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Abstract 

It is difficult to determine whether a person is depressed due to the symptoms of depression not being apparent. However, 
the voice can be one of the ways in which we can acknowledge signs of depression. Understanding human emotions in 
natural language plays a crucial role for intelligent and sophisticated applications. This study proposes deep learning 
architecture to recognize the emotions of the speaker via audio signals, which can help diagnose patients who are depressed 
or prone to depression, so that treatment and prevention can be started as soon as possible. Specifically, Mel-frequency 
cepstral coefficients (MFCC) and Short Time Fourier Transform (STFT) are adopted to extract features from the audio 
signal. The multiple streams of the proposed DNNs model, including CNN-LSTM based on an attention mechanism, are 
discussed within this research. Leveraging a pretrained model, the proposed experimental results yield an accuracy rate of 
93.2% on the EmoDB dataset. Further optimization remains a potential avenue for future development. It is hoped that this 
research will contribute to potential application in the fields of medical treatment and personal well-being. 
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1. Introduction

In human communication, emotions play a pivotal role 
conveying information and establishing a foundation for 
understanding the speaker's mood, emotions, and responses. 
The capability to identify and analyse emotions in natural 
language has emerged as a significant tool, particularly within 
the realm of mental health treatment, offering advantages in 
recognizing the emotional states of patients. This facet aids in 
cost savings associated with human resources and ensures 
accuracy unaffected by subjective factors. The discernment 
and examination of emotional expressions in natural language 
holds considerable promise for applications in mental health 
diagnostics, providing a nuanced and objective insight into 
the emotional well-being of individuals. The intrinsic value 

*Corresponding author. Email: hunghm@vnu.edu.vn 

of this analytical process lies not only in its potential cost-
effectiveness but also in its capacity to yield reliable and 
unbiased assessments, thus contributing to advancements in 
the field of healthcare. 

This research endeavours to develop a novel methodology for 
analysing and recognizing emotions based on audio data. The 
primary aim of the study is to classify and predict emotional 
states, with a specific focus on detecting negative emotions, 
particularly depressive states. Depression has emerged as a 
prevalent psychological issue in modern society, evident not 
only through psychological expressions but also through 
physical health symptoms [1][2]. According to statistics, 97% 
of suicide cases are linked to mental health conditions during 
the period of illness, with the highest incidence observed in 
cases of depression. Therefore, the prevention and treatment 
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of depression play a pivotal role in enhancing the quality of 
life and mental health within the community. 

To assess the state of an individual's depression, information 
can be gathered from various perspectives, including changes 
in physical health and daily habits. However, analysing 
information from linguistic expressions and speech patterns 
is considered a more convenient method, as speech serves as 
a rich source of signals reflecting mood and emotions. 
Advanced tools and algorithms in this field have the 
capability to analyse and predict speech data, contributing to 
a more detailed and reliable assessment of an individual's 
emotional state. 

In today's digital age, the ability to understand and analyse 
human emotions through language has become a crucial 
application, especially across various domains. To meet the 
increasing demand for this understanding, emotion 
recognition models based on language input, known as 
Natural Language Processing (NLP), have become a focal 
point of research. The integration of deep learning methods 
and natural language processing techniques is driving 
significant advancements in the development and application 
of models designed for emotion recognition in the realm of 
natural language 

Motivation and Objective: 
With the advancement of science and technology in today's 
society, human life is becoming increasingly hectic and 
complex. The modern living environment, characterized by a 
fast-paced and expansive lifestyle, coupled with pressures 
from various aspects, has laid the foundation for the 
development of a range of health-related issues, particularly 
those concerning mental health. 

Continual pressure from the environment can lead to anxiety, 
depression, or mood instability, potentially generating 
negative and prolonged impacts on both mental and physical 
health. Mental illnesses, especially depression, have become 
prominent and concerning issues in today's society, with the 
potential to cause profound effects on daily life and the 
overall community healthcare system. 

In Europe, the consumption of antidepressants is rapidly 
increasing in developed countries, according to data from the 
OECD reported on Euro News [3]. During the period from 
2000 to 2020, the average consumption of antidepressants per 
1000 people per day in some European countries has doubled, 
tripled, or even quintupled. The most significant growth 
occurred in countries such as Czechia, Estonia, and Slovakia, 
where the increase was approximately fivefold, particularly 
notable in Czechia with a 577% rise. Other countries also 
experienced high growth rates ranging from 100% to 300%. 
There are relatively few countries with lower growth rates, 
and no country in the statistics recorded a decrease in the 
antidepressant usage rate. 

Developed countries in Europe are grappling with various 
pressures from daily life, including work-related stress and 

concerns about external issues. Advances in medical science 
have also facilitated the early detection and treatment of 
depression, leading to an increasing trend in the use of 
antidepressants among individuals seeking to mitigate 
potential negative consequences. 

The concept of emotion recognition for detecting depression 
is implemented through the application of deep learning 
methods, combined with the use of accompanying patient-
worn devices to assess speech characteristics relevant to the 
depressive state. This technology utilizes speech as a means 
to predict emotions and is rapidly advancing. 

In this research, we aim to apply deep learning to detect 
emotional features in the speaker for assessing the potential 
signs of depression or underlying depressive tendencies. 
Simultaneously, this study focuses on evaluating emotional 
expressions during speech to identify indications of 
depression in their verbal communication. 

Figure 1: Increase in consumption of antidepressant 
drugs in the last 20 years (Percentage of change 
between 2000 and 2020) [3] 

In this study, we conducted experiments and developed 
artificial neural network models to predict and analyse 
emotions based on labelled audio data. This process not only 
focused on testing various methods and algorithms but also 
emphasized the application of processing techniques such as 
Mel-frequency cepstral coefficients (MFCC) and Short Time 
Fourier Transform (STFT) for audio data processing and 
feature extraction. Simultaneously, we explored and 
implemented neural network architectures like Convolutional 
Neural Network (CNN), Long Short-Term Memory (LSTM), 
along with attention mechanisms to construct models aimed 
at improving accuracy in emotion recognition and 
classification. Through these methods and tools, the research 
aims to contribute to enhancing the performance of the 
emotion analysis and recognition process from audio data. 
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2. Related Work

Traditional machine learning methods have been employed 
for the identification of emotional patterns in speech, with the 
most widely used approach being the application of 
classifiers. The fundamental concept involves establishing a 
classification model based on a large amount of known data, 
accurately assigning data to the appropriate categories. With 
a sufficiently large dataset, these models can achieve 
accuracy when applied to new data [4][5]. Common 
classification models include Support Vector Machine 
(SVM), Gaussian Mixture Models (GMM), Hidden Markov 
Model (HMM), and various other models. Minji Gil and 
colleagues conducted research on predicting the risk of 
depression in students using machine learning algorithms 
such as sparse logistic regression (SLR), support vector 
machine (SVM), and random forest (RF) [6]. However, these 
methods often require complex preprocessing and meticulous 
feature selection, which can increase complexity and 
processing time. 

When employing these methods for identification, the 
process is typically divided into several fundamental steps: 
pre-processing of the input signals, feature extraction, and 
classification. The pre-processing stage may address issues 
with the input data, such as denoising the signal, segmenting 
or merging audio segments of varying lengths to a uniform 
length, or selecting feature parameters through feature 
selection. After pre-processing, the data is fed into the model 
to extract features before moving on to the classification step 
for identification. 

The pre-processing steps are crucial for traditional models 
because audio data can exhibit considerable noise and 
variability. In reality, each of us speaks with different tones, 
speech habits, and intonations. Moreover, recorded speech 
may differ from real-life speech. Therefore, normalization is 
an essential step to standardize the audio, creating favorable 
conditions for feature extraction in subsequent steps. 
Cleaning methods are commonly applied to minimize noise 
in audio data, using filtering techniques such as high-pass or 
low-pass filters, referred to as Noise Reduction. Additionally, 
Silence Removal is an important step to eliminate non-
informative silence from the audio signal. Many research 
groups aiming to improve model accuracy have employed 
Volume Normalization to adjust the volume of all audio 
segments to the same level, avoiding unnecessary 
discrepancies. Trimming and Alignment helps to cut audio 
segments to the same length and align them in time to ensure 
consistency. Resampling ensures that all audio segments have 
the same sampling rate, synchronizing the data. Feature 
extraction involves various techniques to derive important 
features from audio data. Numerous methods are employed in 
audio processing, such as Energy, Zero-Crossing Rate, and 
MFCC. One notable technique in audio processing is MFCC. 
Kunxia Wang et al. [7] conducted research on the impact of 
these methods on emotion recognition tasks. Typically, this 

process generates 12 coefficients. By incorporating the 
energy of the audio signal, we can have 13 coefficients. 
MFCC may become unstable in the presence of noise, 
however, so they are often normalized to minimize noise. The 
effectiveness of this process has been studied [8]. 

Temporal Features include Zero-Crossing Rate (ZCR), which 
measures the rate at which the audio signal crosses the zero 
axis, and Energy, which measures the energy of the audio 
signal in small time frames. Statistical Features such as mean, 
variance, skewness, and kurtosis provide statistical 
information about the audio signal that can be leveraged to 
enhance performance. 

Following that, the feature selection process is conducted to 
reduce the number of features used by identifying the best 
feature combinations from the initial parameters. This aims to 
reduce computational complexity, accelerate execution 
speed, and enhance recognition performance. Feature 
selection methods include: statistical (such as Chi-Square 
test, ANOVA, correlation coefficient), filter methods (such as 
Variance Threshold, Mutual Information, ReliefF), wrapper 
methods (such as Forward Selection, Backward Elimination, 
Recursive Feature Elimination), and embedded methods 
(such as L1 Regularization, decision trees, Elastic Net). 
Dimensionality reduction techniques like PCA and LDA are 
also used to optimize data. However, feature selection can 
lead to the loss of important information if not performed 
carefully. 

With the continuous expansion of deep learning applications, 
speech recognition has achieved promising results. Numerous 
studies have integrated deep learning methods for emotion 
recognition in speech. A neural network combined with CNN 
and LSTM achieved a resolution rate of 68% for DAIC-WOZ 
[9]. In 2017, A. M. Badshah and colleagues utilized a three-
layer CNN architecture with a fully connected layer for 
emotion recognition in speech on the EmoDB database, 
achieving a recognition rate of 84.3% [10]. In the same year, 
Haytham and the research group [11] employed a CNN-RNN 
structure on the IEMOCAP database and achieved a 
recognition rate of 64.78%. While deep learning methods 
have improved recognition performance, they often require 
significant computational resources and long training times. 
In 2018, S. Tripathi [12] applied a three-layer LSTM 
architecture to classify emotions on the IEMOCAP dataset, 
achieving a recognition rate of 71.04%. Subsequently, in 
2019, J. Zhao and colleagues [13] used a CNN-LSTM 
architecture. This marked the first time CNN was used to 
extract features from speech signals, followed by the 
application of LSTM to analyze the temporal relationships of 
these features. They achieved a recognition rate of 92.9% in 
EmoDB and IEMOCAP classification. Details regarding the 
datasets will be discussed and explained in the following 
chapter. Table 1 below provides a detailed comparison. 
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Table 1. Comparison of related documents 

Ref. # emotion Data model Acc 

[9] 2 DAIC-WOZ CNN-
LSTM 68% 

[10] 7* EmoDB CNN 84.3% 

[11] 5** IEMOCAP CNN-
RNN 64.78% 

[12] 4*** IEMOCAP 3 layers 
LSTM 71.04% 

[13] 7*/6**** EmoDB/IEMOCAP CNN-
LSTM 92.9% 

*anger, boredom, disgust, fear, joy, sadness, neutral
** angry, happy, neutral, sad, silence 

***anger, happiness, sadness, neutral 
****anger, excited, frustrated, happiness, neutral, sadness 

Emotional audio data is inherently complex due to diversity 
in emotional expression across languages, regions, genders, 
and ages. These variations, along with different data 
collection methods such as real-life scenarios, interviews, 
films or television shows, and professional acting, add to the 
complexity. Throughout our research, we have identified 
several commonly used datasets, including DAIC-WOZ, 
EmoDB, and IEMOCAP. 

The DAIC-WOZ database contains clinical interviews 
designed to assist in diagnosing psychological conditions 
such as anxiety, depression, and post-traumatic stress 
disorder. The data includes audio and video recordings, along 
with responses from extensive questionnaires. Interviews are 
conducted by a remotely controlled virtual interviewer, 
facilitating natural and authentic data collection. The data has 
been transcribed and annotated for various speech and non-
speech characteristics, with durations ranging from 7 to 33 
minutes (average of 16 minutes). However, the naturalness 
and diversity of the data can introduce noise, complicating 
processing and analysis. 

EmoDB takes a different approach by collecting emotions 
from actors in a controlled environment. This German 
database contains approximately 500 utterances from ten 
different actors, portraying six basic emotions and a neutral 
state. The data was recorded in an anechoic chamber at the 
Technical University of Berlin. Although this data lacks the 
naturalness of DAIC-WOZ, it has the advantage of 
minimizing noise and easily controlling variables. 

The IEMOCAP database is a multimodal, multi-speaker 
acted database, collected at the SAIL lab at USC. It contains 
approximately 12 hours of audiovisual data, including video, 
speech, facial motion capture, and text transcripts. Dyadic 
sessions, where actors perform improvised or scripted 
scenarios specifically selected to elicit emotional expressions, 
are included. The IEMOCAP data is annotated by multiple 

individuals with categorical labels. With its multimodal data 
and large size, IEMOCAP offers a rich resource for studying 
and developing emotion recognition models, although its size 
and diversity can complicate processing and analysis. 

These databases, each with unique characteristics and diverse 
collection methods, provide an essential foundation for 
researching and developing speech emotion recognition 
models. 

3. Proposed DNN for Emotional
Classification

As shown in Fig. 2, the proposed DNN consisting of two 2D 
CNNs, 1D CNN + LSTM and Non-Local Attention 
generation layers. The utilization of these three processing 
streams aims to optimize the extraction of features from audio 
data, integrating information from both raw signals and 
spectral representations to enhance the accuracy of emotion 
recognition. First of all, audio signal is decomposed into 
multiple segments each of which has an interval of few 
seconds that are sufficient to contain an emotion. Owing to 
the fixed dimension of the input neural layer in the proposed 
DNN, the frame size in a audio segment may need to be 
converted. One using 1D data and the other using 2D data. 
Both models were provided with 8-second audio inputs 
sampled at 16 kHz. The 1D processing stream captures 
information directly from the raw audio signal, enabling the 
model to learn frequency and temporal characteristics in 
detail. This stream leverages raw data without complex 
preprocessing steps, minimizing information loss and 
maintaining the integrity of the original signal. Furthermore, 
the 1D CNN can detect short-term frequency features in the 
audio data, while the LSTM aids in retaining and processing 
long-term dependencies, facilitating emotion recognition.  

Figure 2. Overall proposed DNN architecture 
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In contrast, for the 2D data model, instead of using direct 
audio signals, the authors applied the Mel-frequency cepstral 
coefficients (MFCC) encoding method and applying the 
STFT processing technique for second 2D CNN. MFCC is a 
widely-used technique in speech recognition that helps the 
model focus on the most crucial features of the audio signal 
and filter out unnecessary noise. STFT, by applying Fourier 
transforms to short time frames of the signal, provides 
information on the frequency variations over time, allowing 
the model to recognize short-term changes and dynamic 
features in the audio.By combining both MFCC and STFT 
methods, the model can leverage the advantages of both 
techniques, including extracting significant frequency 
features and tracking frequency changes over time. This 
enhances the model's emotion recognition capability by 
offering a more comprehensive view of the audio signal 
characteristics. 

Figure 2 illustrates the overall architecture of the model when 
using this input data. The input data consists of 5-second 
audio samples processed concurrently in three streams as 
described. 

Figure 3: Modified Non-Local Attention Mechanism 
block [14] 

In the 1D CNN stream, a sequence of 4 convolutional blocks 
is connected consecutively, each block comprising a 1D 
convolutional layer combined with batch normalization and 
pooling. The input data for this stream are 8-second audio 
segments sampled at 16 kHz, converted into one-dimensional 
vectors with a length of 80,000 audio points. These vectors 
contain complete frequency and temporal information of the 
raw audio signal, allowing the model to learn complex 
features without extensive preprocessing. As mentioned, 
processing the raw audio data directly enables capturing 
short-term frequency characteristics, and we use an LSTM 

layer at the end to retain and process long-term dependencies, 
facilitating emotion recognition. 

The two 2D processing streams have identical structures 
except for the different audio preprocessing techniques. As 
discussed, MFCC and STFT were used to preprocess the 
audio. The audio signal, After applying MFCC, is 
transformed into a set of Mel-frequency cepstral coefficients, 
representing important frequency features of the audio signal 
in a 2D matrix. This matrix is then used as input for the first 
2D CNN. The transformed data has dimensions of 128x157, 
with 128 MFCC coefficients representing frequency features 
and 157 time frames representing temporal features of the 
audio segment. 

The audio signal, after applying STFT, is converted into a 
spectrogram, displaying frequency content over time. This 
spectrogram is a 2D matrix, showing the frequency variations 
over time, and is used as input for the second 2D CNN. The 
output after STFT processing also has dimensions of 
128x157, with 128 representing frequency bands and 157 
representing time frames. 

Regarding structure, the processing blocks of the two 2D 
streams are similar, each comprising 4 convolutional blocks, 
each starting with a 2D convolutional layer combined with 
batch normalization and a pooling layer. The number of 
channels as the data flows through each layer gradually 
increases from 1 to 64, ending with 128 layers. 

With numerous modifications from the input data format to 
the architecture of the model, the accuracy did not 
significantly improve, and in some architectures, the accuracy 
even decreased compared to the original one. Instead of 
adjusting or removing components of the original model, we 
considered enhancing certain elements to improve the 
model's accuracy. One of the techniques we explored for this 
purpose is the Non-Local attention mechanism as shown in 
Figure 3. 

The non-local Attention mechanism is integrated to enhance 
the model's ability to recognize and analyze critical features 
of the audio signal. Unlike traditional convolutional layers, 
which focus only on local regions of the data, the non-local 
block can consider and integrate information from the entire 
temporal and spatial sequence of the input data. This enables 
the model to recognize long-term relationships and broader 
context in the data, which conventional CNN layers might 
miss. The use of non-local blocks aims to integrate and 
optimize information from the three processing streams (1D 
CNN and 2D CNN). This helps the model not only focus on 
short-term and long-term frequency features but also 
enhances the ability to distinguish important features from 
different representations of the audio data. 

The desired outcome of using non-local blocks is to improve 
emotion recognition accuracy by emphasizing important data 
regions and minimizing the impact of noise. The non-local 
block operates by generating an attention weight matrix from 
the input matrices of the three processing streams. This matrix 
is then multiplied with the original data matrix to create new 
data matrices, highlighting important regions. 
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The output matrix from the input data goes through an 
additional layer of either a convolutional or fully connected 
layer to create an attention weight matrix. This matrix is then 
multiplied with the original data matrix to generate a set of 
new data matrices, where more important regions are 
highlighted through the applied attention mechanism. 

3.1 Dataset and Pre-processing 

The data used for this study is selected from the EmoDB [15] 
database of Germany's Berlin Institute of Technology. 
Although the data volume in EmoDB is smaller compared to 
some other databases, it is sufficient to achieve the research 
objectives. Each data segment is a short sentence, which is 
convenient for emotion determination. Compared to other 
databases, EmoDB may be considered more suitable for this 
research. The main reason is the moderate length of the audio, 
where each sentence represents a single emotion, eliminating 
the need for cutting or creating excessively long data 
segments. Applying certain methods to other databases may 
lead to inaccurate classification results. This database is vital 
for emotion recognition from speech, containing 535 audio 
samples recorded by 10 participants (5 males and 5 females) 
shown in Table 2. It includes 7 different emotions: anger, 
boredom, disgust, fear, happiness, sadness, and neutral. The 
diversity in gender and emotion types makes Berlin EmoDB 
increasingly popular, providing a foundation for in-depth 
analysis and research on emotions expressed through speech. 

Furthermore, a strategy is employed to prepare the audio data 
in EmoDB, following the method cited from [12], which 
involves standardizing the length of the audio to 8 seconds. 
This is achieved by adjusting the length of audio below 8 
seconds to 8 seconds through zero-padding and handling the 
remainder. In EmoDB, the length of the audio typically 
ranges from 1 to 8 seconds, with the longest breakpoint being 
8.9 seconds. This technique also allows controlling the audio 
length within 8 seconds by removing the head and tail 
portions. 

It is noted that using zero-padding can lead to filling too many 
0 values, resulting in the loss of useful information and 
blurring the data. Therefore, the mirror padding method has 
been applied to prepare the audio data to 8 seconds, as 
illustrated in Figure 4 below. 

Figure 4. Example of the mirror padding scheme for 
audio segment 

To enhance the accuracy of recognition, we implemented 
cross-validation by removing one individual from the dataset. 
This allowed us to estimate the model's performance by 
testing with data from this person and the remaining data from 
others. Given the uneven distribution of data for each 
emotion, we standardized the length of each audio segment 
and ensured a consistent number of training samples. The 
table below illustrates the data segmentation methods and 
details of the data volume. 

For a specific approach, we took the resting data of the first 
person as an example. In this case, the test data was identified 
from this person, and the remaining training and testing data 
were divided for days 2 to 10. We extracted individual data, 
shuffled, and standardized data for each emotion. Initially, we 
randomly selected 15 samples for verification and used the 
remaining part to create the training set. 

A challenge arose when the number of training samples for 
some emotion types was too low. This was due to using the 
same data to create additional training data, leading to a 
shortage of training data and a decrease in the recognition 
rate. To address this issue, we applied data augmentation. For 
example, to augment the data, we removed some samples of 
the angry emotion from the first person. At this point, out of 
the required 500 samples, data would be generated from the 
original data. After concatenating to reach a length of 8 
seconds using the mirror padding method as previously 
described, we generated a total of 97 data. Next, each of the 
97 data was shifted to the left by 0.1 seconds, creating 97 new 
data, and this process was repeated until we collected 500 
samples. This helped ensure the diversity of the training data 
to improve emotion recognition performance. 

Table 2. EmoDB dataset feature 

samples rate max 
length participant emotions 

EmoDB 535 16khz 8.7s 10 people 7 

The input data size under consideration is 8 seconds, with a 
sampling frequency of 16kHz. Each one-dimensional audio 
data can be represented by a data array of 128,000 points. For 
two-dimensional data, we used the librosa library to create an 
MFCC parameter matrix for audio data. Simultaneously, 8 
seconds of audio data could produce an MFCC parameter 
matrix of size 128 * 251. The sampling parameters were set 
to 2048 points for an audio frame and 512 points for a hop 
size. 

During the testing process, using the first individual as the 
test data for a small-scale evaluation could lead to 
inaccuracies in assessing the model's performance. The 
results would either be entirely correct (100%) or incorrect 
(0%), resulting in an imprecise evaluation. Therefore, in 
subsequent experiments, we randomly selected a subset of 
individuals from the total of 10 to represent the test data. This 
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approach aimed to create a more diverse testing environment, 
providing a better reflection of the model's performance. 

In the original document, the authors only mentioned the 
output of each layer in the form of computational formulas. 
When we conducted practical research, we computed this 
information into specific numerical values, which may lead 
to differences from the original structure in the reference 
literature. Using MFCC with 128 parameter groups, each 
audio frame's size being 2048 points, and a hop size of 512, 
we obtained specific parameters. 

Figure 5: STFT scheme for Audio as spectrogram 

The reference literature utilized two similar models, one 
using 1D data and the other using 2D data. Both models were 
provided with 8-second audio inputs sampled at 16 kHz. For 
the 1D data model, with the specified audio parameters, the 
input size of the model is a one-dimensional vector with a 
length of 128,000 audio points. In contrast, for the 2D data 
model, instead of using direct audio signals, the authors 
applied the Mel-frequency cepstral coefficients (MFCC) 
encoding method. 

By applying the STFT processing technique, we could 
represent the data as a spectrogram, showing the frequency 
content over time by applying the Fourier transform to short 
time frames (see Figure 5) of the audio signal. The frequency 
spectrum obtained from STFT was used as input for the 
neural network. Figure 21 illustrates the overall architecture 
of the model when using this input data. 

3.2 Proposed Multiple DNNs 

In Figure 1, the architecture is comprised of two main 
Convolutional Neural Network (1D CNN and 2D CNN, as 
shown in more detail in Figure 6) blocks and a Long Short-
Term Memory (LSTM) block. The working principle of this 
architecture involves using CNN to extract information from 
the audio signals and generate sequential parameters over 
time. Subsequently, LSTM is applied to leverage its ability to 
analyse time-dependent data, using the sequential parameters 

created by CNN. Finally, this parameter set, containing 
temporal information, is passed through fully connected 
layers for classifying the data. In the reference literature, the 
authors implemented two similar structures. One structure 
uses direct one-dimensional audio data, while the other 
structure utilizes the encoded results from Mel-frequency 
cepstral coefficients (MFCC) and SIFT to create two-
dimensional data. The 1D CNN and 2D CNN parameter are 
illustrated in Table 3 and Table 4. 

Figure 6 provides a detailed breakdown of the CNN blocks 
used in our architecture. The 1D CNN block is designed with 
multiple layers to effectively capture and process temporal 
features from one-dimensional audio data. The first layer is a 
1x3 convolutional layer with 64 filters and a stride of 1. This 
choice of kernel size allows the model to capture local 
patterns within the audio signal, while the number of filters 
ensures that a diverse set of features is learned. The inclusion 
of batch normalization after the convolutional layers helps in 
stabilizing the learning process and accelerating convergence. 
Following this, a 4x4 max-pooling layer with a stride of 4 is 
used to down-sample the data, reducing the computational 
load and focusing on the most salient features. 

This configuration is repeated with an increased number of 
filters - 128 in the second set of layers - to allow the model to 
capture more complex features as the depth increases. The 
same pattern of convolution, batch normalization, and max-
pooling is applied, which ensures that the model is capable of 
learning hierarchical feature representations from the audio 
data. 

Similarly, the 2D CNN block is structured to process two-
dimensional data, such as those derived from Mel-frequency 
cepstral coefficients (MFCC). The first layer in the 2D CNN 
block is a 3x3 convolutional layer with 64 filters and a stride 
of 1, followed by batch normalization and a 4x4 max-pooling 
layer with stride 4. The choice of a 3x3 kernel size is standard 
in many deep learning applications because it is effective in 
capturing spatial hierarchies and details within the data. The 
subsequent layers follow the same pattern but increase the 
number of filters to 128, allowing for more complex and 
abstract feature extraction. 

The meticulous selection of parameters, including the number 
of layers, the size of filters, and the use of batch normalization 
and max-pooling, reflects the ambition to create a robust and 
efficient model. The multiple layers of convolutions ensure 
that both local and global patterns are captured, while the 
progressive increase in filter numbers allows the model to 
learn increasingly abstract features as the data flows through 
the network. These design choices are aimed at maximizing 
the model's ability to generalize from training data to unseen 
samples, ultimately leading to more accurate and reliable 
classifications. 
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Figure 6: 1D CNN and 2D CNN Block 

A feasible variant of these models is to switch from using a 
16kHz frequency to an 8kHz frequency. The main idea 
behind this adjustment is the recognition that the frequency 
of human speech primarily focuses below the 4kHz threshold, 
so data with frequencies above 4kHz is relatively scarce. We 
performed high-frequency removal, retaining only data with 
an 8kHz frequency, and applied it to the adjusted models with 
an attention mechanism.  

Table 3: Parameter for 1D CNN 

1D CNN Network architecture parameters 

Layer input 
dimensions 

Output 
dimensions 

Filter Ker
nel 

Stride Activation 
function 

1 Conv 128000 128000*64 64 3 1 

Batch normalization ReLU 

1 pooling 128000*64 32000*64 4 4 

2 Conv 32000*64 32000*64 64 3 1 

Batch normalization ReLU 

2 pooling 32000*64 8000*64 4 4 

3 Conv 8000*64 8000*128 128 3 1 

Batch normalization ReLU 

3 pooling 8000*64 2000*128 4 4 

4 Conv 2000*128 2000*128 128 3 1 

Batch normalization ReLU 

4 pooling 2000*128 500*128 4 4 

Lstm 500*128 1*256 256 Tanh 

Flatten 1*256 256 

fc 256 7 7 softmax 

Table 4: Parameter for 2D CNN 

2DCNN Network architecture parameters 

Layer input 
dimensions 

Output 
dimensions 

Filter Ker
nel 

Stri
de 

Activation 
function 

1 Conv 128*251 128*251*64 64 3*3 1*1 

Batch normalization ReLU 

1 pooling 128*251*64 64*125*64 2*2 2*2 

2 Conv 64*125*64 64*125*64 64 3*3 1*1 

Batch normalization ReLU 

2 pooling 128*251*64 16*31*64 4*4 4*4 

3 Conv 16*31*64 16*31*128 128 3*3 1*1 

Batch normalization ReLU 

3 pooling 16*31*128 4*7*128 4*4 4*4 

4 Conv 4*7*128 4*7*128 128 3*3 1*1 

Batch normalization ReLU 

4 pooling 4*7*128 1*1*128 4 4 

reshape 1*1*128 1*128 

Lstm 1*128 1*256 256 Tanh 

Flatten 1*256 256 

fc 256 7 7 softmax 

Diference type for comparation with proposed DNN:  To 
understand the positive impact of the proposed model, we 
conduct a comparison with four models as list in Figure 7, 
Figure 8, Figure 9, and Figure 10.  

To improve accuracy, we use a pretrained model strategy. 
This involves initializing the weights of a pre-trained model 
through transfer learning, using large-scale data from image 
classification [16] and speech recognition [17]. Despite 
speech and image tasks being different fields, they share the 
same network input after preprocessing. Our CNN model 
uses the spectrum map as input, which is treated as an image. 
Experiments confirmed the effectiveness of transfer learning. 
Initially, the model uses weight parameters from a natural 
scene image database (ImageNet) with 1,000 classes, then 
fine-tunes the weights using our speech emotion database. 
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Figure 7: Two stream CNN-LSTM as Type 1 

Figure 8: 1D CNN- LSTM as Type 2(a) and 2D CNN 
as Type 2 (b) 

Figure 9: Two stream 1DCNN-LSTM and 2D CNN 
as Type 3 

4. Experiment Results and Discussion

4.1 Dataset and Parameter Setups for 
Experiments 

In this study, we utilized the EmoDB dataset to evaluate the 
models. The dataset comprises 535 audio recordings 
collected from 10 participants (5 males and 5 females), each 
exhibiting 7 different emotions. To ensure fairness in testing, 
we rigorously adhered to uniform data splitting for all tests. 
The data was divided into two sets with an 8:2 ratio, ensuring 
even distribution across the emotional classes. 

All experiments were conducted on Google Colab servers, 
leveraging their robust computational resources for training 
and evaluating the proposed models. For a detailed insight 
into the server's computational capacity, the CPU 
specifications are as follows: 

- Processor: Intel(R) Xeon(R) CPU @ 2.20GHz
- CPU Family: 6
- Model: 79
- Cache Size: 56320 KB
- Cores: 1
- Siblings: 2

The server configuration facilitated multitasking capabilities 
and efficient memory utilization, which are essential for the 
successful training and evaluation of complex deep learning 
models. 

After training the proposed model on the training dataset, we 
conducted testing on a separate test dataset and computed 
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performance metrics to assess its classification capability. 
Accuracy measures the percentage of correctly classified 
samples, calculated as the ratio of the sum of true positive 
(TP) and true negative (TN) samples to the total number of 
samples: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇 +  𝐹𝐹𝑇𝑇

4.1 Evaluation Impact of the Difference Model 

We began evaluation of the efficiency model architecture as 
proposed. The goal was to analyse and suggest changes to 
improve the model's accuracy as shown in Table 5. 

1D + 2D combines two architectures as Type 1: During the 
experimentation process, we conducted testing on three 
different model architecture. We built the 1D CNN and 2D 
CNN models with four main blocks, each comprising one 
convolutional layer, one batch normalization, and one max-
pooling layer. For the 1D CNN processing block, the number 
of data channels is expanded from 1 to 64, ending at 128. This 
expansion similarly occurs sequentially in the blocks of the 
2D CNN stream. Detailed parameters of the two models are 
presented in Tables 2 and 3. However, due to the unclear 
points in the reference literature, we encountered differences 
between these architecture versions. This led to experimental 
results that did not align with what was initially reported in 
the reference document. Specifically, the accuracy rates of the 
1D CNN and 2D CNN architectures were 77.17% and 
77.99%, respectively. When we experimented with 
combining the two architectures in a parallel model, as 
illustrated in Figure 7 below, the recognition rate reached 
79.51%. This result indicates that combining the architectures 
in a parallel model led to a significant improvement in 
recognition performance compared to using each architecture 
independently. 

This can be explained by the fact that when using 1D CNN, 
the model can focus on the short-term frequency 
characteristics of the audio signal, capturing important 
information related to amplitude and frequency at a specific 
time. This is particularly useful in recognizing audio features 
such as rhythm and timbre. 

Meanwhile, 2D CNN has the ability to process the 
spatiotemporal aspects of the audio signal, representing 
frequency information over time. This allows the model to 
recognize variations in the audio signal over time, suitable for 
elements such as fluctuations and spectral content. 

When combining both architectures in a parallel model, the 
model can learn both types of features simultaneously. This 
leads to a more robust model capable of recognizing and 
identifying more complex classification patterns than using 
each architecture independently. Through combination, the 
model can leverage the distinct advantages of each 
architecture to improve overall recognition performance, 
especially when the audio signal features depend on both 
spatiotemporal and frequency domains. 

Figure 10: One stream followed by Attention 
Mechanism as Type 4 

In the unique directional neural network architecture, the 
initial output of the LSTM block was set to 256. However, 
since the output size of the fourth CNN layer is 500*128, to 
match the input size, we adjusted the output of the LSTM 
block from 256 to 128. This helps balance the sizes between 
the inputs and outputs of the layers in the model. 

 Modified 1D and 2D CNN architecture  (Type 2) shown 
in Figure 8 for the bidirectional model, the output size of the 
fourth CNN layer is only 11128, indicating a single time step 
in the data. Due to the concentration of data into a single time 
step, using an LSTM block to learn is no longer necessary, as 
the temporal relationships have already been captured in the 
preceding layers. With the neural network architecture 
described earlier, the experimental results indicate that the 
adjustments did not lead to a significant improvement in 
accuracy. The accuracy of the 1D and 2D models remained at 
78.92% and 79.97%, respectively.  
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Modified 1d combined with 2d + Spectrum when changed 
to input as Type 3 (Figure 9): After conducting experiments, 
we observed that the changes did not lead to a significant 
improvement in recognition performance. Therefore, we 
delved deeper by examining the characteristics of the dataset. 
Statistical analysis of the data revealed that out of a total of 

535 samples, only 25 samples had a duration exceeding 5 
seconds, and only 1 sample had a duration exceeding 8 
seconds. This indicates that the majority of the data in the 
dataset has a duration of less than 5 seconds. To meet the 
requirement for an 8-second duration, pre-processing the data 
by adding padding to create samples of the desired length 
would be reduced if we chose to fix the audio samples at 5 
seconds instead of 8 seconds. We applied this modification to 
both types of models, including the original model and the 
adjusted models. After experimenting with both types of 

architectures, we obtained results showing that reducing the 
input size from 8 seconds to 5 seconds improved performance 
for the majority of cases. Type 3 reached 88.4% at 5 seconds 
and employing the first subject as the test data in the leave-
one approach. 

The proposed DNN shown in Figure 2, we considered for 

pre-processing the input data was using Short-Time Fourier 
Transform (STFT) instead of employing the Mel-frequency 
cepstral coefficients (MFCC) technique. The reason for this 
choice is that STFT focuses on representing audio signals in 
the frequency-time domain. The testing results of the 
proposed model applied to 5-second data for each type of 
model, including the 1D CNN model and two 2D CNN model 
base on Non-Local Attention, achieved accuracies of 90.1%. 
While approach pretrained model reached 93.2% as well.  

Table 5: Comparison proposed DNN and Its variants 

Input audio length 8 seconds 5 seconds 5 seconds *** 5 seconds 
**** 

Data volume 3500 subjects for training and 105 subjects for verification 

Test set is not fixed (49 samples from the initial subjects for leave-one) 

1D CNN architecture 68.49% 77.17%* 

2D CNN architecture 76.96% 74.99%* 

1D + 2D combines two architectures as Type 1 77.81% 79.51%* 

Modified 1D CNN architecture as Type 2 (a) 69.82%* 78.92%* 

Modified 2D CNN architecture as Type 2(b) 78.14%* 79.43%* 79.97%* 78.03% 

Modified 2D architecture Type 2(b) + reduced 
from 16k to 8k input 

68.18%* 82.51%* 76.96% 

Modified 1d combined with 2d + Spectrum when 
changed to input as Type 3 

82.25%* 83.10%* 88.41%* 85.14% 

Modified 2D architecture + attention mechanism 
as Type 4 

79.43%* 83.55%* 80.51% 

Modified 2D architecture + attention mechanism 
as Type 4 + input reduction 

79.97%* 85.55%* 78.51% 

Combining input time spectrum with modified 
2d architecture 

69.27%* 74.18%* 

1d CNN architecture adds attention mechanism 19.29%* 57.06%* 

Proposed DNN without Pretrained 83.0%* 82.7%* 90.1%* 87.3% 

Pretrained + Proposed DNN 87.0%* 88.5%* 93.2%* 91.7% 
(Without *) is the complete identification result obtained using the leave-one method. 

* Experimental results were derived by employing the first subject as the test data in the leave-one approach. 

** Referencing the paper's experimental outcomes; however, due to the unavailability of data segmentation details, only the reference is provided. 

*** Data padding correction was performed for mirror padding. 

**** Besides using mirror padding, data augmentation also employed time difference amplification to enhance data differences.
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The impact of model design on experimental results is 
significant. The careful selection and combination of model 
architectures, such as integrating 1D and two 2D CNNs, 
enabled the model to capture both short-term frequency 
characteristics and long-term spatiotemporal features of the 
audio signals. This dual approach ensured a more 
comprehensive feature extraction process, leading to higher 
accuracy rates. Adjusting the input sizes from 8 seconds to 5 
seconds also contributed to performance improvement by 
better aligning with the characteristics of the dataset. 
Moreover, using STFT for pre-processing allowed the model 
to effectively represent audio signals in the frequency-time 
domain, further enhancing recognition accuracy. These 
thoughtful design choices, including the configuration of 
CNN layers, filter sizes, and the use of advanced pre-
processing techniques, collectively improved the model’s 
ability to process and classify audio data accurately, 
demonstrating the importance of a well-designed architecture 
in achieving optimal experimental results. 

Table 6: Lists the comparison of average accuracies 
from the proposed DNN and conventional ones. The 
structure of combinatiion CNN-LSTM reveal good 
accuracy of 92.8 and 92.9 while our proposed DNN is 
higher in magin of 0.03%. The proposed DNN adopted 
pretrained model achieves the second best 
performance which is still higher than that from the 
CNN-LSTM [13] on EmoDB dataset. 

Ref. model Accuracy (%) 

[10] CNN 84.3% 

[18]2021 a CNN 77% 

[19]2020 b CNN and Bi-LSTM 94% 

[20]2021 c SVM 80.05 

[21]2022 d CNN-VGG16 92.8% 

[22]2023 e VQ-MAE-S-12 (Frame) +
Query2Emo 90.2 

[13] CNN-LSTM 92.9% 

Proposed 
DNN 

Multiple CNN-LSTM based Non-
Local Attention 90.1% 

Pretrained + Multiple CNN-
LSTM based Non-Local Attention 93.2% 

In addition, differences could also arise from data labelling. 
The reference document did not provide specific information 
about the number of participants in the training and testing 
data. Acknowledging that such variations could occur, after 
each improvement and correction step, we addressed errors in 
the padding section, causing the entire data to become sparse. 
Simultaneously, we adjusted the data augmentation approach. 
Instead of copying data with the same quantity, we 
transitioned to time warping, a method previously applied and 
shown positive results in augmenting training data. 

Despite the trimming and adjustments made to better fit the 
model architectures, such as resizing and removing 
unnecessary layers, the recognition results did not show 
significant improvement. Through further investigation, we 
found that the input data itself. 

In choosing a duration for the neural network, we adopted for 
5 seconds based on dataset statistics, acknowledging that a 
simpler network structure improved recognition performance 
for the task. However, the ability to recognize based on the 
time domain was not effective when testing with 8-second 
input data. Ultimately, incorporating attention mechanisms 
into the model structure rendered testing with 8-second data 
entirely unviable, while maintaining good recognition rates 
with 5-second input data. Although it is not certain whether 
extending to 8 seconds is a good approach, it did completely 
eliminate the inherent characteristics of the dataset. Based on 
the test results above, if we focus on audio inputs and apply 
MFCC processing, the length of the audio is a factor that 
influences recognition results to some extent. 

5. Conclusion

In this work, we have successfully developed a new multiple 
DNN based on Non-local Attention. Experimental results 
show that proposed DNN using pretrained achieves superior 
accuracies than its modified version. Although this research 
has not achieved an state of the art result, with the highest 
recognition rate reaching about 93.2%, it has incorporated 
and compared various architectures, laying the groundwork 
for future research to expand and compare with even more 
architectures. The ultimate goal is to find an increasingly 
better model as an optimal tool for emotion recognition tasks. 
From the perspective of this study, proposed DNN for 
emotion recognition from speech is a futher promising, 
especially from the research community, its application in 
recognizing emotional content in speech could open up new 
dimensions, including predicting emotional states and 
psychological states in the future. We expect to continue 
developing in this direction in the future.  

In the future, we will focus on enhancing the training data by 
collecting and integrating larger and more diverse datasets to 
improve the model's generalization ability and accuracy. 
Additionally, we will explore new audio preprocessing 
methods and compare them with other advanced deep 
learning models, such as Transformer and RNN variants, to 
optimize the model architecture. Furthermore, research and 
optimization of the non-local attention mechanism will 
continue to improve the model's performance. 

We anticipate that this model will not only be applicable to 
emotion recognition from speech but also open up other 
practical applications such as predicting psychological states 
and aiding psychological therapy. Recognizing more 
complex emotional states could become an important tool in 
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fields like mental health care and user behavior analysis. This 
model also has the potential for widespread application in 
analyzing emotions from speech in everyday communication 
scenarios, thereby contributing to the improvement of 
human-machine communication systems and enhancing user 
experience in intelligent interaction services. 
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