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Abstract 

The classification of remote sensing images (RSIs) poses a significant challenge due to the presence of clustered ground 

objects and noisy backgrounds. While many approaches rely on scaling models to enhance accuracy, the deployment of 

RSI classifiers often requires substantial computational resources, thus necessitating the use of lightweight algorithms. In 

this paper, we present an efficient and robust knowledge transfer network named ERKT-Net, which is designed to provide 

a lightweight yet accurate convolutional neural network (CNN) classifier. This method utilizes innovative yet 

straightforward concepts to better accommodate the inherent nature of RSIs, thereby significantly improving the efficiency 

and robustness of traditional knowledge distillation (KD) techniques developed on ImageNet-1K. We evaluate ERKT-Net 

on three benchmark RSI datasets. The results demonstrate that our model presents superior accuracy and a very compact 

size compared to 40 other advanced methods published between 2020 and 2023. On the most challenging NWPU45 

dataset, ERKT-Net outperformed other KD-based methods with a maximum overall accuracy (OA) value of 22.4%. Using 

the same criterion, it also surpassed the first-ranked multi-model method with a minimum OA value of 0.6 but presented at 

least a 95% reduction in parameters. Furthermore, ablation experiments indicated that our training approach has 

significantly improved the efficiency and robustness of classic DA techniques. Notably, it can reduce the time expenditure 

in the distillation phase by at least 80%, with a slight sacrifice in accuracy. This study confirmed that a logit-based KD 

technique can be more efficient and effective in developing lightweight yet accurate classifiers, especially when the 

method is tailored to the inherent characteristics of RSIs.    
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1. Introduction 

Remote sensing images (RSIs) are pivotal data from 

Earth observation. As the capabilities of onboard devices 

expand, the volume of RSIs has grown so large that only 

computer algorithms can interpret RSIs efficiently [1]. 

Among these algorithms, classification is the most 

fundamental. A decade ago, shallow models dominated in 

RSI classification, necessitating substantial feature 

engineering knowledge in machine learning [2–3]. 

However, with the advent of deep learning, Convolutional 

Neural Networks (CNNs) [4–5] or Vision Transformers 

(ViTs) [6–7] have become the primary solutions for RSI 

classification, owing to their superiority in automatic feature 

extraction.   

In recent time, a multitude of CNN- or ViT-based 

methods have emerged [8–9], demonstrating state-of-the-art 

(SOTA) performance for RSI classification. However, most 

of these advanced algorithms heavily rely on computational 

and storage resources to achieve competitive accuracy [10], 

which poses significant challenges for deployment in remote 

sensing tasks. For instance, applications such as in-orbit data 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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retrieval [11], real-time insect monitoring [12], or environmental surveys utilizing edge computing [13] 

 
Figure 1. The impact of data distribution variance on function approximation.

commonly impose stringent hardware restrictions, which 

conflict with resource-intensive models. Therefore, a 

lightweight model with exceptional generalization capability 

is very important in the domain of RSI classification.  

Pre-training on large-scale datasets frequently empowers 

deep models to excel in various downstream fields through 

transfer learning. Consequently, adopting a compact model 

developed on ImageNet-1K has become a prevalent strategy 

when seeking lightweight solutions for RSI classification 

[14–17]. However, these approaches often entail significant 

sacrifices in accuracy, as smaller deep models typically 

possess weaker generalization capabilities. Another 

common technique involves inserting functional modules 

into a pre-trained model, which can potentially enhance 

accuracy with an acceptably increased model size [18–21]. 

Nevertheless, these methods frequently neglect to re-train 

the modified model on ImageNet-1K to address the 

deficiency of sufficient general features in smaller RSI 

datasets. Consequently, these approaches have not 

demonstrated significant accuracy improvements due to the 

diminished advantages of pre-training.   

RSIs often contain variable-ground objects that 

simultaneously belong to multiple categories, a 

characteristic that distinguishes them from natural images. 

Therefore, custom-designed deep models with functional 

modules or layers through human feature engineering could 

potentially capture the noisy background of RSIs, thereby 

outperforming ImageNet-1K models [22–30]. This approach 

could be further optimized by applying the strategy of 

Neural Architecture Search (NAS) [31–33]. However, all 

these previous approaches have also bypassed pre-training 

on ImageNet-1K and have not demonstrated significant 

advancements in accuracy, even though some of these 

models have achieved a compact volume.   

Knowledge Distillation (KD) [34–35], a technique that 

transfers knowledge from a robust, complex teacher model 

to a compact student model, is a promising approach for 

creating lightweight yet accurate classifiers. KD techniques 

currently follow two distinct pipelines: transferring 

knowledge based on intermediate layer features [36–37] or 

through prediction logits [38–39]. Feature-based approaches 

often necessitate additional modules within both the teacher 

and student models to facilitate knowledge transfer [40]. 

Logit-based methods, on the other hand, typically yield 

more lightweight student models and incur lower 

computational costs during the knowledge transfer phase. 

However, both logit- and feature-based techniques currently 

lack efficiency, particularly when the teacher model exhibits 

superior generalization or when there is a significant size 

disparity between the teacher and student models [41–42]. 

This issue necessitates a very long training process, 

potentially involving several tens of thousands of training 

epochs, to enable the student to match the performance of its 

teacher.  

Among the current literature, there are relatively few 

approaches that utilize the KD technique to generate 

lightweight classifiers for RSIs. Furthermore, existing 

methods often have certain limitations. For example, logit-

based methods typically yield poor accuracies [43–45], 

while feature-based approaches result in large model 

volumes with average accuracies [46–49]. Moreover, most 

of these methods have not effectively addressed the 

efficiency issue in the knowledge transfer process or solved 

the large accuracy gap between their teacher and student 

models. The authors believe this problem arises from an 

oversight of the inherent characteristics of RSIs. 

As depicted in Figure 1, the teacher function 𝑓(𝑥) that we 

aim to approximate (represented by the green curve) is 

dependent on the data distribution of its prediction logit 

points (indicated in red). When these logit points exhibit 

significant fluctuations, the student function (shown as the 

red curve), learned through the KD process, will display a 

variance of 𝐷(𝑥) compared to its teacher. It’s important to 

note that the distribution of logit points is closely tied to the 

input samples, namely, the training images provided to the 

models. Consequently, the variance 𝐷(𝑥)  is intrinsically 

linked to the inherent characteristics of RSIs. 

As illustrated in Figure 2, RSIs exhibit significant intra-

class similarity and inter-class differences. For example, the 

three images from the park, pond, and resort categories 
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onthe left side of Figure 2 all contain similar water bodies, as highlighted by the red rectangles. Conversely, on the right 

 
Figure 2. Respective RSI samples among categories with large feature similarity and difference.

side of Figure 2, the three samples from the park category 

display vastly different backgrounds, as indicated by the 

green rectangles. This observation suggests that RSIs have a 

larger data distribution variance compared to natural images. 

Consequently, we posit that existing logit-based KD 

techniques, which were developed based on ImageNet-1K, 

have only sought to minimize the bias between the teacher 

and student models during the KD process. They have not 

taken into account the need to reduce the variance in data 

distribution.   

In this paper, we present an efficient and robust 

knowledge transfer network, termed ERKT-Net, for RSI 

classification. This work has two unique aspects compared 

to previous studies. First, we propose a simple strategy to 

construct a three-CNN ensemble as the teacher model with 

outstanding accuracy. Second, we introduce a variance-

suppression strategy (VSS) and its implementation, the 

variance-suppression module (VSM), to enhance 

effectiveness and efficiency during the KD process. 

Notably, the VSM is a plug-and-play component that only 

processes the training samples, enabling it to work within 

any KD pipeline without modifying models.    

We evaluated the performance of ERKT-Net on three 

benchmark RSI datasets, and the results clearly demonstrate 

its superiority over 40 other methods published between 

2020 and 2023. On the challenging NWPU45 dataset, our 

student model not only achieves a 0.6% improvement in 

accuracy but also reduces the number of parameters by 88% 

compared to the top-ranked method in the literature. 

Additionally, our VSS method reduces training time costs 

by at least 80% compared to traditional KD approaches. The 

contributions of this work can be summarized as follows: 

(i) We introduce the VSS along with the VSM to 

improve the efficiency and effectiveness of classical KD 

techniques for RSI classification. Our VSS method reduces 

training time costs by at least 80%, with a negligible 

sacrifice in accuracy.  

(ii) We have significantly enhanced the effectiveness of 

KD techniques in creating compact RSI classifiers. Our 

lightweight student model achieves a maximum 22.4% 

increase in accuracy on the challenging NWPU45 dataset 

compared to other KD methods in the literature.  

(iii) Our ERKT-Net is more effective and efficient for 

developing lightweight yet robust classifiers for RSI tasks. 

Our KD pipeline is straightforward yet capable of producing 

more compact and accurate classifiers, even compared to 

other complex multi-model or feature fusion methods in the 

literature.  

The remainder of this paper is structured as follows: 

Section 2 reviews the related literature. Section 3 outlines 

the methodologies, covering the proposed model, the 

framework, and key settings. Section 4 provides a thorough 

analysis of the experimental results. Finally, Section 5 

presents the study's conclusions.   

2. Related works 

Using compact models is a common shortcut for 

developing lightweight RSI classifiers. For instance, Yu et al. 

integrated a MobileNet-V2 model with a shallow bilinear 

model to create a feature fusion classifier [14]. Chen et al. 

sought to improve a ShuffleNet-V2 model using channel 

attention [15]. Liang et al. combined an EfficientNet-b0 

model with recurrent attention modules [16]. Cheng et al. 

proposed a dual-branch model by integrating a CNN and a 

ViT in parallel [17]. However, the accuracy of these 

methods remains uncompetitive. In comparison, Alhichri et 

al. [18], Chen et al. [19], Zhao et al. [20], and Wan et al. [21] 

incorporated attention modules into various pre-trained 

CNNs, yet there is still significant room for accuracy 

improvement. 

Leveraging human knowledge in feature engineering to 

develop functional modules or models may yield better 

solutions than those based on ImageNet-1K models. In this 

field, Huang et al. [22] designed multi-level group 

convolution modules to enhance a ViT’s performance. Xu et 

al. [23] reconstructed CNN features through Lie group 

structure to develop a lightweight classifier. Wang et al. [24] 

designed a compact CNN with coordinate attention and 

applied a random depth strategy during training. 

Additionally, Shi et al. [25], Bai et al. [26], and Zhang et al. 

[27] each proposed self-compensating convolution, octave 

convolution, or Laplacian convolution modules as variant 

CNN classifiers. Bi et al. [28] and Guo et al. [29] verified 

multiple granularity feature representation in their CNN 

classifiers, while Shi et al. [30] evaluated their CNN 

classifier that contains a skip connection at each stage. 

However, these methods did not re-train their modified 

models on ImageNet-1K to utilize the advantage of pre-

training. However, these methods did not re-train their 

modified models on ImageNet-1K to utilize the advantages 

of pre-training. Consequently, most of these methods have 

not demonstrated significant accuracy improvements 

compared to fine-tuning pre-trained models [50].  

NAS is a promising strategy to find more effective and 

efficient CNN classifiers for RSIs. For example, Ao et al. 

[31], Broni-Bediako et al. [32], and Shen et al. [33] have 

published their NAS work on RSI datasets. However, these 

NAS approaches are typically conducted on smaller RSI 

datasets, which only contain tens to hundreds of samples. 
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We believe that this pipeline cannot leverage the data-driven 

superiority typically found in large-scale datasets. 

Consequently, we have not observed competitive accuracy 

in these NAS works, despite their smaller model sizes. 

Hinton et al. [35] and other researchers [34] introduced 

the KD technique to transfer knowledge via prediction logits. 

However, this KD process often encounters inefficiency, 

particularly when a teacher model possesses significant 

generalization capability [41]. In other words, the non-target 

prediction logits are minuscule with extremely low entropy, 

causing the information from target logits to significantly 

suppress that from non-target logits.  

As an alternative, Romero et al. [36] and other 

researchers [37, 40] proposed feature-based KD techniques. 

These techniques involve inserting additional intermediate 

layers into the teacher and student models to enhance the 

efficiency of knowledge transfer. Nevertheless, the increased 

efficiency from feature-based KD techniques comes at a 

considerably improved cost, particularly in terms of training 

time and model size.  

Furthermore, Zhao et al. [38] proposed a decoupled KD 

loss, divided into target and non-target losses, to mitigate the 

suppression encountered when using the logit-based KD 

technique. Concurrently, Huang et al. [39] presented another 

logit-based approach for distilling strong teachers (DIST), 

employing Pearson distance instead of Kullback-Leibler 

divergence as the objective function. Despite these 

advancements, logit-based techniques still require extensive 

training schemes, often necessitating up to tens of thousands 

of training epochs to reduce the accuracy gap between a 

lightweight student and a highly accurate but cumbersome 

teacher, such as an ensemble of models [42]. 

In the field of RSI classification, many previous KD 

approaches have overlooked the issue of information 

suppression from target logits to non-target ones. 

Additionally, their accuracy is not highly competitive, and 

only a few models are of smaller sizes. For example, Chen 

et al. [43] proposed a method for training compact CNN 

classifiers for RSIs using traditional logit-based KD. 

Similarly, Xu et al. [44] introduced a ViT-teaching-CNN 

approach through a joint loss for training their teacher and 

student models concurrently. However, both the teacher and 

student models within these methods fail to demonstrate 

exceptional accuracy.  

Likewise, Wang et al. [45], Li et al. [46], Hu et al. [47], 

Xing et al. [48], and Zhao et al. [49] introduced their CNN 

or ViT classifiers by utilizing different functional modules 

for feature-based KD purposes. However, these methods 

primarily focus on model architecture rather than the 

efficiency of the KD process. Consequently, they have not 

exhibited significant accuracy improvements, although some 

possess significantly increased model sizes. 

When employing KD techniques to develop a lightweight 

yet precise classifier, the importance of a robust teacher 

model cannot be overstated. Currently, three distinct 

strategies—namely feature fusion, multiple models, and 

ensembles of classifiers—prove beneficial for creating 

precise classifiers. For instance, Zhang et al. [51], Lv et al. 

[52], and Wang et al. [53] have introduced their ViT-based 

methods to achieve an RSI classifier with competitive 

accuracy. Moreover, Li et al. [54], Shen et al. [55], Tang et 

al. [56], Wang et al. [57], and Xu et al. [58] have introduced 

their RSI classifiers, which fuse features from two CNN 

models. Similarly, Deng et al. [59], Zhao et al. [60], Ma et 

al. [61], and Wang et al. [62] have introduced their RSI 

classification approaches, which utilize multi-model features 

of a CNN and a ViT or two ViTs. Additionally, Cheng et al. 

[63] proposed an ensemble of multi-models, where the 

component classifier is a hidden Markov model refining the 

features of a CNN. However, most of these methods have 

only demonstrated remarkable accuracy improvements on 

small RSI datasets, and their performance significantly 

degrades when faced with a large RSI dataset or relatively 

fewer training samples. 

To tackle the aforementioned issue, we propose a more 

effective and efficient KD approach to generate lightweight 

yet robust RSI classifiers. Our work is primarily rooted in 

strategies tailored to the inherent nature of RSIs. Initially, 

we devised a straightforward algorithm to create a stacking 

ensemble [64], comprising three CNNs with diverse model 

structures. Subsequently, we incorporate our VSM during 

the KD process to minimize variances in training samples. 

Finally, we validate that our method, termed ERKT-Net, 

surpasses other documented approaches in the literature in 

terms of effectiveness and efficiency.   

3. Methodologies  

3.1. Architecture of the Ensemble Teacher 

As illustrated in Figure 3 (shown on the next page), the 

architecture of our ensemble model consists of three distinct 

CNNs stacked in parallel. Initially, we individually trained 

the EfficientNet-B0, EfficientNet-B3, and ResNet-50 

models using three different training algorithms outlined in 

our previous works [4, 10, 50], respectively. Subsequently, 

we utilize three hyperparameters—weight A, weight B, and 

weight C—to assign weights to the prediction scores of the 

three CNNs. Finally, we aggregate these weighted scores at 

a sample-wise dimension to derive the prediction score of 

the teacher ensemble.    

We propose a simple algorithm to configure the three 

weight parameters within the ensemble. Detailed 

experiments are presented in Section 4.3, with the results 

revealing that the accuracies of the ensemble closely match 

only when EfficientNet-B3 possesses an appropriate value. 

Therefore, we empirically set the weight of EfficientNet-B3 

at 0.4, while the weights of the other models are set to 0.3.  

3.2. Method Framework 

The framework of the proposed method is depicted in 

Figure 4. Initially, the VSM processes the original training 

images, as shown at the figure’s apex. Subsequently, the 

outputs of VSM are simultaneously fed into both the teacher 

and student models for prediction, as indicated by the green 

arrows. Thereafter, the prediction scores obtained from the 
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teacher and student models are employed to compute the KD loss and the student loss, respectively. Ultimately, the 

 

Figure 3. Architectural Overview of the Teacher Ensemble. 

 

Figure 4. Framework of the Proposed Method. 

Table 1. Functions of GFUs within the VSM 

DA technique Operation probability Parameter settings 

Color Jitter 1.0 Brightness, contrast, saturation = 0.5 

Random Rotation 1.0 degrees =180 

Random Horizontal Flip 0.9 default 

Random Vertical Flip 0.9 default 

Random Gray scale 0.1 default 

Random Auto contrast 0.1 default 

Random Erasing 1.0 default 

Random Resized Crop 0.1 Size = 176 

CutMix 1.0 default 

parameters of the student model are adjusted via 

backpropagation, which is illustrated by the red dashed 

arrows.   

As illustrated at the bottom of Figure 4, the architecture 

of the VSM comprises several gated functional units (GFUs) 

in sequence. Specifically, each GFU incorporates a 

transformation or regularization function to suppress 

variances in the data distribution of RSIs. Additionally, a 

shortcut path, indicated by the green fold-line arrows, 

outputs the unprocessed samples. The purpose of these 

shortcuts is to achieve appropriate variance suppression. 
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In each GFU, let 𝑥 and y represent the input and output 

images, respectively. The functions within the GFUs are 

denoted as 𝑓𝐺𝐹𝑈 . The threshold probability 𝑃  determines 

whether a function is activated based on the probability 𝑝 

calculated within the GFU. The workflow in each GFU can 

be described as follows:   

𝑦 = {
𝑓𝐺𝐹𝑈(𝑥),   𝑝 ≥ 𝑃
𝑥,               𝑝 < 𝑃

.   (1)   

We have designed nine GFUs within the VSM, and the 

functions belonging to each GFU are presented in Table 1. 

These functions are selected from the PyTorch libraries, 

with the exception of CutMix [65], to facilitate 

reproducibility for readers. In the ‘Operation probability’ 

column of Table 1, a value of 1.0 indicates that the function 

is always active during training. In the ‘Parameter settings’ 

column, ‘default’ signifies that the parameter settings of the 

original algorithms remain unaltered. 

3.3. Model Architecture 

Table 2. Accuracy and Model Sizes of CNN Models. 

Model Accuracy (%) Params (M) 

EfficientNet-B0 77.7 5.3 

EfficientNet-B3 82.0 12.2 

ResNet-50 76.1 25.6 

Teacher Ensemble None 43.1 

Student Model None 5.3 

Our study employs three CNN models to generate the 

ensemble model: EfficientNet-B0, EfficientNet-B3, and 

ResNet-50. Additionally, we use EfficientNet-B0 as our 

student model during the KD process. These CNNs, 

originally developed for ImageNet-1K, have their detailed 

structures outlined in reference [3]. A key distinction 

between EfficientNet and ResNet is the presence of built-in 

channel attention modules in EfficientNet models. 

Consequently, EfficientNet outperforms ResNet in terms of 

accuracy and model size.  

Table 2 presents the accuracy (using ImageNet-1K as a 

test bed) and model sizes of the three CNN models. During 

the KD phase, we make no structural modifications to the 

models. Thus, the size of the ensemble model is the 

combined total of the three CNNs, while the student model 

retains the size of EfficientNet-B0.     

3.4. KD Loss 

Consider a RSI dataset, denoted as 𝑆 = {𝑥𝑖 , 𝑦𝑖}, where 𝑥𝑖 

and 𝑦𝑖  represent each RSI sample and its corresponding 

label in 𝑆 , respectively. In this context, a classifier that 

accepts 𝑥𝑖 as input will produce a prediction logit not only 

for the target category but also for non-target classes. In 

contemporary deep learning models, each input 𝑥𝑖  is 

typically normalized to a tensor with values ranging from 0 

to 1. Therefore, a classifier can essentially be viewed as a 

function, denoted as 𝑓, which accepts tensors as input and 

outputs logit vectors. Assuming that the number of 

categories in 𝑆 is represented as 𝑐, then the function f can be 

described as follows: 

𝑦𝑖,𝑐 = 𝑓(𝑥𝑖).   (2) 

A decade ago, classifiers that utilized human feature 

engineering were typically shallow models. These models 

were compact but had limited generalization capabilities. In 

contrast, current deep learning models, which employ 

automatic feature extraction, exhibit superior generalization 

capabilities but are often large in size. Theoretically, in the 

simplest case, a deep model with more learnable parameters 

will typically fit a dataset better than a model with fewer 

parameters. As a result, a deep model with high accuracy is 

often cumbersome, particularly for challenging tasks. In this 

context, deployment becomes challenging when the 

requirements for model inference speed are stringent or 

when hardware resources are limited.  

Bucila et al. [34] introduced the concept of model 

compression, which involves using a compact (student) 

model to approximate a more robust but larger (teacher) 

model. Building on this, Hinton et al. [35] further developed 

this knowledge transfer technique and coined it knowledge 

distillation (KD).  

If we denote the output logits of a model as 𝑧𝑖 , the 

softmax function will transform 𝑧𝑖  into probabilities 

corresponding to each category, denoted as 𝑝𝑖 . This 

transformation can be described as follows:   

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(𝓏𝑖)

∑ exp(𝓏𝑖)𝑐
𝑖=1

.   (3) 

Logit-based KD techniques typically employ the 

Kullback-Leibler (KL) divergence as the objective function. 

During training, this function takes the probabilities from 

both the teacher and student models as inputs and calculates 

the losses. The loss, denoted as ℒ𝐾𝐷 , can be expressed as 

follows:  

ℒ𝐾𝐷 = 𝐾𝐿(𝑃𝑡 ∥ 𝑃𝑠) =  ∑ (𝑃𝑡,𝑖  𝑙𝑜𝑔
𝑃𝑡,𝑖

𝑃𝑠,𝑖

𝑐
𝑖=1 ),   (4) 

where 𝑃𝑡,𝑖 and 𝑃𝑠,𝑖 are the probabilities from the teacher and 

student models, respectively.  

In a robust model, the prediction probability for target 

categories typically reaches up to 98%, while for non-target 

classes, it may be as low as 0.1% or even less. 

Consequently, the logits for target categories tend to 

suppress those for non-target ones, especially when the 

teacher model exhibits high accuracy. To address this issue, 

Hinton et al. introduced a hyperparameter known as 

temperature, denoted as 𝓉, to soften the model’s prediction 

logits. Specifically, they incorporated 𝓉  into equation (4), 

thereby altering the distribution of the logit data. The 

softened loss, denoted as ℒKD
𝓉 , can be described as follows:  

𝑝𝑖
𝓉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝓏𝑖

𝓉
).   (5) 

ℒKD
𝓉 = ∑ (𝓉2 × 𝑃𝑡

𝓉  𝑙𝑜𝑔
𝑃𝑡

𝓉

𝑃𝑠
𝓉

𝑐
𝑖=1 ).   (6) 

Moreover, integrating the cross-entropy loss of the 

student model with ℒKD
𝓉  can expedite convergence during 

the KD process. Thus, the standard KD loss, denoted as 

ℒtraining, can be expressed as follows: 

ℒtraining = − ∑ (𝑦𝑖
c
i=1 log 𝑃𝑠) + ∑ (𝓉2 × 𝑃𝑡

𝓉  𝑙𝑜𝑔
𝑃𝑡

𝓉

𝑃𝑠
𝓉

𝑐
𝑖=1 ).   (7) 
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However, Stanton et al. [41] observed that when dealing 

with a robust teacher model or a significant accuracy gap 

between teacher and student models, the student struggles to 

match the teacher through the standard KD process. 

Similarly, Beyer et al. [42] confirmed that resolving the 

large accuracy discrepancy between the teacher and student 

models in the standard KD process requires an extremely 

high number of training epochs, potentially up to tens of 

thousands. 

Recently, Zhao et al. [38] introduced a variant of the 

standard KD loss, termed decoupled KD loss, to enhance the 

efficiency of the KD process. This loss includes two 

components: target and non-target losses. The method 

replaces non-target logits with minor values when 

calculating target loss, and vice versa.  

Huang et al. [39] introduced an alternative loss function, 

termed DIST, which employs the Pearson distance in place 

of the conventional KD loss defined in equation (6). The 

Pearson correlation coefficient and the Pearson distance, 

denoted as 𝜌 and 𝐷𝑃, respectively, are defined as follows: 

𝐷𝑃 = 1 − 𝜌(𝑉𝑡 , 𝑉𝑠) = 1 −
∑ (𝑉𝑡−𝑉�̅�

c
i=1 )(𝑉𝑠−𝑉𝑠̅̅ ̅)

√∑ (𝑉𝑡−𝑉�̅�)2c
i=1 ∑ (𝑉𝑠−𝑉𝑠̅̅ ̅)2c

i=1

,   (8) 

where 𝑉𝑡  and 𝑉𝑠  represent the prediction vectors of the 

teacher and student models, respectively. To enhance the 

information entropy during the distillation phase, DIST 

defines the result as the inter-class loss, denoted as ℒ𝑖𝑛𝑡𝑒𝑟 , 

which is calculated using equation (8) with 𝑉𝑡  and 𝑉𝑠  as 

inputs. If we denote the training batch size as 𝑁, ℒ𝑖𝑛𝑡𝑒𝑟  can 

be expressed as: 

ℒ𝑖𝑛𝑡𝑒𝑟 =
1

𝑁
∑ 𝐷𝑃(𝑉𝑡 , 𝑉𝑠)𝑁

𝑖=1 .   (9) 

Moreover, DIST introduces another intra-class loss, 

denoted as ℒ𝑖𝑛𝑡𝑟𝑎 , which is computed using equation (8) 

with the 𝑁  and M  dimension transposes of 𝑉𝑡  and 𝑉𝑠  as 

inputs. Here, 𝑀  represents the number of categories in a 

dataset. Therefore, ℒ𝑖𝑛𝑡𝑟𝑎 can be expressed as follows: 

ℒ𝑖𝑛𝑡𝑟𝑎 =
1

𝑀
∑ 𝐷𝑃(𝑉𝑡

𝑇 , 𝑉𝑠
𝑇)𝑀

𝑗=1 .   (10) 

While both the decoupled KD and DIST techniques have 

demonstrated substantial progress in narrowing the accuracy 

gap between teacher and student models, neither method 

effectively addresses the variations in the data distribution 

of training samples, a fundamental characteristic of RSIs. 

We found that simply applying these KD techniques, 

initially developed for natural images, may not be optimal 

for many RSI tasks. This is particularly true when the 

teacher model is a robust ensemble with a significant 

volume gap compared to the student. Consequently, we 

introduce our ERKT-Net as a novel KD method for RSI 

classification, specifically designed to accommodate the 

inherent characteristics of RSIs. The loss function of ERKT-

Net is presented as follows:  

Initially, we retained the cross-entropy objective function 

but employed a hyperparameter α to adjust the loss value 

when CutMix is activated. The cross-entropy loss, denoted 

as 𝐿𝑐𝑟𝑜𝑠𝑠, the loss of a class-A sample as 𝐿𝐴, and the loss of 

another class-B sample as as 𝐿𝐵, are defined. Consequently, 

𝐿𝑐𝑟𝑜𝑠𝑠 when CutMix is active can be expressed as: 

𝐿𝑐𝑟𝑜𝑠𝑠 = (1 − 𝛼) × 𝐿𝐴 + 𝛼 × 𝐿𝐵.   (11) 

Here, 𝛼 represents the ratio of the class-B patch size to the 

class-A image. α  is randomly sampled from the beta 

distribution of (0, 1). 

Subsequently, we selected DIST as our KD loss and 

assigned the same weight of 2.0 to the inter- and intra-

losses, as Huang et al. [39] suggested. Additionally, we set 

the temperature hyperparameter at 2.0 without further 

optimization. Therefore, the training loss of our ERKT-Net, 

denoted as 𝐿𝑜𝑠𝑠𝐸𝑅𝐾𝑇−𝑁𝑒𝑡 , can be formulated as: 

𝐿𝑜𝑠𝑠𝐸𝑅𝐾𝑇−𝑁𝑒𝑡 = 𝐿𝑐𝑟𝑜𝑠𝑠 + 2 × (ℒ𝑖𝑛𝑡𝑒𝑟 + ℒ𝑖𝑛𝑡𝑟𝑎).   (12) 

3.5. Training Algorithm 

The training procedures for the distillation phase are 

outlined in Algorithm 1 (shown on the next page), 

represented in pseudo-code.  

As indicated in line 1, the entire distillation process spans 

600 training epochs. We empirically set this threshold at 600 

epochs as a benchmark because our ERKT-Net can more 

efficiently transfer knowledge from the teacher model 

compared to the tens of thousands of epochs required by the 

classic KD technique. Lines 2 and 3 demonstrate that a 

batch of 30 images and their corresponding labels are first 

processed by the VSM. The outputs from the VSM are then 

fed into the teacher and student models simultaneously. 

Following this, as depicted in lines 4, 5, 6, and 7, the 

prediction logits of both the teacher and student are input 

into the loss function. Subsequently, gradients are calculated 

to update the parameters of the student model. Finally, as 

shown in lines 9 and 11, the accuracy of the student model is 

verified at the end of each epoch, and a record of the 

accuracy at each epoch is reported upon the completion of 

the training. In summary, the uniqueness of Algorithm 1 lies 

in the involvement of the VSM in the KD process, 

enhancing the effectiveness and efficiency of our ERKT-Net.     

Regarding the other hyperparameter settings in training, 

we established the initial learning rate at 2E-04, which is 

managed using the cosine decay algorithm. The Adam-W 

optimizer was employed, with a weight decay set at 1E-06. 

Concurrently, a fixed resolution of 2562 was maintained 

during both the training and testing stages for all datasets. 
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Algorithm 1. Training procedure using pseudo-code 

Definitions: The training subset for RSI is denoted as 𝑆𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)}, while the testing set is denoted as 𝑆𝑡𝑒𝑠𝑡 = {(𝑥𝑖 , 𝑦𝑖)}. 

The ensemble-teacher model is represented by 𝑓𝑡; and the EfficientNet-b0 student model is represented by 𝑓𝑠. The VSM is 

signified by 𝑓𝑉𝑆𝑀; The CutMix algorithm is denoted as 𝑓𝐶𝑀, and the distillation loss function is represented by ℒ𝐸𝑅𝐾𝑇−𝑁𝑒𝑡. 

Input: Images and labels from training or testing subsets. 

Output: Student classifier’s accuracy (𝐴𝑐𝑐) results. 

1 For Epoch = 1, 2, . . . , 600 Do 

2  For iteration = 1 to (
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑡𝑟𝑎𝑖𝑛)

30
+ 1) Do 

3   
Sample a batch of samples from 𝑆𝑡𝑟𝑎𝑖𝑛, 

and input them to the functions 𝑓𝑡 and 𝑓𝑠, respectively. 

4   Predict teacher probabilities using the equation: 𝑦𝑖
𝑡 = 𝑓𝑡( 𝑓𝐶𝑀(𝑓𝑉𝑆𝑀(𝑥𝑖)) ). 

5   Predict student probabilities using the equation: 𝑦𝑖
𝑠 = 𝑓𝑠(𝑓𝐶𝑀((𝑓𝑉𝑆𝑀(𝑥𝑖))). 

6   Calculate the loss using the equation: 𝐿𝑜𝑠𝑠 = ℒ𝐸𝑅𝐾𝑇−𝑁𝑒𝑡(𝑦𝑖
𝑡, 𝑦𝑖

𝑠). 

7   Update parameters through back propagation. 

8  End For 

9  
Calculate the student model's accuracy using the equation: 

𝐴𝑐𝑐 = (𝑓𝑠(𝑥𝑖) == 𝑦𝑖), where 𝑥𝑖 , 𝑦𝑖 ∈ 𝑆𝑡𝑒𝑠𝑡, and save the 𝐴𝑐𝑐 result. 

10 End For 

11 Return the 𝐴𝑐𝑐 results 

 

Figure 5. Exemplary samples from each category in the AID30 dataset. 

 

Figure 6. Exemplary samples from each category in the NWPU45 dataset 
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Figure 7. Exemplary samples from each category in the AFGR50 dataset 

 

 

3. 6. Dataset and Division 

We utilized three RSI datasets to compare the 

performance of our method. The first two, the AID30 and 

the NWPU45 dataset, are widely recognized benchmarks in 

existing literature. Additionally, we employed the AFGR50 

dataset to validate the effectiveness of our method.The 

AID30 dataset consists of 30 categories, with a total of 

10,000 images, all of which have a uniform resolution of 

6002. The NWPU45 dataset comprises 45 categories, with a 

total of 31,500 images, all maintaining a 

consistentresolution of 2562. The AFGR50 dataset contains 

50 categories, with a total of 12,500 images, all sharing a 

resolution of 1282. 

Both the NWPU45 and AFGR50 datasets are balanced, 

with each category containing 700 and 250 images, 

respectively. However, the AID30 dataset is imbalanced, 

with a varying number of 220 to 420 samples per class. 

Figures 5, 6, and 7 showcase representative samples from 

each category for the three datasets. 

To ensure a fair comparison, we adhered to the same 

training ratio (TR) as outlined in the literature: 20% and 50% 

for AID30; 10% and 20% for NWPU45; and 10%, 20%, and 

30% for AFGR50. For each TR, we randomly selected 

samples from the entire dataset to form the training subsets, 

with the remaining samples designated as testing subsets. 

3.8. Performance Evaluation Metrics 

In our research, we utilized overall accuracy (OA) and the 

confusion matrix as performance evaluation metrics, as they 

are prevalent in the current literature and offer abundant 

experimental results for comparing classifications in RSI 

studies.    

OA is a metric that quantifies the proportion of correct 

predictions made by a model out of the total number of 

predictions. High accuracy reflects a model’s robustness and 

its ability to generalize from the training data to unseen data. 

The symbol 𝑁𝑐  denotes the total number of samples 

correctly classified, while 𝑁𝑡  signifies the total number of 

classified samples. Therefore, OA can be expressed as: 

𝑂𝐴 =
𝑁𝑐

𝑁𝑡
.   (13) 

The confusion matrix is a tabular visualization that 

enables the assessment of a classification model’s 

performance. It contrasts the actual target values with those 

predicted by the model, providing insight into the types of 

errors made. The matrix is divided into four quadrants: true 

positives, true negatives, false positives, and false negatives. 

True positives and negatives correspond to correct 

predictions, while false positives and negatives represent 

errors. This matrix is particularly valuable in elucidating the 

model’s predictive capabilities across different classes, 

which is essential for tasks with imbalanced datasets or 

when the costs of different types of errors vary significantly. 

3.9. Experimental Environments 

Experiments were conducted on four computers, each 

with a Nvidia 2060 Graphics Processing Unit (GPU), using 

PyTorch version 1.11.0 on Windows 10. The reported 

results, derived from at least three runs, represent either 

mean values or deviations to ensure reliability. 

4. Experimental Results 

4.1. OA Results 

Tables 3, 4, and 5 display the OA comparison results for 

the AID30, NWPU45, and AFGR50 datasets, encompassing 

a total of 42 methods. The ‘Parameters’ column in these 

tables contains either original data or evaluations derived 

from the model backbones, as outlined in the relevant 

literature. The term ‘None’ within the tables signifies the 

absence of detailed information in the associated literature. 
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Table 3: A Comparative Study on OAs of Different Methods Using the AID30 Dataset. 

Models 
Method  

Uniqueness 
Params 

(M) 

AID (%) 

TR-20% TR-50% 

BiMobileNet [14] 

Compact 

Model 

7.8 94.83 ± 0.24 96.87 ± 0.23 

RSC-Net [15] 1.3 None 96.24 

ERA-Net [16] 6.7 95.93 ± 0.13 98.39 ± 0.16 

LDBST-Net [17] 9.3 95.10 ± 0.09 96.84 ± 0.20 

EfficientNet-B3-Attn-2 [18] 
Inserting 

Attention 

Modules 

>12.0 94.45 ± 0.76 96.56 ± 0.12 

MBLANet [19] >25.6 95.60 ± 0.17 97.14 ± 0.03 

EAM-Net [20] >46.8 94.26 ± 0.11 97.06 ± 0.19 

LmNet [21] >25.0 95.82 ± 0.25 97.12 ± 0.14 

LTNet [22] 

Custom 

Designed 

Model 

8.2 94.98 ± 0.08 None 

LGRINet [23] 4.6 94.74 ± 0.23 97.65 ± 0.25 

LRSCM-Net [24] 7.6 95.41 97.28 

SC-CNN [25] 0.5 93.15 ± 0.25 97.31 ± 0.10 

MF2CNet [26] 33.2 95.54 ± 0.17 97.02 ± 0.28 

LHNet [27] >46.8 93.30 ± 0.10 97.81 ± 0.13 

AGOS-Net [28] >12.5 95.81 ± 0.25 97.43 ± 0.21 

SEINet [30] 2.9 95.37 ± 0.09 98.61 ± 0.16 

SLGE-Net [32] 
NAS 

5.1 None 96.10 ± 0.18 

AF-NAS-Net [33] 3.8 95.65 (TR-60%) 

TST-Net [43] Logits-based 

KD 

1.0 85.50 None 

ET-GSNet [44] 11.7 95.58 ± 0.18 96.88 ± 0.19 

LaST-Net [45] 

Features-based 

KD 

28 83.23 87.34 

DKA-Net [46] 4.4 95.09 96.94 

VSDNet [47] >8.0 96.73 ± 0.15 97.95 ± 0.10 

ESD-MBENet [49] 23.9 96.39 ± 0.21 98.40 ± 0.23 

TRS-Net [51] 

Single ViT 

46.3 95.54 ± 0.18 98.48 ± 0.06 

SC-ViT [52] 40.1 95.56±0.17 96.98±0.16 

ViT-AEv2 [53] 18.8 96.91 ± 0.06 98.22 ± 0.09 

GRMA-Net [54] 

Multiple CNNs 

54.1 96.19 ± 0.48 97.84 ± 0.39 

ACGLNet [55] 33.6 94.44 ± 0.09 96.10 ± 0.10 

ACNet [56] >276.6 93.33 ± 0.29 95.38 ± 0.29 

T-CNN [57] 15.9 94.55 ± 0.27 96.72 ± 0.23 

GLDBS-Net [58] >23.4 95.45 ± 0.19 97.01 ± 0.22 

CTNet [59] 

Multiple models 

>107.8 96.25 ± 0.10 97.70 ± 0.11 

L2RCF-Net [60] 46.7 97.00 ± 0.17 97.80 ± 0.22 

HHTL-Net [61] None 96.52 ± 0.13 96.88 ± 0.21 

CNN–HMM [63] CNN Ensemble 19 93.93 ± 0.15 97.81 ± 0.04 

CNN Ensemble Teacher 
Our KD 

43.1 97.36 ± 0.14 98.31 ± 0.18 

ERKT-Net (this work) 5.3 97.20 ± 0.08 98.19± 0.13 

4.1.1. OA results for AID30. 

As demonstrated in Table 3, our ERKT-Net (the student 

model) exhibits a minor OA discrepancy of approximately 

0.1% compared to the ensemble teacher at both 20% and 

50% TRs. This outcome suggests that despite the significant 

model volume disparity between the teacher and student, the 

knowledge transfer in our KD process is effective and 

robust. When compared to other KD methods, ERKT-Net 

outperforms all, with OA improvement values ranging from 

0.5% to 11.7% at the 20% TR. However, the OA 

improvements diminish as the number of training samples 

increases to 50% TR. This finding further substantiates that 

ERKT-Net is a more effective KD technique when the 

objective is to achieve a lightweight yet accurate classifier. 

Based on the 20% TR results, ERKT-Net surpasses all 

other methods, including those utilizing multiple models 

with 10 to 20 times the volume. This outcome suggests that 

ERKT-Net possesses superior generalization capability even 

when the number of training samples is limited. However, 

based on the 50% TR results, three methods, namely SEINet 

[30], ESD-MBENet [49], and TRS-Net [51], exhibit 

approximately 0.2% to 0.4% higher OA values (as 

highlighted in red). This discrepancy may be attributed to 

three factors. 

Firstly, AID30 is an unbalanced dataset with an average 

of 333 samples per category. However, some of the most 

confusing classes of AID30, such as center, church, and 

resort, only include 260, 240, and 290 samples, respectively. 

The data distribution generated by a randomly selected 

subset may cause fluctuations in the accuracy of classifiers. 

Secondly, ESD-MBENet and TRS-Net have a larger 

capacity. A larger model has the advantage of retaining 

more features in a dataset as the number of training samples 

increases. Thirdly, our teacher ensemble is suboptimal 

because it was generated using an empirical stacking 
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Table 4: A Comparative Study on OAs of Different Methods Using the NWPU45 Dataset 

Models 
Method 

Uniqueness 
Params 

(M) 

NWPU (%) 

TR-10% TR-20% 

BiMobileNet [14] 

Compact 

Model 

7.8 92.06 ± 0.14 94.08 ± 0.11 

RSC-Net [15] 4.6 91.91 ± 0.15 94.43 ± 0.16 

ERANet [16] 6.7 91.95 ± 0.19 95.12 ± 0.17 

LDBST-Net [17] 9.3 93.86±0.18 94.36±0.12 

MBLANet [19] Inserting 

Attention 

Modules 

>25.6 92.32 ± 0.15 94.66 ± 0.11 

EAM-Net [20] >46.8 91.91 ± 0.22 94.29 ± 0.09 

LmNet [21] >25.0 93.00 ± 0.11 94.85 ± 0.14 

LTNet [22] 

Custom 

Designed 

Model 

8.2 92.21 ± 0.11 None 

LGRINet [23] 4.6 91.95 ± 0.15 94.43 ± 0.16 

LRSCM-Net [24] 7.6 92.18 94.74 

SC-CNN [25] 0.5 92.02 ± 0.50 94.39 ± 0.16 

MF2CNet [26] 33.2 92.07 ± 0.22 93.85 ± 0.27 

LHNet [27] >46.8 89.89 ± 0.15 92.53 ± 0.13 

AGOS-Net [28] >12.5 93.04 ± 0.35 94.91 ± 0.17 

MGS-Net [29] 244.2 91.92 ± 0.12 94.33 ± 0.08 

SEINet [30] 2.9 92.98 ± 0.11 95.35 ± 0.16 

TPENAS-Net [31] 

NAS 

1.7 None 90.38  

SLGE-Net [32] 5.1 None 96.56 ± 0.13 

AF-NAS-Net [33] 3.8 95.32 (TR-60%) 

TST-Net (Chen et al., 2018) Logits-based 

KD 

1.0 80.00(TR-50%) 

ET-GSNet [44] 11.7 92.72 ± 0.28 94.50 ± 0.18 

LaST-Net [45] 

Feature-based 

KD 

28 72.58 73.67 

DKA-Net [46] 4.4 93.72 95.76 

VSDNet [47] >8.0 93.24 ± 0.11 95.67 ± 0.11 

CKD-Net [48] None 0.916 (TR is not clear) 

ESD-MBENet [49] 23.9 93.05 ± 0.18 95.36 ± 0.14 

TRS-Net [51] 

Single ViT 

46.3 93.06 ± 0.11 95.56 ± 0.20 

SC-ViT [52] 40.1 92.72±0.04 94.66±0.10 

ViT-AEv2 [53] 18.8 94.41 ± 0.11 95.60 ± 0.06 

GRMA-Net [54] 

Multiple CNNs 

54.1 93.67 ± 0.21 95.32 ± 0.28 

ACNet [56] >276.6 91.09 ± 0.13 92.42 ± 0.16 

T-CNN [57] 15.9 90.25 ± 0.14 93.05 ± 0.12 

GLDBS-Net [58] >23.4 92.24 ± 0.21 94.46 ± 0.15 

CTNet [59] 

Multiple models 

>107.8 93.90 ± 0.14 95.40 ± 0.15 

L2RCF-Net [60] 46.7 94.58 ± 0.16 95.60 ± 0.12 

HHTL-Net [61] None 92.07 ± 0.44 94.21 ± 0.09 

P2FEViT [62] >112.2 94.97 ± 0.13 95.74 ± 0.19 

CNN–HMM [63] CNN ensemble 19 93.43 ± 0.25 95.51 ± 0.21 

CNN Ensemble Teacher 
Our KD 

43.1 95.11 ± 0.06 96.62 ± 0.06 

ERKT-Net (this work) 5.3 94.90 ± 0.05 96.36± 0.05 

strategy without an optimization search for the weight 

hyperparameters. 

Therefore, using the 20% TR of AID30 as a test bed is 

more objective. 

4.1.2. OA results for NWPU45. 

Table 4 demonstrates that the accuracy discrepancy 

between our ERKT-Net and the teacher remains minimal at 

the challenging NWPU45, standing at approximately 0.2%. 

This result suggests that our KD process maintains its 

effectiveness and robustness, even though the NWPU45 

dataset is three times larger and contains more confusing 

categories. In comparison to other KD methods, ERKT-Net 

stands out, with OA improvement values spanning from 

1.2% to 22.3% at the 10% TR. Furthermore, the OA 

improvements persist at the 20% TR, with amplified values 

ranging from 0.7% to 22.4%. This evidence corroborates 

that ERKT-Net is more effective when the objective is to 

utilize KD techniques to construct a lightweight yet precise 

classifier for a challenging RSI dataset. 

According to the results obtained with 10% TR, ERKT-

Net outperforms all other methods, except for P2FEViT 

[62]. P2FEViT shows comparable accuracy, but its model 

size is 8.4 times larger. However, when the TR is increased 

to 20%, ERKT-Net surpasses all other methods, achieving 

an OA that is at least 0.7% higher than P2FEViT. This 

observation underscores the consistent superior 

generalization capability of ERKT-Net, even when 

evaluated against the highly challenging NWPU45 dataset. 

When comparing the results between the AID30 and 

NWPU45, it is observed that methods with a slight accuracy 

advantage at the 50% TR of AID30, such as SEINet, ESD-
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Table 5: A Comparative Study on OAs of Different Methods Using the AFGR50 Dataset 

Models 
Method 

Uniqueness 
Params (M) 

AFGR50 (%) 

TR-10% TR-20% TR-30% 

P2FEViT [62] Multiple Models >112.2 89.24 ± 0.10 95.22 ± 0.13 97.27 ± 0.15 

ResNet-50 [50] Single CNN 25.6 90.29 ± 0.11 94.93 ± 0.32 96.67 ± 0.02 

EfficientNet-b0 [10] Single CNN 5.3 90.21 ± 0.48 95.46 ± 0.27 96.82 ± 0.25 

CNN Ensemble Teacher 
Our KD 

43.0 92.44 ± 0.50 96.57 ± 0.21 97.41 ± 0.26 

ERKT-Net (proposed) 5.3 92.02 ± 0.24 96.37 ± 0.16 97.26 ± 0.19 

MBENet, and TRS-Net, exhibit significant degradation in 

their generalization capability when applied to a challenging 

RSI dataset. Specifically, these methods all presented an OA 

gap value of 1% to 2% less than our ERKT-Net. This 

observation confirms that the superior performance of 

SEINet, ESD-MBENet, and TRS-Net is highly dependent 

on the ample training samples from the unbalanced AID30 

dataset.  

4.1.3. OA results for AFGR50 

The AFGR50, a novel fine-grained RSI dataset, was 

introduced in March 2023. It comprises 12,500 aircraft 

images, each with a fixed resolution of 1282. The dataset is 

organized into 50 categories, with each category containing 

250 samples. To date, comparable studies on this dataset are 

limited, with P2FEViT being a notable exception. Given 

that fine-grained image recognition is a common task in 

RSI, we assert that AFGR50 is an appropriate benchmark 

for evaluating the generalization capability of our proposed 

ERKT-Net on fine-grained RSIs. 

Table 5 presents the OA results for four methods on the 

AFGR50 dataset. To ensure a more objective comparison, 

we have also included the results of two distinct single-CNN 

methods, each trained using a different algorithm.  

As demonstrated in Table 5, ERKT-Net surpasses other 

models in terms of OA, with the exception of P2FEViT at 

30% TR, which equals ERKT-Net. This is primarily because 

P2FEViT benefits from a scaling effect advantage due to its 

larger capacity. These results highlight the robustness of our 

ERKT-Net in recognizing fine-grained RSIs. Moreover, as 

shown in line 3, ERKT-Net, which uses the same 

EfficientNet-b0 model but with a different learning 

approach, exhibits superior OA. This suggests that ERKT-

Net has effectively learned from the knowledge contained 

within the teacher ensemble. 

4.1.4. Overview of OA Comparisons 
The consistency of the OA disparity results between 

ERKT-Net and the teacher ensemble, as shown in Tables 3, 

4, and 5, attests to ERKT-Net’s ability to effectively 

assimilate the majority of the ‘dark knowledge’ contained 

within the teacher, with only a minor compromise in 

accuracy. When compared to other KD methods, ERKT-

Net’s superior performance demonstrates its efficiency and 

robustness in knowledge transfer.   

In a similar vein, when comparing other strategies aimed 

at developing a more lightweight or accurate classifier for 

RSI recognition, the OA results presented in Tables 3, 4, and 

5 suggest that ERKT-Net is a more effective approach for 

achieving a lightweight yet accurate classifier. 

4.2. Confusion Matrixes 

To analyze the confusion results for each category, we 

present the confusion matrices in Figures 8 and 9 for AID30 

and NWPU45 (shown on the next page), respectively, both 

at the same TR-20%. In these figures, an OA of 100% 

corresponds to 1.0. The OA values highlighted in red 

indicate the most confusing categories, while the OA values 

in blue represent categories with a larger ratio of 

misclassified samples. For ease of interpretation, we have 

marked the most frequently confused categories with a red 

rectangle. 

4.2.1. Examination of Confusion Results for AID30. 

As Figure 8 illustrates, the challenging categories within 

AID30 are the center, park, resort, school, and square, all of 

which exhibit OA values below 91%. Additionally, two 

other classes, the church and industry, display OA values 

below 97%. Conversely, all remaining categories show OA 

values of 97% or higher. These findings indicate that only 

seven categories within AID30 are particularly challenging, 

especially those with fewer samples than average. 

When comparing these results with methods that 

demonstrate high accuracy at 50% TR, such as ESD-

MBENet [49], it is observed that the challenging categories 

remain the same. However, ESD-MBENet exhibits lower 

OA values than ERKT-Net in other categories, including the 

railway station and bare land. This discrepancy suggests that 

ESD-MBENet's performance is more dependent on a large 

number of training samples than an enhanced recognition 

capability for specific classes.    

4.2.2. Examination of Confusion Results for NWPU45. 

To enhance overall readability, we removed the categories 

with OA above 98.0%. As depicted in Figure 9, the 

challenging categories in NWPU45 are the church, lake, 

palace, and railway station, all exhibiting OA values below 

92.1%. Additionally, twelve other classes display OA values 

below 96%. These findings indicate that sixteen categories, 

or one-third of the total in NWPU45, are confusing. 

Compared to AID30, these confusing categories in 

NWPU45 include both artificial scenes and natural fields. 

Therefore, using NWPU45 as an evaluation benchmark for a 

model’s generalization capability is more challenging yet 

objective.  

When contrasting these results with other methods in the 

literature, no significant disparities in confusing categories 

emerge. Furthermore, the methods that excelled under the
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Figure 8. Confusion Matrix for AID30 with a TR of 20% 

 

Figure 9. Confusion Matrix for NWPU45 with a TR of 20%. 

50% TR on AID30 exhibited inferior performance on 

NWPU45. This consistent trend highlights the imbalanced 

nature of AID30, resulting in fluctuations in accuracy. 

4.3. Sensitivity Analysis 

Two settings may significantly impact the performance of 

our ERKT-Net. The first setting concerns the three weight 

parameters within the teacher ensemble, while the second 

relates to the ratio between the cross-entropy loss and the 

DIST loss defined in equation (12). We conducted extensive 

experiments to validate that these two settings have a 

controllable influence on our method.   

Initially, we proposed a straightforward algorithm to 

generate our teacher ensemble. Let 𝑊𝐵3 , 𝑊𝐵0 , and 𝑊𝑅50 

denote the weights for EfficientNet-B3, EfficientNet-B0, 

and ResNet-50, respectively. The relationship between these 

three weights can be expressed as follows:    

WB0 = WR50 = (1 − WB3) × 0.5.   (14) 

Subsequently, we increased the weight for EfficientNet-

B3 from 0.1 to 0.9 at intervals of 0.1. Thus, we obtained 

nine candidate ensemble models and verified their OAs on 

the AID30 and NWPU45 datasets. As shown in Table 6, the 

results reveal that the OAs of the candidate ensembles on 

the AID30 or NWPU45 datasets closely match when the
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Table 6: OA of Candidate Ensemble Models on AID30 and NWPU45 

Weight for EfficientNet-B3 
ERKT-Net’s OA (%) 

AID30 (TR-20%) NWPU45 (TR-10%) 

0.1 97.14 ± 0.07 95.02 ± 0.04 

0.2 97.23 ± 0.02 95.09 ± 0.09 

0.3 97.33 ± 0.07 95.14 ± 0.07 

0.4 97.36 ± 0.14 95.11 ± 0.06 

0.5 97.29 ± 0.15 95.06 ± 0.07 

0.6 97.28 ± 0.14 94.94 ± 0.05 

0.7 97.19 ± 0.14 94.83 ± 0.08 

0.8 97.11 ± 0.11 94.72 ± 0.09 

0.9 97.00 ± 0.09 94.61 ± 0.10 

Table 7: Performance of ERKT-Net on AID30 and NWPU45 with Varying Loss Ratios 

Ratio of two Losses 
ERKT-Net’s OA (%) 

AID30 (TR-20%) NWPU45 (TR-10%) 

0.0 97.13 ± 0.02 94.76 ± 0.15 

0.5 97.16 ± 0.05 94.88 ± 0.08 

1.0 97.20 ± 0.08 94.90 ± 0.05 

1.5 97.10 ± 0.05 94.83 ± 0.09 

2.0 96.81 ± 0.06 94.28 ± 0.07 

 

 
Figure 10. Grad-CAM Analysis for Representative RSI Samples. 

 

weight for EfficientNet-B3 is around 0.4. Therefore, we 

empirically set the weight for EfficientNet-B3 at 0.4 and the 

others at 0.3, as the accuracy of the ensemble is not highly 

sensitive across different datasets.     

Furthermore, we validate the influence of the ratio 

between the two losses. Let 𝑅 denote the ratio, and let ℒDIST 

denote 2 × (ℒ𝑖𝑛𝑡𝑒𝑟 + ℒ𝑖𝑛𝑡𝑟𝑎)  as defined in equation (12). 

Equation (12) can be reformulated as follows: 

𝐿𝑜𝑠𝑠𝐸𝑅𝐾𝑇−𝑁𝑒𝑡 = 𝑅 × 𝐿𝑐𝑟𝑜𝑠𝑠 + (2 − R) × ℒDIST.   (15) 

We increment R from 0.0 to 2.0 at intervals of 0.5 and 

then evaluate its effectiveness. As depicted in Table 7, our 

ERKT-Net demonstrates improved performance on the 

AID30 and NWPU45 datasets when R equals 1.0. Therefore, 

we employ this result as our method’s final setting.     

4.4. Visualization and Analysis     

In this section, we utilize two techniques to illustrate the 

activation and feature effectiveness of ERKT-Net. First, we 

employ Gradient-weighted Class Activation Mapping 

(Grad-CAM) [66] to provide visual explanations for the 

model’s predictions. Second, we use t-Distributed Stochastic 

Neighbor Embedding [67], commonly referred to as t-SNE, 

to analyze the effectiveness of the model’s features. 
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Figure 11. t-SNE Visualization on the AID30 Dataset 

 

 
Figure 12. t-SNE Visualization on the NWPU45 Dataset 

4.4.1. Grad-CAM results. 

As depicted in Figure 10, the results include ten 

representative RSI samples from the most confusing 

categories. The first and third rows display the original 

images, while the second and fourth rows show the 

corresponding CAMs. The top five images are from the 

AID30 dataset, while the bottom five are from the NWPU45 

dataset. 

In the AID30 samples, the key activation areas, 

highlighted as brighter regions in the CAMs, are closely 

associated with ground objects that contribute to the 

semantic understanding of the scene. For instance, the flat-

and-round structures represent the center, recreational 

facilities represent the park, swimming pools represent the 

resort, and playgrounds represent the school. Similarly, in 

the NWPU45 samples, the activation areas emphasize 

important ground objects that align with human cognitive 

logic. For example, round structures represent churches, 

blue structures represent industrial areas, bodies of water 

represent lakes, and white buildings represent railway 

stations. 

These Grad-CAM visualizations confirm that the features 

our ERKT-Net learned through the knowledge transfer 

process are both effective and interpretable. 

4.4.2. t-SNE Results 

The t-SNE results for the AID30 and NWPU45 datasets 

are presented in Figures 11 and 12, respectively. The t-SNE 

technique projects various categories onto a two-

dimensional map based on the spatial distances between 

samples. This allows us to evaluate the effectiveness of the 

model’s features through the separation between categories. 

As depicted in Figure 11, all categories in the AID30 

dataset are well-separated, with the exception of three pairs 

of categories, which are marked with red rectangles and 

have overlapping areas. These overlapping pairs are 

playground and stadium, commercial and school, and park 

and resort.  

In Figure 12, most categories within the NWPU45 dataset 

are clearly separated, except for four pairs: the church and 

palace, the dense residential and medium residential, the 

railway and railway station, and the lake and wetland. When 

compared with the previously shown confusion matrix 

results, these overlapping pairs are consistent.  

These, these t-SNE results further confirm that the 

features learned by our ERKT-Net through the knowledge 

transfer process are effective. 
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Table 8: Comparison of Parameters and Inference Time for Various Models on AID30 

Model Params(M) FLOPs(G) Inferring time(second) 

ResNet-18  11.7 1.8 5.49 ± 0.07 
ResNet-50  25.6 4.1 16.50 ± 0.05 

DenseNet-121  8.0 2.9 18.75 ± 0.07 
MobileNetV2 3.5 0.3 6.56 ± 0.06 

EfficientNet-B3 12.1 1.8 15.40 ± 0.05 

Ensemble Teacher 43.1 6.3 38.06 ± 0.08 

ERKT-Net 5.3 0.4 7.94 ± 0.08 

Table 9: Comparison of OA (%) for Various Methods Across Different Training Epochs 

Training method 
NWPU45 TR10% NWPU45 TR20% 

600 epochs 3000 epochs 600 epochs 3000 epochs 

Base 93.58 ± 0.11  95.01 ± 0.07  

Original DIST 94.54 ± 0.01 94.81 ± 0.04 96.05 ± 0.02 96.18 ± 0.18 

Our ERKT-Net 94.90 ± 0.05  96.36± 0.05  

4.5. Computational Efficiency Analysis 

Apart from model size, inference speed is another 

crucial metric for performance evaluation during 

deployment. The total number of convolution operations 

significantly influences the inference latency of CNNs, 

particularly when running on a GPU [68]. Consequently, 

we compared the prediction speed of ERKT-Net with that 

of the teacher ensemble and other classical CNNs using 

6,300 samples from NWPU45. 

As shown in Table 8, our ERKT-Net exhibited an 

inference speed comparable to ResNet-18 and 

MobileNetV2, while its size is only 45% of that of 

ResNet-18. Given that ResNet-18 and MobileNetV2 have 

much lower accuracy on ImageNet-1K than EfficientNet-

B0, these results suggest that ERKT-Net offers a superior 

balance between model size, inference latency, and 

accuracy.  

Compared to the teacher ensemble, our ERKT-Net 

reduces inference time and model size by 80% and 88%, 

respectively. This result underscores the efficiency of 

ERKT-Net.  

4.6. Ablation Experiments 

In this section, we conducted a series of ablation 

experiments on NWPU45 to validate the effectiveness of 

our KD methods. The results are presented in Table 9.  

Initially, we established the effectiveness of transfer 

learning as a baseline by training our student model 

without the knowledge transfer process. Specifically, we 

reverted the functions involving VSM to their default 

state with the following settings: CutMix probability set 

to 0.1, random horizontal and vertical flip probabilities set 

to 0.5, and both random erasing and random resized crop 

deactivated. Using these usual data augmentation 

strategies presented in the literature [4, 10], we then 

evaluated the efficiency of the original DIST loss for 

distilling knowledge over an extended training period, up 

to 3000 epochs.  

As demonstrated in Table 9, the experimental results 

reveal that the original DIST, even with a much longer 

training scheme of up to 3000 epochs, cannot match the 

efficiency of our ERKT-Net. These ablation experiments 

confirm that ERKT-Net is a more robust and efficient KD 

approach for achieving lightweight RSI classifiers. 

Notably, our method, leveraging the inherent nature of 

RSIs, reduces the time expenditure in the distillation 

phase by at least 80% compared to the original DIST 

developed on ImageNet-1K. 

5. Conclusions 

In this paper, we introduce a novel approach for 

generating lightweight RSI classifiers using KD 

techniques. This method presents innovative yet 

straightforward concepts to better accommodate the 

inherent nature of RSIs, significantly enhancing the 

efficiency and robustness of traditional KD techniques 

developed on ImageNet-1K.   

The advantages of our method primarily stem from two 

aspects. Firstly, we propose a straightforward algorithm 

for generating a robust three-CNN ensemble as the 

teacher model. Secondly, we propose a novel VS strategy 

to address the large variances in data distribution, which 

are characteristic of RSIs caused by noisy backgrounds 

and significant similarities across categories.  

We evaluated our student model on three benchmark 

RSI datasets. The results revealed that our ERKT-Net 

demonstrated superior accuracy and a very compact 

model size compared to 40 other SOTA methods 

published between 2020 and 2023. In the challenging 

NWPU45 dataset, ERKT-Net surpassed other KD-based 

methods with a maximum OA improvement of 22.4%. 

Under the same criterion, ERKT-Net also surpassed the 

top-ranked multi-model method with a minimum OA 

improvement of 0.6%, using only up to 4.7% of the 

parameters. Additionally, ablation experiments indicated 

that our VS strategy, tailored to the inherent nature of 

RSIs, significantly improved the efficiency and robustness 

of classic DA techniques for knowledge transfer. Notably, 

it reduced the time expenditure in the distillation phase by 
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at least 80% with only a slight accuracy sacrifice. 

However, our work is still preliminary and limited, with 

many aspects requiring improvement in the future. Firstly, 

we have not conducted a grid search for hyperparameters 

during the KD process, which may significantly improve 

the student model's performance with an optimized 

strategy. Secondly, we have not extensively utilized the 

spatial and location characteristics of RSIs, such as spatial 

distance or long-range dependence between ground 

features, to design more tailored and efficient distillation 

techniques. We aim to address these concerns in our 

future work.    
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