevice O NetDevice 1
oich SPPoE PPPOE DHCP
Client Client ppPO Se’< server
| etho | | ethl | ethl etho |

| —— |

Figure 4: Laboratory testbed scenario.

the PPPoE Server. When the PPPoE connection is
established, the ppp0 interface is listed in Linux. ethO
represents the use of real network interfaces operat-
ing at MAC level and ppp0 represents a real network
interface working at IP level. The ns-3 node has two
emulated network devices, one bound to the real node’s
ethO and the other to the intermittent ppp0;

Real Node #2 is a communication peer used to interact
with the emulated node, but it also implements the ac-
cess control and auto-configuration mechanisms pres-
ent in most real networks, such as DHCP server and
PPPoE server. Real Node #2 has two Ethernet inter-
faces connected directly to the equivalent interfaces in
Real Node #1. Real Node #2 also captures the net-
work traffic from the two Ethernet interfaces, in order
to assess the correct operation of the emulated node
when communications between Real Node #2 and ns-
3 emulated node are attempted.

In order to reproduce the conditions needed to test each
functionality of the improved EmuFdNetDevice, the follow-
ing procedures were considered:

PPP intermittent behavior. The PPPoE Server was pe-
riodically stopped and restarted in order to close and
reestablish the PPPoE connection and make the ppp0
interface disappear and reappear in Real Node #1;

Dynamic IP configuration on eth0. Short duration IP
leases were used, in order to generate frequent lease re-
newals. By using manual MAC-IP address associations
in the DHCP Server that were periodically changed to
different IPs, led to periodic IP address changes in the
ethO interface of Real Node #1;

Dynamic IP on ppp0. Every time the PPPoE Server was
stopped, the configuration file was changed to assign
a different IP addresses range to the PPPoE client, so
that the ppp0 IP address was changed every time the
PPPoE connection was re-established.

In order to generate network traffic between Real Node #2
and the ns-3 node running in Real Node #1, two mechanisms
were used: 1) ICMP echo requests/replies between the two
nodes; 2) an UDP echo server running in Real Node #2,
which replied to UDP packets sent by the ns-3 node with
exactly the same UDP payload. The traffic generated was

captured using Wireshark [3], which was running in Real
Node #2.

To validate each new feature of the improved EmuFdNet-
Device, the following observations were made:

Detection of the operating layer of real interfaces.
The use of two EmuFdNetDevices bound to ethO and
pppO interfaces confirmed the correct operation of this
feature. In the case of the eth0 interface, the lower level
transfer unit used by EmuFdNetDevice0 was the Eth-
ernet frame, while with the ppp0O interface, EmukFd-
NetDevicel exchanged IP packets;

Support for intermittent real interfaces. The use of
the PPPoE protocol led to the creation of the ppp0
interface in Real Node #1. This interface was only
listed intermittently according to the test conditions
referred above, which allowed the test of the EmuFd-
NetDevice ability to recover from the following condi-
tions: 1) ns-3 process started without the ppp0 inter-
face available; 2) ppp0 interface unexpectedly becomes
unavailable. In both situations, the ns-3 process de-
tected the anomalous conditions and successfully kept
the emulation running;

MAC Address Cloning. The EmuFdNetDevice0 success-
fully cloned the real ethO MAC address, and every
communication made to Real Node #2 appeared in
the Wireshark logs as originating from the MAC ad-
dress of the real ethO interface. Also, the ns-3 emulated
node replied successfully to every communication di-
rected to it;

IP address cloning. The usage of different IP addresses
during the tests, in both ppp0 and ethO interfaces,
allowed to successfully test whether the IP addresses
were updated in the ns-3 node. This mechanism worked
with success. The time interval between checks of the
real interface’s IP address is configurable. If the IP
address changes very frequently, it is recommended to
use low interval checks to keep the ns-3 node settings
updated; yet, too small time interval uses more CPU
resources.

After validating each new feature, the correct operation
of the improved EmuFdNetDevice was confirmed.

5.2 Vehicular Network Testbed

With the improved EmuFdNetDevice tested in the labo-
ratory testbed, the next step was to test it in a real world
testbed. The selected testbed was the one used in the real
pilot of the SITMe’s project, composed by 11 buses with an
on-board Linux router, supporting multiple access technolo-
gies to provide Internet access to bus passengers.

Figure 5 depicts the elements composing each of the 11
buses used in the SITMe’s real pilot. This testbed used
the Wireless Metropolitan Routing Protocol (WMRP) [7], a
proactive multi-technology routing protocol based on OLSR,
entirely developed in ns-3. Each bus had a Linux computer
installed with five network interfaces, one to give network
access to the passengers and other bus equipment, and the
other four to connect to the outside world. Using the fast-
prototyping methodology, the routing protocol ran in an ns-
3 emulated node, as illustrated in Figure 5. This emulated
node had as many Emulated NetDevices (EmuFdNetDevice)

((9)) ((92) ((9)) ((2)
§ = g % [Realinterfaces
2] (73‘ O Emulated NetDevices

E4UI NV
204-pY NV1

=
Linux host

U s
:K Routing emulated
Protocol node

Figure 5: Elements present in each bus of the Ve-
hicular network testbed scenario.

as the number of real interfaces connected to the real node.
Through this mechanism, the ns-3 router had direct access
to the real networks and acted as a real router from the real
networks’ perspective.

All features introduced in the improved EmuFdNetDe-
vice were tested in this scenario: multiple interfaces were
configured using dynamic IPs obtained via DHCP; the 3G
operator provided IP level PPP interfaces, which were inter-
mittent; MAC address cloning was used in all the interfaces
with MAC address, to avoid MAC address collisions and
obey to the ISP policy. WiMAX traffic was only allowed by
the operator for specific real interfaces” MAC addresses.

This experiment ran successfully for more than one year
with good results and very good feedback from the bus pas-
sengers. This real world usage of the improved EmuFd-
NetDevice proved its correct operation and usefulness, es-
pecially in a heterogeneous real world scenario such as the
SITMe’s real pilot, where multiple emulated instances needed
to be deployed and auto-configured to allow communication
in a demanding real network environment.

6. CONCLUSIONS AND FUTURE WORK

The fast-prototyping methodology has several possible ap-
plications and was already proven useful, although it fully
depends on the ns-3’s emulation capabilities. Currently, ns-
3 emulation capabilities are enabled by running simulation
code in real time and establishing network communications
with real networks using the EmuFdNetDevice, which is
bound to real network interfaces of the real node running
the ns-3 process.

However, the use of the EmuFdNetDevice in complex and
dynamic real network scenarios — e.g., a vehicular network
— revealed the limitations of the current EmuFdNetDevice,
thus invalidating the use of the fast-prototyping methodol-
ogy in scenarios with such conditions. This was due to the
incompatibilities with some real interfaces operation and the
overhead and error-prone methods needed to configure each
emulated instance. Motivated by the need to overcome these
problems, we proposed an improved, backwards compatible
EmuFdNetDevice including a set of features that addresses
interface compatibility problems and introduces self config-
uration mechanisms to enable the fast-prototyping method-
ology in demanding real network conditions, such as the ex-

isting in vehicular network scenarios.

Using a laboratory testbed and a real world vehicular net-
work testbed, it was possible to confirm the proper opera-
tion of the improved EmuFdNetDevice. Also, the usefulness
of such features was demonstrated in complex real network
scenarios, such as the SITMe’s real pilot.

As future work, we plan to add the improved EmuFdNet-
Device to the ns-3 project official code repository, and make
these improvements available to the community. We are
also working on other topics related to the fast-prototyping
methodology, which are closely related to the work presented
herein and will bring further optimizations to the ns-3 em-
ulation mode. This includes the reduction of the processing
overhead related to the emulation mode and the ability to
perpetuate real experiments by using the traces obtained
from the ns-3 emulated nodes to replicate the same exact
conditions in simulation.

7. ACKNOWLEDGMENTS

The authors express their gratitude to the BEST CASE
project (“NORTE-07-0124-FEDER-000056", “NORTE-07-01
24-FEDER-000058” and “NORTE-07-0124-FEDER-000060")
financed by the North Portugal Regional Operational Pro-
gramme (ON.2 — O Novo Norte), under the National Strate-
gic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF).

This work is financed by the FCT — Fundagao para a Cién-
cia e a Tecnologia (Portuguese Foundation for Science and
Technology) within project UID/EEA /50014/2013, and fel-
lowship SFRH/BD/69051,/2010.

8. REFERENCES

[1] ns-3 website. http://www.nsnam.org/. Accessed:
2015-02-13.

[2] SITMe’s project website. http://www.sitme.org/.
Accessed: 2015-02-13.

[3] Wireshark website. http://www.wireshark.org/.
Accessed: 2015-02-13.

[4] S. Alexander and R. Droms. DHCP Options and
BOOTP Vendor Extensions, March 1997. RFC 2132.

[5] G. Carneiro, H. Fontes, and M. Ricardo. Fast
prototyping of network protocols through ns-3
simulation model reuse. Simulation Modelling Practice
and Theory, 19(9):2063-2075, 2011.

[6] D. Plummer. Ethernet Address Resolution Protocol:

Or Converting Network Protocol Addresses to 48.bit

Ethernet Address for Transmission on Ethernet

Hardware, November 1982. RFC 826.

M. Ricardo, G. Carneiro, P. Fortuna, F. Abrantes, and

J. Dias. Wimetronet a scalable wireless network for

metropolitan transports. In Proceedings of the 2010

Sizth Advanced International Conference on

Telecommunications (AICT), pages 520-525, May 2010.

[8] W. Simpson. The Point-to-Point Protocol (PPP), July
1994. RFC 1661.

[9] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage,
D. Camara, T. Turletti, and W. Dabbous. Direct code
execution: Revisiting library os architecture for
reproducible network experiments. In Proceedings of the
Ninth ACM Conference on Emerging Networking
Ezperiments and Technologies, CONEXT ’13, pages
217228, New York, NY, USA, 2013. ACM.

[7

