
A networkless data exchange and control mechanism for
virtual testbed devices
Tim Gerhard1, Dennis Schwerdel1, Paul Müller1

1Integrated Communication Systems Lab, University of Kaiserslautern, Germany

Abstract

Virtualization has become a key component of network testbeds. However, transmitting data or commands to the
test nodes is still either a complicated task or makes use of the nodes' network interfaces, which may interfere with
the experiment itself. This paper creates a model for the typical lifecycle of experiment nodes, and proposes a
mechanism for networkless node control for virtual nodes in such a typical experiment lifecycle which has been
implemented in an existing testbed environment.

Keywords: Testbed, Control Interface, Node Control

1. Introduction

Network research is becoming more important since the
Internet and other computer networks have a growing
in�uence on the world. For this area of research, network
testbeds are a crucial tool for experimentation. These
testbeds usually o�er a number of devices distributed
over the globe with certain connection con�gurations
between them. The experimenters' in�uence on this
setup and its variables depends mainly on the testbed's
architecture.
An important aspect for the usage of a testbed is

how the network devices can be controlled. For large
experiments which have many network nodes it is not
feasible to control every device by hand. Thus, the
experimenter needs to have a controlling interface which
can be automated, i.e. scripted. Many testbeds (such
as PlanetLab [4] or EmuLab [2, 9]) use the devices'
networking capabilities to provide such an interface, and
automation frontends for these testbeds (like gush [1])
also need a network connection to the devices.
However, in a networking testbed, a network interface

(especially one connected to the Internet) may not be
a good solution to the problem of controlling a device.
There are several disadvantages when choosing this
control method which have to be accounted for in the
experiment design.

con�guration Depending on how node control is
realized, there is either an additional network
interface on every device or one of the interfaces
which is being used in the experiment is also used
for control. In the �rst case, the experiment must
be con�gured never to use the additional interface,

even when routing over this interface would make
more sense than routing over another one. In the
second case, this interface is forced to support the
traditional protocol stack including TCP/IP.

tra�c There may be uncontrolled tra�c coming from
the outside network to the experiment. This
may a�ect measurements as this additional tra�c
uses bandwidth, may cause additional latency or
interfere with the experiments in other ways.

connectivity There may be experiments which may
not be connected to the Internet for several
reasons. For example, you cannot run a malware
analysis while connected to the Internet without
endangering the Internet (Such an experiment has
been done on ToMaTo, using VNC as the node
control method [7]).

This paper proposes a new approach to control interfaces
by not using of the testbed devices' network interfaces.
Instead, another medium of communication will be
chosen. In Section 2, a model for automated node
control will be developed. Section 3 describes how these
operations can be realized in a host-guest system without
using network interfaces between these two components,
section 4 introduces the actual implementation in the
Topology Management Tool (ToMaTo [6, 8]) and section
5 concludes this paper.

2. Requirements for automated control

After creating devices, the experimenter will usually
install software on it (1), con�gure it (2), run the

1

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

Copyright © 2015 Tim Gerhard et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction
in any medium so long as the original work is properly cited.

doi: 10.4108/inis.2.2.e2

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

Received on 20 May 2014, accepted on 03 November 2014, published on 25 February 2015

experiment (3) and then collect the resulting data
(4). Step 1 consists of transmitting �les to the device
and then execute the installation routine. Step 2 also
consists of running commands and maybe uploading
some con�guration �les to the device. Step 3 can be
initiated by a command, and step 4 is a �le download
from the device. Every additional interaction can also be
possible through �le transmission or sending commands.
For an automated control, one must be able to wait

for a command to �nish before continuing with the
next step. Therefore, an automated control interface only
needs these three operations: transmitting �les between
the controlling and the controlled device, executing
commands or scripts on the controlled device and
monitoring the progress of this execution.
Instead of allowing to directly execute a de�ned

command, the controlled device can be con�gured to
automatically execute a script identi�ed by a certain �le
name after such a script has been uploaded. Uploads and
downloads are done through archives, where the archive
will be extracted to a certain directory after an upload,
and the archive will be created from this directory again
for download. For the purpose of describing, archive and
directory can be viewed as equivalents.
A system which provides these three operations

(upload and execute, query execution status, download)
for its devices to its users without using the target
device's network interfaces provides Remote Execution

and Transfer of Files for Vitual computers (RexTFV).

3. Communication between Host and
Guest

This paper will focus on the interface between host and
guest. It does not describe how the host is controlled by
the user, but it is assumed that the additional commands
can be integrated into the testbed's architecture.
Storage is a resource which is shared between host

and guest. In general, the guest can access a part of
the host's storage. This fact can be used to emulate a
shared directory, which can then be used to provide the
operations described in section 2, as will be described in
section 3.2.
The network-less Execution and Transfer Protocol

(nlXTP), which will be described in this section, uses
such a shared directory to provide these operations
between host and guest systems. The term network-less

means that it does not make use of network interfaces.
RexTFV has been designed to work for virtual devices,

but it can be used in any scenario where the controlling
node can access the controlled node's storage.

3.1. Shared Directory

Virtualization systems can be categorized into container-
based or full virtualization, which are completely

di�erent approaches to the problem of virtualizing
computer systems. Thus, there are fundamental
di�erences in the realization of the shared directory.
As this will be needed in section 3.2, the shared

directory has to provide the following:

• upload of an archive,

• download of an archive, and

• a frequent, scheduled reading of a certain �le (the
status �le) by the host, which can be created and
edited by the guest.

It is assumed that the user does not execute the upload
and download operations while the guest is still working
on the �les, given the fact that the user knows when
operations are running. Thus, only the scheduled reading
of the status �le has to cover possible inconsistency.

3.1.1. Container-Based Virtualization. Cantainer-
based virtual machines (such as OpenVZ1 or
Linux-VServer2) aim at creating a di�erent runtime
environment, while host and guest system still share
one kernel, including drivers. This means that the
virtual machine is integrated into the host's scheduler
and �le system. In fact, the guest's root directory is
simply a certain directory in the host's �le system. Since
nlXTP requires full control over the shared directory,
this shared directory must be an otherwise unused
subdirectory of the guest's �le system.
Both host and guest can access the directory at

any time, reading or writing. The only occurence of
inconsistency may happen if the host reads a �le which
is at this point of time being written by the guest. To
prevent this, the usual ways of preventing simultanous
access to one �le by multiple processes can be used.
Alternatively, the �le can be secured by a checksum.

3.1.2. Full Virtualization. In full virtualization sys-
tems (like KVM3/QEMU4 [3, 5] or VirtualBox5), such
a shared �le system can be realized by a virtual disk,
which can be accessed by both the host system and the
guest system (see �gure 1). This disk needs to have a
�le system which is supported by both systems (in many
cases vFAT is suitable).
To avoid an inconsistent �le system, host and guest

must never write to this disk at the same time, or before
the cache of the other system has been written back.
Since it must be assumed that the disk is always mounted
by the guest system while it is turned on, the host system
must only write on the disk while the guest system is shut

1http://openvz.org
2http://linux-vserver.org
3http://linux-kvm.org
4http://qemu.org
5http://www.virtualbox.org

2

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

Figure 1. The virtual disk containing the shared directory
can be mounted in both systems simultaneously.

mount
virtual
disk

I/O
operation

unmount
virtual
disk

Figure 2. Access Sequence when the host performs an I/O
operation on the virtual disk which may be mounted on a
VM

down. This means that archive uploads are unavailable
while the guest system is running.
However, the host system can still read the disk while

the guest system is turned on. To lower the probability of
an inconsistent �le system while reading, the host system
only mounts the disk right before reading or writing,
and unmounts it right after the reading (see �gure 2).
Assuming a write-through caching strategy by the guest,
and given the assumption from above (the user does not
start a download while the the guest is still writing on the
�les), the guest writing in the status �le while the host
is reading it remains the only chance of inconsistency.
There may be three kinds of e�ects: (1) The �le does

not exist, (2) The �le does not �t into the boundaries
described in the disk's �le table or (3) the �le is being
changed by the guest while the host is reading it (thus,
the data is corrupted). To avoid all these errors, the guest
secures the �le content by a checksum. In case 1, the
inconsistency can be detected directly (assuming that
the �le must exist; if it doesn't, the whole operation is
pointless). In case 2, the checksum does not exist (or
case 3 applies, depending on the implementation) and in
case 3, the checksum validation will fail. If inconsistency
is detected, the reading can be repeated after a short
interval of time: just enough so the guest can �nish the
operation on the �le.

3.2. Operations

NlXTP provides operations according to RexTFV in
section 2. These are: upload & execute, query execution
status and download. For the purpose of description,

upload and execute can be seen as two di�erent
operations, where the execution automatically follows
after an upload and is never called directly.

3.2.1. Upload. Depending on the realization of the
shared directory, the upload may not be possible while
the guest system is turned on. When the user uploads
a �le, the host deletes the current content of the
shared directory, and then extracts the archive into this
directory.

3.2.2. Execution. In order to provide the information
for the status query, the script is not directly executed.
Instead, a monitor program is called which then executes
the script.
When uploading, there are three possible situations:

1. The guest system is turned o�.

2. The guest system is turned on, and the host can
invoke processes on the guest system.

3. The guest system is turned on, and the host cannot
invoke processes on the guest system.

In case 1, the execution must be delayed until the guest
system has been booted. On every guest system the
monitor is executed at the boot process if the start script
has been changed.
In case 2, the monitor is called by the host right after

the archive has been extracted.
In case 3, the guest needs to run a daemon program

which can react to changes in the shared directory. When
a new start script appears, it executes the monitor.
The same daemon may also handle case 1. In this case,
the testbed must make sure that the daemon does not
start the script before the archive has been completely
extracted. One way of doing this is to not copy the start
script into the shared directory before everything else is
present.

3.2.3. Status Query. The status information consists
of:

• Has the script �nished? (Done Flag)

• Is the monitor still running? (Running Info)

• A custom string de�ned by the script (Custom
Status)

This information is stored in a �le called the status �le,
which is written by the monitor. The status �le can be
read by the host, which then provides the information to
the testbed, which can make it accessible to the user.
The Done Flag will be set to true as soon as the

monitor detects that the script process the next has
terminated.
Since this termination cannot be detected if the

monitor crashes or terminates before the script has been
�nished, the monitor repeatedly (i.e., every 2 minutes)

3

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

writes the current timestamp into the Running Info.
The host interprets this as a sequence number, and if
it does not change for a certain amount of time, the
monitor can be assumed to have stopped. Because the
host only watches for changes, it is not necessary to
synchronize the clocks. To hide complexity to the user,
the host provides this information as a boolean value:
The monitor is running or not.
The Custom Status can either be written by the start

script, or the monitor provides a function which can be
called by the script. This string may contain anything
from a single value to an XML �le. Since RexTFV
provides an interface for the user (or any client program),
this string can be used to send information from the
virtual machine to the experimenter.
Additionally, the standard and error output of the

script are being saved to the shared directory, where it
can be downloaded as described in the next section.

3.2.4. Download. In order to download, the host packs
the whole shared directory into an archive which can then
be sent to the user.
This directory contains the start script's standard and

error output, the status �le, all the data which has been
uploaded and not deleted, and all �les which may have
been generated in the shared directory by other programs
and stored in this directory.
To avoid large downloads, the start script should

delete unnecessary data like software packets after it
has �nished all other operations. In order to get all
the necessary data, all programs should be con�gured
to store their output data in this directory. If such a
con�guration is not possible, the start script must make
sure to copy the data here after the experiment.

3.3. Architecture

RexTFV has been designed to not require any changes
to the testbed's architecture, so that it can seemlessly
integrated into an existing testbed by adding some
function calls and adding these functions to the software
controlling the hosts.
Figure 3 shows the distribution of components between

guest, host and user system. Functions which are in
the white area may be distributed as the testbed's
architecture requires it. In general, the testbed must
forward RexTFV function calls to the host system, and
then use its nlXTP handler for communicating with the
guest system, i.e. writing and reading from the shared
directory, and eventually mounting and unmounting it.
Since all function calls from the user to the nlXTP
handler must run through the testbed, authentication
and authorization for these operation can be checked by
the testbed.
Function calls from the user are always targeted at

the host and never at the virtual devices. Thus, well-
known technologies of network virtualization can be used

Figure 3. Components of RexTFV using nlXTP, and
integration into a testbed's architecture. Function calls
always start at the user frontend and are forwarded through
the testbed to the nlXTP handler, which is a part of the
testbed software on the host system. The guest system
needs guest modules in order to provide the functionality.

to seperate this control-tra�c from the tra�c of the
experiment in such a way that it becomes invisible for
the experiment nodes. This way, this kind of control does
not happen over the network from the point of view of
the experiment nodes.

The operations from section 3.2 assume small
programs on the guest system, the so-called �guest
modules�. These are the nlXTP daemon, which has to
cover some cases for the auto-execution, and the nlXTP
monitor, which has to execute the start script and write
down the status information. In contrast to control over
network, these requirements are low, because nlXTP
does not require TCP/IP, SSH, user authentication
or other complex programs on the devices, which are
necessary for the core functionality.

If the guest modules are missing on a virtual machine,
�le transfers (the virtual �oppy must be mounted
manually), and the submission of status information
(which must be written in the testbed-speci�c format
to the status �le) are still possible in a manual way. This
can also be used to install the guest modules manually
on a newly created device. The only thing that would
be impossible without guest modules is the automatic
execution of the start script.

4. Implementation and performance

4

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

4.1. Implementation

NlXTP has been implemented for the container-based
OpenVZ and the full virtualization KVM. This proves
that the concepts described in section 3 work. Since these
concepts do not require or assume anything except the
basic principles of container-based or full virtualization,
they should work with other virtualization systems as
well.
RexTFV has been implemented in ToMaTo6 using

nlXTP. The functions can be found under the more user-
friendly name executable archives. ToMaTo has a central
backend which controlls a number of hosts which are
distributed over multiple sites worldwide. The backend
is accessible via an open API by multiple frontends, most
commonly the web frontend, which runs inside a browser.
For uploading and downloading, the frontend acquires a
grant, which can be used to do an upload or download
via HTTP on a host. After uploading, the frontend can
use an additional API command to call the function
which extracts the archive to the shared directory, and,
if needed, executes the monitor. Status information can
be read from a VM's information, which is already
accessible via the API. Grant-based HTTP access to
hosts and VM information were already implemented,
and the only changes which had to be made to the
testbed were new control structures, the shared directory,
extracting an archive to this shared directory, and
creating an archive from this shared directory (including
API calls and web frontend functions to access these).
Also, device images had to be updated to include the
nlXTP guest modules. ToMaTo is open source, and the
implementation is available in the ToMaTo repository7

4.2. Performance

NlXTP and RexTFV do not have performance-relevant
functions. The performance of uploads and downloads
depend on the connection between the user and the host.
The performance of the extraction and archive creation
depends on how fast the used program or library can do
this action on the host. Accessing the status information
is as performant as accesing a �le on the host's disk
and the I/O overhead due to virtualization. RexTFV
and nlXTP do not produce a signi�cant overhead over
these functions themselves, and all calls only involve at
most one large network transmission, one compression or
decompression, and one access to the status information.
Querying the status information must be done in an
interval in which it will not signi�cantly interfere with
other disk I/O operations.

6http://tomato-lab.org
7https://github.com/glab/ToMaTo - the
most relevant �les to this paper are:
hostmanager/tomato/elements/{__init__.py,kvmqm.py,openvz.py}

and nlxtp_gest_modules/

4.3. Experiments

The following three experiments have been conducted in
the ToMaTo testbed in order to show the feasibility of
and use cases for RexTFV. This means that it has been
tested with OpenVZ as a container-based virtualization
system, and KVM as a full virtualization system. All
VMs used prepared system images on which the nlXTP
guest modules had been installed. The default OS was
Debian 7 Linux. Access to devices' consoles was possible
via VNC, which is a built-in feature in the testbed. The
testbed also o�ers an open API for node control.

In the �rst experiment, it was shown that the basic
nlXTP functions work in the given implementation.
The second experiment demonstrates that it is possible
to run actual programs on the computer and use
nlXTP/RexTFV to transmit �les or install software. The
last experiments demonstrates a two-way communication
between a local computer, and a testbed device, over
nlXTP.

4.3.1. Basic output functions. In the archive was a
start script which �rst sleeps for a second, then sets a
pre-de�ned character string as custom status, then writes
another string into a �le in the shared directory, and then
writes another string into the standard output.

This archive has been uploaded to (1) a running
OpenVZ device, (2) a stopped OpenVZ device, and (3)
a stopped KVM device. After uploading, the stopped
devices have been started. In all cases, the running
indicator was true for about a second, then the done
indicator was set to true and the custom status was
set as expected. After this, a download of the archive
has been executed. The downloaded archive contained,
besides the script itself, the script's standard output in
a �le, the status �le, and the �le which has been written
by the script. Standard output and this written �le were
the same as when the script was run outside the testbed.

After this, the VMs' consoles were accessed to check
whether the shared directory exists on the devices, and
their contents match the contents of the downloaded
archive. This was con�rmed in all three cases.

Since the script, and thus the archive, were small,
and the script does not do much, everything happened
without any noticable delay besides what would be
expected without nlXTP (like booting the VMs). This
con�rms that auto-execution, upload, and download
work as expected.

4.3.2. Installation of a Debian packet. The archive
contained a small debian package �le, containing zsh,
and the start script installs this package using dpkg.
The package �le has been fetched from the Debian
repositories. This experiment has been done on a running
OpenVZ device.

Before uploading the archive, the device's console was
accessed to con�rm that the program was not already

5

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

installed on the device, and to install all dependencies.
Then, the archive was uploaded. Uploading, extracting
and running the script took a reasonable time with
respect to the package size. After the script has �nished
executing, it was con�rmed that the program was
installed by running it on the device's console. This
proves that it is possible to a�ect system con�guration
using RexTFV.

4.3.3. Automatic installer archive creation. In the
third experiment, we wrote a script which creates in-
staller archives for a program, including its dependencies,
for multiple operating systems (OS). This script was
running on a local computer and controlling the testbed.
The basic algorithm was:

1. For each OS, create and start an OpenVZ device in
the testbed, and connect this device to the Internet.
Create a probing archive, and upload this to each
device.

2. The probing archive's start script uses the custom
status to show an OS identifyer, and a list of needed
packet �les including their download URL. This
list also includedes dependencies which are not
installed.

3. For each OS, fetch the custom status of the
corresponding OpenVZ device, download all packet
�les to a packet directory, and make an installer
list linking the OS identifyer to its corresponding
packets.

4. Create an installer archive whose start script
identi�es the OS and installs the given packets.
Include all packet �les and installer lists from the
previous step.

This has been tested with the packet openjdk-6-jre on
Debian 6, Debian 7, Ubuntu 10.04 and Ubuntu 12.04,
each for x86 and AMD64 processor architectures.
To get the needed information, the probing archive's

start script �rst calculates the OS identifyer depending
on distribution, version, and processor architecture.
Then it detects the system's packet manager (in this
test case, it could just test whether apt-get was available,
which was true for all cases), and then used this packet
manager to update the package database and then get
the required package names and their URLs.
OS identifyer and packet manager detection were re-

used in the resulting installer archive.
The resulting installer archive included installer lists

for all eight systems. It has been tested by uploading it
to Debian 7 (both AMD64 and x86) and Ubuntu 12.04
(AMD64) devices. Success was tested in the same way
as in the single installer experiment before. In case of
Ubuntu, the packet was already installed; as expected,
the installer list was empty, and the standard output of
the script matched with this.

This experiment demonstrates communication be-
tween a local computer and (running) testbed devices.
The query archive's start script invokes several com-
mands to get OS identi�er, packet manager, and packet
lists, and there is theoretically nothing that prevents
it to use any other program that is available on the
machine. This means, that a local program could invoke
any command on the testbed device.

5. Conclusion

RexTFV can be used to automate the lifecycle of
devices in an experiment. When using nlXTP for host-
to-guest and guest-to-host communication, it does not
need any changes to the network con�guration of a
virtual machine, making it possible to run an experiment
without ever connecting to the Internet, thus reducing
noise from the outside which may a�ect the results.
Furthermore, if an experimenter decides not to use
RexTFV, its presence won't change the experiment's
setup.

NlXTP makes use of the fact that the host and the
guest system access the same physical storage to emulate
a shared directory for network-less communication and
is therefore only applicable in such a situation. It
was speci�cally designed to avoid using an IP stack
communication on experiment nodes.

Since archives can be seen as functions with a certain
purpose, they can be reused in other experiments.
The testbed can also provide a set of archives which
do frequently needed things, like installing a certain
program. Such an archive was demonstrated in the last
experiment.

Archives can not only be used for �le transmission or
single commands, but also for automating parts of or the
whole experiment lifecycle on a testing node. In principle,
the knowledge about which archives have been uploaded
on which devices at what time in the experiment
may, together with all testbed variables, determine the
whole experiment. This can increase reproducibility and
con�rmability for the given experiment, if the archives
are provided to the readers of a publication.

References

[1] Jeannie Albrecht and Danny Yuxing Huang. Managing
distributed applications using gush. Proceedings of the
Sixth International Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities, Testbeds Practices Session (TridentCom),
5 2010.

[2] Nicholas Bastin, Andy Bavier, Jessica Blaine, Jim Chen,
Narayan Krishnan, Joe Mambretti, Rick McGeer, Rob
Ricci, and Nicki Watts. The instageni initiative:
an architecture for distributed systems and advanced
programmable networks. Computer Networks, 2014.

6

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

[3] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,

FREENIX Track, pages 41�46, 2005.
[4] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier,

Larry Peterson, Mike Wawrzoniak, and Mic Bowman.
Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3�12, July
2003. ISSN 0146-4833. doi: 10.1145/956993.956995. URL
http://doi.acm.org/10.1145/956993.956995.

[5] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. kvm: the linux virtual machine monitor.
In Proceedings of the Linux Symposium, volume 1, pages
225�230, 2007.

[6] Dennis Schwerdel, David Hock, Daniel Günther, Bernd
Reuther, Phuoc Tran-Gia, and Paul Müller. Tomato-
a network experimentation tool. 7th International
Conference on Testbeds and Research Infrastructures

for the Development of Networks and Communities
(TridentCom 2011), 2011.

[7] Dennis Schwerdel, Bernd Reuther, and Paul Mueller.
Malware analysis in the tomato testbed. 2011.

[8] Dennis Schwerdel, Bernd Reuther, Thomas Zinner, Paul
Mueller, and Phouc Tran-Gia. Future internet research
and experimentation: The g-lab approach. Computer

Networks, 61(0):102 � 117, 2014. ISSN 1389-1286.
doi: http://dx.doi.org/10.1016/j.bjp.2013.12.023. URL

http://www.sciencedirect.com/science/article/pii/

S1389128613004362.
Special issue on Future Internet Testbeds - Part I.

[9] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. pages
255�270, Boston, MA, December 2002.

7

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01-02 2015 | Volume 2 | Issue 2 | e2

