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Abstract

INTRODUCTION: Tuberculosis (TB) is a chronic, progressive infection that often has a latent period after
the initial infection period. Early awareness from those period to have better prevention steps becomes an
indispensable part for patients who want to lengthen their lives. Hence, applying cutting-edge technologies
to support the medical business domain plays a key role in improving speed and accuracy in methods of
diagnosis. Deep Neural Network-based technique (DNN) is one of such methods which offers positive results
by leveraging the advantages of analyzing deeply the data, especially image data format via tons of deep
layers of the neural networks. Our study was wrapped up by objectively assessing the performance of modern
Deep Neural Network approaches and suggesting a model offering good results in terms of the selected
metrics as defined later. In order to achieve optimized results, the chosen model must adapt well to the
datasets but require less hardware and computational resources.

OBJECTIVES: Our objective is to pick up and train a Deep Neural Network architecture which is highly
trusted and flexibly fitted and applied to various datasets with minimum configurations. This will be used to
produce good predictions based on the input data which are Chest X-ray images retrieved from the published
datasets.

METHODS: We have been approaching this problem by using the recognized datasets which have already
been published before, then resizing them to the consistent input data for training purposes. In terms of
Deep Neural Networks, we picked up VGG16 as the baseline network architecture, then use other ones
which are state-of-the-art networks for comparison purposes. After all, we recommend the neural network
architecture offering the most positive results based on accuracy and recall measurements. So that, this
network architecture will show flexibility when fitting into diverse datasets representing different areas in
the world that suffered from Tuberculosis before.

RESULTS: After conducting the experiments, we observed that the Mobilenet model produced great
results based on the predefined metrics for most of the proposed datasets. It shows the versatility which is
applicable to all CXR datasets, especially for the Tuberculosis ones.

CONCLUSION: Tuberculosis is still one of the most dangerous illnesses in the world that needs vital
methods to prevent and detect soon so that patients are able to keep their lives longer. After this research, we
are constantly improving the current accuracy of the models and applying the current results of this research
for later problems such as detecting the Tuberculosis areas in real-time and supporting doctors to make
decisions based on the current status of patients.
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1. Introduction
Tuberculosis is now one of the most lethal diseases.
According to the latest scientific report published by
WHO [22], in 2020, the number of deaths officially
attributed to Tuberculosis (1.3 million) was nearly
double that of HIV/AIDS (0.68 million). It does spread
from person to person without concerning the borders.
Tuberculosis has ambiguous clinical symptoms such
as chest pain, dyspnea, sweating, hemoptysis, easily
making patients confused and underrate the symptoms
at the initial stage. They may try to stay at home to
suffer from the symptoms until over their limit before
going to health facilities. Besides, infectious bacteria
from Tuberculosis can also be spread to the community
from the infected people through respiratory activities
such as coughing, spitting and sneezing. Detecting
Tuberculosis earlier plays a vital role in saving time and
money for patients as well as avoiding out of control
spreading. Manually diagnosing and identifying via
Chest X-ray images requires a thorough base of
medical knowledge and image processing techniques
to understand the context and many time on medical
consultation.

Figure 1. Chest X-ray dataset with the labels attached

From the current situation, applying advanced
technologies such as Deep Learning with the support
of medical health images processing systems to assist
doctors in recognizing Tuberculosis and tracking the
symptoms and diseases over time is becoming popular.
It is replacing traditional techniques since the abilities
to help computer scientists develop complex software
architectures and build stable models with high
accuracy for residents in different areas based on
accumulating typical data processes.

In our study, we analyzed the performance of modern
deep learning models, namely VGG16. EfficientNetB7,
MobileNetV3, DenseNet121, RegNet for Chest X-ray
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analysis with two main labels: TUBERCULOSIS (those
who got Tuberculosis) and NORMAL (normal people).
Apart from the baseline model (VGG16), other neural
network architectures are newly published. They can
help us build good models with high results on many
datasets. We comparatively cross-assessed the accuracy
of these models on each dataset. Details of how we
build models, as well as the detailed dataset are stored
in our public repository 1. Our paper contains three
contributions as below:

• We made a specific survey and selected the
five latest models to use for the Tuberculosis
evaluation problem. Also, we summarized four
well-known datasets in the Tuberculosis domain
and adjusted them to well-adapt the classification
problem. In the upcoming projects, everyone can
use these datasets for their specific problem with
little updates based on their needs.

• Based on the concluded results, we proposed a
model with highly trusted accuracy and recall. In
addition, as compared to others, it provides a high
level of stability. We can then use it to apply for
local residents in a variety of different regions.

• A visually detailed comparison between the
chosen models has been conducted to achieve in-
depth knowledge so that other researchers can
gain more deep insights about this problem such
as what has been done, what we will do in the
upcoming projects, what is still left. From that, we
can have well-prepared topics for the next stage.

The paper will be arranged as follows, section 2
reviews the related works of other researchers. Section
3 provides background theories and methods that
we utilized in our research. Section 4 shows the
practical outcomes of our study. Section 5 is the further
discussion of how we develop these topics further in
new problems and the conclusion of the paper.

2. Related Works
Stephan Jaeger et al. [8] proposed two standard datasets
that should be used for the Tuberculosis classification
problem, including the Shenzhen Chest X-ray dataset
and Montgomery Chest X-ray dataset. We leverage
the final results, two highly trusted datasets, namely
Montgomery and Shenzhen Chest X-ray datasets as the
fundamental data resources to our research.

Paras Lakhani and Baskaran Sundaram [13] applied
Deep Learning to an evaluation of the contem-
porary algorithms’ efficiency on four deidentified
HIPAA-compliant datasets, including AlexNet [12] and

1https://github.com/letruongminhuit/tuberculosis-dnn
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GoogLeNet [20]. The experiments have acquired the
recall is 97.3%. Our research has a different way to
evaluate the result from this.

Sonaal Kant and Muktabh Mayank Srivastava [9]
used a deep neural network architecture to analyze if a
patient has infected Tuberculosis via microscopy images
of sputum. They also suggested a 5-layered Neural
Network architecture on dataset 3 from ZiehlNeelsen
Sputum smear Microscopy image DataBase (ZNSM-
iDB) - Mohammad Imran Shah et al. [17]. We made
use of a variety of dataset resources and dataset targets
(frontal CXR images compared to the microscopy
images of sputum). In terms of the actual outcomes,
the authors received the greatest F1-Score for their best
performance which was 74.79 per cent.

Tawansongsang Karnkawinpong et al. [11] reused the
architecture of the VGG-16 neural network model com-
bined with affine transformation. They combine three
datasets, including Shenzhen, Montgomery and Thai
into one larger dataset. Then, they utilize three pre-
trained neural network architectures, namely AlexNet,
VGG-16, and CapsNet correspondingly to diagnose
Tuberculosis infection. Throughout the research, apply-
ing affine test with -10 to 10 rotation with VGG-16
obtained the highest accuracy which is 90.79%. Com-
pared to our current accuracy score, as we use the more
advanced algorithms our metrics surpass the accuracy
score of [11] with 98.35 per cent.

R. Dinesh Jackson Samuel and B. Rajesh Kanna [4]
utilized the model which uses the pre-trained model of
InceptionV3 paired with SVM to classify the data. To
complete their research, the authors used the publicly
available dataset [17]. This model has a high accuracy
score of 95.05%, which is reliable to assist medical
practitioners in making decisions if patients have got
Tuberculosis. As per the earlier mentioned research
[9], this research has a different dataset target from
ours. We think using this dataset to analyze in the
future, extending our research scope is also a good
development.

T Karnkawinpong and Y Limpiyakorn [10] conducted
experiments to categorize CXR images for Tuberculosis
on two datasets - one acquired from the National
Library of Medicine and one from private Thai
datasets. AlexNet, VGG-16 and CapsNet were three
neural network architectures used. They used the
augmentation technique with shuffle sampling to help
overcome overfitting, which is an advantage. The final
findings revealed that the shuffle sampling approach
used in the VGG16 neural network architecture had the
best accuracy score (94.56 per cent). However, this is
still inferior to our accuracy when using MobileNetV3
on TB Chest X-rays (98.35 per cent). The study’s
flaw is that it used the VGG16, a very rudimentary
neural network architecture that produces lower results

than state-of-the-art techniques like MobileNetV3 and
DenseNet121.

[3] presented a study to evaluate the different
computational performance and classification results
between four convolutional neural network models,
namely VGG-16, VGG-19, ResNet50 and GoogLenet.
They utilized the aforementioned approaches on two
datasets, Montgomery and Shenzhen, as well as our
results, too. Data Augmentation was also used as a
preprocessing step prior to training and classification
tasks to increase the size of these datasets. When
it comes to the Montgomery dataset, their proposed
models received a 77.14 per cent accuracy score at the
conclusion of the study. This study had a lower accuracy
score than ours, with a score of 77.81 per cent.

Tawsifur Rahman et al. [16] aggregated pieces
of small data into one reliable and bigger dataset
with 7000 images in total. Also, they compared
three methods: segmentation of X-ray images using
two different U-net models, classification using X-
ray images, and segmented lung images. In the
second experiment using the ChexNet neural network
architecture without segmentation, their accuracy and
F1-score have both achieved 97.07%. We also use the
dataset of this research and apply our techniques to
understand thoroughly the dataset and the final results,
including accuracy is higher (98.35%) and F1-score
(98.32%).

In the previous year, Luyao Ma et al. [14] was to use
CT images to analyze if the patients are normal. With
regard to data, they used the dataset of 846 patients
collected from a large hospital and then U-Net deep
learning algorithm was used to analyze. This approach
achieved a 96.8% of accuracy score. One advantage of
this research is applying the segmentation technique
to highlight accurately the field that has a signal of
Tuberculosis. We are going to apply this technique in
the future to improve the classification efficiency when
applying in CXR images.

Linh T. Duong et al [5] made use of the vision trans-
former architecture and transfer learning to deeply ana-
lyze the Tuberculosis disease on four specific datasets,
namely Montgomery CXR dataset, Shenzhen dataset,
Belarus dataset, a COVID-19 dataset, and the adop-
tion of additional imahes from various sources, includ-
ing RSNA Pneumonia Detection Challenge dataset,
COVID-19 Radiography DB CXR images by merging all
of them to each other to have the final dataset, includ-
ing Montgomery County CXR dataset and Shenzhen
dataset which have been used in our study. After that,
they have set up 14 environment configurations and
verified the final results. As a result, the tenth envi-
ronment configuration achieved the highest accuracy
with 97.72%. When comparing the outcomes obtained
in [5] to ours, we can see that our result when applying
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MobileNet-V3 on the Tuberculosis (TB) Chest X-ray
returns the higher accuracy score of 98.35%.

3. Proposed Methods
3.1. Classification Problems
Classification problems, as depicted in Figure 2, are
predictive modelling problems in which a class label
is predicted for given input data. To begin, data is
typically divided into two parts: training and testing.
The training partition will then be divided into two sub-
partitions, including the training set and dev set. We
will discuss the role of the dev set and how we will
use it in future experiments in our study. Then, using
a classification model, each data point in a dataset is
assigned to one class and label. The model is built using
the labeled datasets. As a result, the main task of the
classification problem is to find a standard model after
the fitting process so that new data which is inputted
into the model can be classified into the correct class. In
this paper, building model means finding function f to
map data point x to y ∈ Y : y = f(x).

Figure 2. Visualization of classification problem

There are four factors needed to consider when we
want to resolve a classification problem:

• Dataset: this is the core component as our
ultimate goal is to find the model that fits the data
well and determine the relationship between the
data points and its ground truth as well as the
relationship between the training set and test set.
We will then proceed to perform the classification
tasks or any other academic tasks in Machine
learning or Deep Learning domains.

• Model: to effectively build a strongly stable
model, we must first understand how to process
the data and combine the layers between deep
learning layers in order to achieve good results.

• Loss Function: this is the solution for minimizing
the gap between the ground truth and predicted

labels. This value must be clearly understood in
order for us to fully comprehend the model.

• Algorithms to optimize the loss function: this is
when we apply some common algorithms such as
Gradient Descent to minimize the loss function.
This algorithm will try as much as possible to
update the loss function after each epoch until the
loss function cannot be updated anymore. After
all, this is the most optimized model that we are
finding and further used in the test set via the
evaluation stage.

There are many typical types of classification problems,
including binary classification, multi-class classifica-
tion. We mainly apply binary classification to assign an
image object to one of two different classes based on a
query that if the data point has the same feature as the
classifier.

3.2. Deep Neural Network Approaches

When it comes to applying new technologies to
analyzing large-scale data and processing the given
data to solve problems on a regular basis, everyone
has an intention to choose between traditional machine
learning approaches and deep neural network-based
approaches, each with their own set of pros and cons.

While machine learning approaches have some
drawbacks, such as requiring too much time to interpret
the data possessed and pre-processing techniques to
clean the data before implementing more machine
learning-based techniques to propose the results, deep
learning demonstrates its strength when applying
dynamically deep neural network architectures to
various types of data formats, requiring less effort
in data cleansing phases, and requiring less human
intervention. These benefits outperform traditional
machine learning ones in most cases. As a result,
systematically analyzing current problems, applying
the most appropriate models, and identifying ways to
improve performance is a good approach, particularly
for Tuberculosis detection problems.

Figure 3 depicts our proposed approach, which is an
end-to-end Deep Learning approach that employs an
efficient combination of our neural networks. Following
the input of an image into the networks, we will
use the Data Augmentation technique to increase the
size of two datasets, India and Montgomery CXR
as preprocessing steps. We fed the training images
into five neural network models as part of the Data
Augmentation step for the India and Montgomery
datasets. This is where the Representation Learning
approach comes into play, which allows networks to
exploit data features and automatically minimize the
loss function. Finally, each input image is classified
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into two classes after being returned from the Fully
Connected Layer: Tuberculosis and Normal.

3.3. Deep Learning Architectures
When it comes to classification problems, Deep
Learning outperforms traditional machine learning-
based techniques, particularly the intelligent systems
with a large amount of data a large number of
dimensions, such as speech recognition and computer
vision. Deep Learning has also integrated optimized
data processing techniques such as pre-processing and
feature selection. Furthermore, we must thoroughly
understand how to apply effectively combinations of
Deep Learning layers and parameters calibration. Of
all Deep Learning network architectures, Convolutional
Neural Network architecture (CNN) is suitable for
medical health image processing and bioinformatics as
it offers high-performance capability and reduces the
learning parameters when compared to basic neural
networks.

a. VGG16. We used VGG16 [19] as the baseline
model and compared it to other well-known published
models. VGG16 is a CNN-based neural network
architecture first described in the paper by K. Simonyan
and A. Zisserman of the University of Oxford in the
paper [19]. This proposed model achieves 92.7% top-
5 test accuracy in ImageNet, a dataset of over 14
million images belonging to 1000 classes in total.
The input image is 224x224 with three channels by
default. In terms of VGG16, the significant point that
we can see is improving the model’s accuracy by
using a deeper neural network architecture. It does,
however, retain AlexNet’s features. To reduce parameter
numbers, VGG16 uses a smaller filter with a 3x3 size
rather than 11x11 or 5x5 as AlexNet.

Features can be extracted more effectively when
compared to the previous models such as AlexNet [18],
and the output is returned at the final layer, which is
the fully-connected layer used to predict the output
label. VGG16 is subdivided into three different parts:
Convolution, Pooling, and Fully Connected layers. It
begins with two Convolution layers, followed by a
Pooling layer, then another two Convolution layers,
followed by a Pooling layer, followed by a repetition of
three Convolution layers, followed by a Pooling layer,
and finally three Fully Connected layers. The detailed
architecture of VGG16 can be seen in Figure 4.

On the other hand, two disadvantages have been
proved clearly with VGG16 as below:

• The training phase takes far too long to complete,
causing the other stages to fall behind schedule.

• The neural network architecture has an excessive
number of weights.

VGG16 is too large in size due to its depth
and number of fully connected nodes at the later
layers, making deployment and integration into the
applications complicated. Despite the fact that it can
be leveraged to solve a wide range of deep learning
challenges, more optimal network topologies are often
favored.

b. EfficientNetB7. This model belongs to the Efficient-
Nets algorithm family and was first introduced in 2019
in the paper [21] by Mingxing Tan and Quoc V. Le
in May 2019. EfficientNets rely on AutoML and com-
pound scaling to achieve superior performance without
affecting badly resource efficiency. The AutoML mobile
framework has helped develop a mobile-size baseline
framework. Currently, we made use of the Efficient-
NetB7 neural network architecture to implement the
feature extraction process. These researchers proposed
a model scaling method that carefully balances the
depth, width, and multi-dimension sizes of the network
structure, strengthening the computational efficiency.
The detailed architecture of the EfficientNetB7 neural
network architecture is shown in Figure 5.

c. MobileNetV3. The advancement of Computer Vision
encourages the development of numerous deep learn-
ing architectures with various architectures to ame-
liorate computational performance. However, due to
computational constraints, not all of them can be used
in all devices. If we want to develop AI applications on
various devices such as mobile and IoT, we will need to
thoroughly understand how these devices compromise
their hardware resources in order to choose the model
for them. One such model is the MobileNetV3 [6].

In usual CNN-based neural networks, depth is
one of the main reasons increasing strongly the
number of parameters of models. So, Depthwise
Separable Convolution will figure out how to eliminate
the reliance on depth when performing convolution
operation while still producing an output shape
of the same size as a standard convolution. Each
channel will use a unique filter and will not use the
shared parameters, allowing the model to improve the
computational performance and reduce the number of
parameters required. The detailed architecture of the
MobileNetV3 neural network architecture is depicted
in Figure 6.

d. DenseNet121. The DenseNets algorithm family [7] is
one of the most powerful neural nets, achieving state-
of-the-art performance on a variety of datasets. When
the model architecture is too deep, new issues emerge
alongside the CNN-based methods. The reasons hidden
behind the issues caused by the data path from the first
layer (input) through hidden layers to the classification
layer (output) becomes so substantial that they may
vanish before reaching the other side. DenseNets
maximize network capacity by reusing features from
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Figure 3. End-to-end approach of Chest X-ray classification

Figure 4. Detailed architecture of VGG16 neural network
architecture

extremely deep or wide neural network architectures.
The feature maps of all preceding layers are treated as
independent inputs for each layer, whereas their own
feature maps are used as inputs to the next ones. On the
channel dimension, DenseNet concatenates inputs and
outputs. They create short paths from the early layers to
the later ones, as mentioned in the paper [7].

We use DenseNet121, a 121-layer neural network
architecture, to solve the Tuberculosis classification
problem. It is a DenseNet that has been pre-trained on
the ImageNet dataset. The detailed architecture of the
DenseNet121 neural network architecture is depicted
in Figure 7.

e. RegNet. Convolutional Neural Network topologies
have traditionally been optimized for a single purpose.
For instance, when the ResNet model family was
first released, it was designed for maximum accuracy
on ImageNet. EfficientNet was created with visual
recognition tasks in mind. When it comes to the RegNet
[15], they set out to investigate and design a network
architecture that was extremely adaptable. One that can
be converted to be highly efficient or run on mobile
devices, while also being highly accurate when being

optimized for classification performance. The width
and depth of the network architecture are versatile and
flexibly determined by selecting the proper parameters
in a quantized linear function.

The parameters are configured differently to produce
various RegNets with different purposes:

• A RegNet that has been designed for mobile use

• An efficient RegNet

• A highly precise RegNet

RegNet has a fundamental part called a network
design space, being made up of multiple parameters
that define a space of possible model architectures,
not just different model architectures. Inside the design
spaces, there are three fundamental blocks: stem, body,
and head. Concerning the stem block, it will take the
input images and extract the features within them
using the 3x3 convolutional layer, which has a stride
value of two. Following that, the body layer will be in
charge of carrying out a slew of computational steps
as well as handling the previously defined features
extracted from the stem block. Finally, the head block
will take the implemented computation as input data
and process it to determine which outputs belong to
which classes. Following the traversal of design space’s
body, numerous procedures are used to reduce the
size of height and width channels while increasing
the size of the depth channel. This architecture is
visually appealing, but it necessitates a large number
of parameters during the training process, making the
training phase a strain on a model. In the later section,
we’ll go through the details of the parameters (both
trainable and non-trainable). Such parameters include
the network’s width, depth, groups, and so on. The
authors also defined AnyNet, a space of all possible
models, before arriving at the final RegNet design
space. AnyNet takes responsibility for investigating the
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Figure 5. Detailed architecture of EfficientNetB7 neural network architecture

Figure 6. Detailed architecture of MobileNetV3 neural network
architecture

Figure 7. Detailed architecture of DenseNet-121 architecture
neural network architecture

effective neural network structure. Based on various
parameter combinations, this space generates a diverse
set of models. Using a standardized training procedure,
all of these models are trained and tested on the
ImageNet dataset (epochs, optimizer, weight decay,
learning rate scheduler). Figure 8 depicts the general
structure of the RegNet model and how it performs
numerous calculations for prediction steps at the end.

They generate progressively simpler versions of the
initial AnyNet design space from this AnyNet space
by analyzing which parameters are responsible for the
high performance of the best models in the AnyNet
design space. They are essentially experimenting with

Figure 8. Detailed architecture of RegNet architecture neural
network architecture

the relative importance of various parameters in order
to narrow the design space to only the best models.
After all, they acquire the optimized RegNet design
space, containing only great models as well as the
quantized linear function required to define the models.
In our study, we leveraged the RegNetY040 which has
been integrated into Tensorflow 1.

3.4. Early Stopping
We leverage Early Stopping as a way to calibrate the
model to get over difficulty of too little training or too
much training. If there is too little training, models will
not be able to learn all datasets accurately. In case there
is too much training, model will be in the overfitting
status, which lead to low performance on test set.

In this study, we use the object Early Stopping
method 2 and use loss value as the monitor value. After

1https://www.tensorflow.org/api_docs/python/tf/keras/
applications/regnet/RegNetY040
2https://www.tensorflow.org/api_docs/python/tf/keras/
callbacks/EarlyStopping
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5 training epochs, if the loss value does not decrease, the
training phases will stop without performing any epoch
later.

3.5. Neural Network layers
These properties are the fundamental functional
building blocks of neural networks. Each layer
comprises a tensor for the in and out computational
method, as well as some states. After loading the pre-
trained models, we fine-tune them by adding layers
to the pre-trained models’ output, such as Flatten and
Fully Connected layers.

Flatten layer plays the role of flattening the input but
has no effect on the batch size. It does not learn any
characteristics from the models.

We also employ two Fully Connected layers, with the
activation function sigmoid serving as the classification
at the end. The detailed formula of the sigmoid function
is shown in the equation 1.

σ (x) =
1

1 + e−x
(1)

4. Experimental Results

4.1. Datasets
All datasets are collected from highly trusted datasets
which are published before. With two datasets -
Montgomery County CXR Set and India CXR Set, as
it has few images inside which may lead to missing
generality, we apply data augmentation to not only
increase the size of the datasets but also introduce
variability in the datasets, without actually collecting
new data. The neural network architecture treats
these images as distinct images anyway. Also, data
augmentation helps reduce overfitting effectively.

a. Tuberculosis (TB) Chest X-ray Database. This dataset
[16] consists of two folders containing training images
and test images, as well as an excel file containing
images information with two labels: Normal (3500
images) and Tuberculosis (3500 images). We divide the
dataset into two folders, train and test, so that we can
easily use them for phases of training, validation and
testing. Tuberculosis and Normal are the corresponding
sub-folders in each folder.

We divide the dataset with the specific percentage as
below:

• The training set comprises 64% with 2240 images
belonging to the Normal class and 2240 images
belonging to the Tuberculosis class.

• The validation set comprises 16% with 560 images
belonging to the Normal class and 560 images
belonging to the Tuberculosis class.

• The test set comprises 20% with 700 images
belonging to the Normal class and 700 images
belonging to the Tuberculosis class.

Table 1. Details about how Tuberculosis (TB) Chest x-ray
database is splitted

Normal Tuberculosis
Training set 2240 2240
Validation set 560 560

Test set 700 700

b. Shenzhen Chest X-ray dataset. Shenzhen Chest X-ray
dataset [8] has been collected from outpatient clinics at
hospitals which are Shenzhen No.3 People’s Hospital,
Guangdong Medical College, Shenzhen, China.

This dataset includes 662 chest x-ray images and a
CSV file with two properties: the gender and age of
the patients of each image. We modify the dataset by
splitting it into three distinct sets – Train set, Validation
set and Test set. We also set aside 20 per cent of the
dataset for validation purpose. In each set, we also
create two sub-folders that correspond to its labels –
Tuberculosis and Normal.

Table 2. Details about how Shenzhen dataset is splitted

Normal Tuberculosis
Training set 209 217
Validation set 52 54

Test set 65 65

c. Montgomery Chest X-ray dataset. Montgomery Chest
X-ray dataset [8] has been collected in collaboration
with the Department of Health and Human Services,
Montgomery County, Maryland, USA. This dataset
contains 138 frontal chest x-ray in which there are
80 images having Normal class and 58 images having
Tuberculosis class. After reserving 28 images for the
Test set and 22 images for Validation set, we allocate
the rest of the images to the Training set and start
applying Data Augmentation. In particular, we use
CLoDSA [1] created by Casado-García et al. The general
idea of the method is first to define a list of data
augmentation techniques which will be used and add
them to the augmentor object. There will be a process
that receives the augmentor object as input and returns
the list of augmented images. We generate more images
to support the Training phase with these techniques:
rotation, cropping, shifting, and use the original.

The details of each technique is as below:

• Rotation: We do rotate technique the image
randomly 5, 10, 15 degree for each image in the
dataset.
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• Cropping: We do cropping technique with
percentage 0.9 and start from top-left.

• Shifting: We do shifting technique along with X-
axis and Y-axis with 10 and 10 respectively.

• Original: We also keep the original image as
one resource of images because it contains the
standard feature of the dataset.

Table 3. Details about how Montgomery dataset is splitted and
augmented

Normal Tuberculosis
Training set 385 231
Validation set 11 11

Test set 14 14

d. India Chest X-ray dataset. India Chest X-ray dataset
[2] CXR digital image is taken from X-ray machine
available at the National Institute of Tuberculosis and
Respiratory Diseases, New Delhi. Dataset is available
freely at dataset.

This dataset contains a total of 155 chest x-ray
images. For this dataset, we also use the aforementioned
tool (CLoDSA) to extend the dataset’s size in order to
make it more general. We divide the original dataset
into three particular parts: training, dev and test sets.
We used the same techniques as in the Montgomery
dataset for the final one. The structure is similar to the
three previously mentioned datasets, as shown below:

Table 4. Details about how India dataset is splitted

Normal Tuberculosis
Training set 287 294
Validation set 10 10

Test set 26 26

4.2. Data Preparation
Training process using Convolutional Neural Network-
based techniques (CNN) require a lot of labeled images
as data for necessary phases. Also, input images are
required to have a consistent resolution in association
with the development of deep learning architectures.
All properties belonging to the images should also
be coherent with each other for further consideration.
Hence, pre-processing data is a vital step for any
machine learning system as well as algorithm.

For each dataset described above, we
sequentially read image data from training set,
validation set and test set to colab via method
image_dataset_from_directory 2. For the input images, it

2https://keras.io/api/preprocessing/image/

is divided into smaller batches with batch_size is 128.
We sequentially train on each batch and compute the
final value which is mean of all batches.

We resize the image into the resolution 224x224
to fit the model. Also, we use the color mode RGB
for the images. Besides, the above datasets, especially
three datasets which are India Chest X-ray, Montgomery
Chest X-ray have quite a few images inside. However,
spatial features of images - positions of organs in the
body - are needed to be retained to ensure the detection
and classification processes are correct. Therefore, we
do not use some typical data augmentation techniques
such as flipping the images, zooming in and out the
images, changing the photo sizes to absolutely keep the
correct positions.

Moreover, we shuffle the images in the training set
and validation set to ensure each data point create
an "independent" change on the model, without being
biased by the same points before them. Using this
method also prevents models from extracting the rules
which can be easily found. This affects positively the
model by enhancing the difficulty of detecting the
training phase.

4.3. Parameters Configuration
Parameters are the coefficients of the model, and they
are initialized and updated by the model. During the
training processes, parameters are always calibrated in
order to minimize the loss function of the model. These
parameters can be estimated and learnt from data, then
it is still be reused and updated back to the earlier
layers. Practitioners have investigated which value of
parameters are good and used for various models.

There are two types of parameters when taking
Neural Network architectures into account: trainable
parameters and non-trainable parameters.

• Trainable parameters: When it comes to pre-
trained models, trainable parameters are the
parameters that models will need to learn and
calibrate on the datasets that the loss function of
the model will be minimized.

• Non-trainable parameters: On the other side, it is
the pre-trained parameters that have been trained
previously and can now be used without the need
to retrain them.

Besides, we also have the total parameters which are
the sum of trainable and non-trainable parameters. We
can observe the parameters that each model has after
compiling the model as clearly described in Table 5.

As shown in Table 5, EfficientNet-B7 accounts for
most parameters, including both trainable parameters
and non-trainable parameters, in order to fully
train the datasets. Hence, this consumes a lot of
computational and storage resources although it is
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Table 5. Numbers of parameters for each model

Model Trainable Parameters Non-trainable Parameters Total Parameters
VGG16 3,211,521 14,714,688 17,926,209
EfficientNetB7 16,056,577 64,097,687 80,154,264
MobileNetV3 3,612,929 939,120 4,552,049
DenseNet121 6,422,785 7,037,504 13,460,289
RegNetY040 6,824,193 19,619,928 26,444,121

able to produce good results for some datasets.
Next, the RegNetY040 and DenseNet-121 have the
approximate numbers of trainable parameters with
roughly 6,500,000 parameters, but the difference in
non-trainable parameters leads to the difference in the
total parameters of the two mentioned models. Overall,
MobileNetV3 produces superior results with fewer
parameters configured. It means we only need fewer
computational resources but achieve better results
when integrating MobileNetV3 into the applications
and recommendation systems.

4.4. Performance Evaluation Metrics
As we are finding solution for the Tuberculosis, it means
that we will try to categorize an input image to one class
which is Tuberculosis or Normal. There are four values
representing for 4 types of predictions:

• True Positive (TP): this is the number of data
points in which models correctly predict with
labels Positive and the true labels are also
Positive.

• True Negative (TN): this is the number of data
points in which models correctly predict with
labels Negative and the true labels are also
Negative.

• False Positive (FP): this is the number of data
points in which models predict with labels
Positive but the correct labels are Negative.

• False Negative (FN): this is the number of
data points in which models predict with labels
Negative but the correct labels are Positive.

For the Tuberculosis issue, classifying True Positive
and False Negative cases are far more important than
two classes left. When patients are not considered
as Tuberculosis correctly, they will get sicker or die.
Therefore, minimizing the number of predicted cases
in two mentioned classes are also the goal of the models
created.

We conduct an algorithm to evaluate the models
based on four metrics which will be presented later
as below (Accuracy, Precision, Recall, and F1-Score).

We use 4 lists to store all metrics of all data points.
After making prediction for a data point, we assign the
newly predicted to a list until there is no data point
left in the test set. Then, we evaluate difference between
ground truth and the newly predicted labels. Finally,
we compute mean for each metric array and return the
results:

Algorithm 1 Evaluation Model algorithm

1: procedure EvaluationModel(model)
2: Initialize accuracy list
3: Initialize recall list
4: Initialize precision list
5: Initialize F1-Score list
6: for image, label in test set do
7: P redictions← P redict(model)
8: P redictions← Normalize(P redictions)
9: accuracy ← accuracy(label, P redictions)

10: recall ← recall(label, P redictions)
11: precision← precision(label, P redictions)
12: F1 − Score← F1 − Score(label, P redictions)
13: Append accuracy to accuracy list
14: Append recall to recall list
15: Append precision to precision list
16: Append F1-Score to F1-Score list
17: end for
18: accuracy ← mean(accuracylist)
19: recall ← mean(recalllist)
20: precision← mean(precisionlist)
21: F1 − Score← mean(F1 − Scorelist)
22: end procedure

Accuracy. Accuracy is a metric to evaluate classification
models. It is the fraction of predictions our model got
right. Formally, accuracy has the following definition:

Accuracy =
T P + TN

T P + TN + FP + FN
(2)

F1-score. When it comes to F1-score, we should
understand two terms: Precision and Recall.
Precision refers to the fraction between True Positive

and the sum of True Positive and False Positive. The
specific formula of Precision score is described in the
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equation (3).

P recision =
T P

T P + FP
(3)

Recall refers to the fraction between True Positive
and the sum of True Positive and False Negative. The
specific formula of Recall score is described in the
equation (4).

Recall =
T P

T P + FN
(4)

When a model has Precision is equal to 1, all detected
points are truly positive and there is no negative
point inside. But, when a model has Recall is equal
to 1, all positive points have been observed. However,
this metric cannot evaluate how many negative points
inside. A good model is the one has high Precision as
well as Recall. To evaluate this measure, we use F1-score
with the following formula:

F1 = 2 ∗ P recision ∗ Recall
P recision + Recall

(5)

F1-score has the value in (0, 1].

Confusion Matrix. For the Tuberculosis classification, a
2x2 table as shown in Figure 9 that summarizes how
successful a classification model’s predictions were; that
is, the correlation between the label and the model’s
classification. One axis of a confusion matrix is the label
that the model predicted, and the other axis is the actual
label. The number two denotes how many labels or
classes are available.

Figure 9. Confusion Matrix

4.5. Experimental Results
Using pretrained models, we hope to determine
whether a given CXR image belongs to the Tuberculosis
or Normal class. As a result, five techniques are used to
gain insights for furture comparisons.

After applying the fine-tuning process to four
datasets, we produced the confusion matrices of all
models for labels as shown in Figures 10, 11, 12, 13
sequentially.

The performance of five neural network architectures
against four datasets is shown in Table 6. The model
producing impressive results when compared to others
is highlighted in bold. Accuracy and F1-score are
used to evaluate performance with objective results.

VGG16 EficientNet-B7

MobileNet-V3 DenseNet-121

RegNetY040

Figure 10. Confusion matrices for models applying to
Tuberculosis (TB) Chest X-ray database - MobileNet-V3 shows
better results with True Positive and False Negative images
detected are quite high - 64 and 62 correspondingly

The findings are expressed as a percentage. As a
result, we can see that MobileNetV3 delivers the
best results in two datasets which are Tuberculosis
(TB) Chest X-ray (Accuracy=98.35%, F1-score=98.32%)
and Montgomery Chest X-ray (Accuracy=77.81%, F1-
score=78.92%). It also produces good performance on
two datasets left, including the Shenzhen Chest X-
ray dataset (Accuracy=67.19%, F1-score=74.86%), and
the India Chest X-ray dataset (Accuracy=86.25%, F1-
score=83.75%), with the second-best results. These
metrics are roughly comparable to the best.

According to the results of the preceding experi-
ments, MobileNetV3 has the highest level of stability
in terms of performance metrics. To be more spe-
cific, MobileNets, particularly version 3, uses hyperpa-
rameters effectively to trade off latency and accuracy.
Based on the perks mentioned, this should be consid-
ered when applying for current applications, especially
mobile devices.

Differences in human body parts, specifically the
thoracic skeleton, between regions of the world result
in differences in the spatial characteristic arrangement
of X-ray images. In some studies, such as [5], authors
combined all datasets into a single larger dataset before
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Table 6. Performance evaluation between models on the selected datasets

Feature Extraction Models
Tuberculosis (TB) Chest X-ray Shenzhen Chest X-ray Montgomery Chest X-ray India Chest X-ray
Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

VGG16 95.56% 95.40% 64.38% 72.71% 64.38% 68.66% 81.25% 80.18%
EfficientNetB7 95.65% 95.49% 61.25% 67.53% 49.69% 65.31% 86.88% 88.33%
MobileNetV3 98.35% 98.32% 67.19% 74.86% 77.81% 78.92% 86.25% 83.75%
DenseNet121 95.78% 95.59% 70.00% 71.57% 60.94% 70.65% 65.00% 53.33%
RegNetY040 96.65% 96.55% 62.19% 68.43% 71.56% 75.32% 84.69% 84.04%

VGG16 EficientNet-B7

MobileNet-V3 DenseNet-121

RegNetY040

Figure 11. Confusion matrices for models applying to Shenzhen
Chest X-ray Set - MobileNet-V3 provides the second good results
with True Positive and False Negative images detected are high
- 4 and 13 correspondingly

training, which has a negative impact on the spatial
distribution of the object. As a consequence, in our
research, we continue to keep the datasets separate in
order to preserve the specificity of spatial distribution.
This is one of the benefits of our research so far.

VGG16 is an old neural network architecture, as far as
we know from CNN-based models. All layers are added
as a stack of layers, and the volume of tensors (area of
feature maps multiplied by the number of features) is
slowly reduced. Although it is simple to understand and
apply in real-world situations, the need for too many
parameters has a negative impact on inference and test
stages, as well as memory limitations. As a result of
the aforementioned drawbacks, we use it as a baseline

VGG16 EficientNet-B7

MobileNet-V3 DenseNet-121

RegNetY040

Figure 12. Confusion matrices for models applying to
Montgomery Chest X-ray Set - MobileNetV3 provides the better
results with True Positive and False Negative images detected
are high - 7.5 and 12 correspondingly

algorithm to primarily benchmark other more modern
algorithms.

5. Further Discussion and Conclusion
As Tuberculosis is a global disease, it needs to have
formal consideration so that patients can have better
standard treatments in the near future to extend the
life of human-being. For completing this project, we
have collected the standard datasets as well as applied
the most advanced neural network models to improve
the confidence of models. Constantly improving the
accuracy of models is the demanding need that we
should focus on to support doctors and medical staffs
as well as reduce the burden of the medical status.
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VGG16 EficientNet-B7

MobileNet-V3 DenseNet-121

RegNetY040

Figure 13. Confusion matrices for models applying to India Chest
X-ray Set - MobileNet-V3 reveals the good results with True
Positive and False Negative images detected are high - 12 and
10 correspondingly

Although DenseNet121 provides the highest results for
the Shenzhen Chest X-ray dataset and EfficientNetB7
produces the best results for the India Chest X-ray
dataset, MobileNetV3 returns the highest results for
Tuberculosis (TB) Chest X-ray set, Montgomery Chest X-
ray set in Accuracy and F1-Score metrics. In our study,
MobileNetV3 is considered the most stable model
which can be used to integrate into applications for
further recommendations. Regarding the datasets, all
of them are samples that have been collected and they
cannot represent all data from the real practices.

Although the proposed models give us good results,
this research still needs to be invested more. Many
practical experiments under highly strict surveillance
of experts should be performed to strongly enhance
reliability before releasing into real production. For
further research, firstly, we will extend this project
by adding more diseases that are urgent such
as pneumonia or COVID-19 to make the models
stronger. Secondly, we will also extend the research
by implementing object detection to understand which
part of the images lead to the making decision process
of the system. This will help to enhance the reliability
of the system.

We finished the research by analyzing the cutting-
edge Deep Neural Network-based techniques in terms
of computational and operational effectiveness and
efficiency. Then, we picked one well-suited model for
the Tuberculosis evaluation problem that not only
delivered good results in proposed metrics but also
struck a balance between stability and computational
complexity required during training phases. In the later
works, we will try to collaborate with medical facilities
to gain more potential data for the Tuberculosis domain
and apply deeper techniques to improve as well as
integrate new diseases to make the system more diverse
based on the spatial body features of Vietnamese
people.

References
[1] Ángela Casado-García et al. “CLoDSA: a tool for

augmentation in classification, localization, detection,
semantic segmentation and instance segmentation
tasks”. In: BMC Bioinformatics 20.1 (June 2019), p. 323.
issn: 1471-2105. doi: 10.1186/s12859-019-2931-1.
url: https://doi.org/10.1186/s12859-019-2931-1.

[2] Arun Chauhan, Devesh Chauhan, and Chittaranjan
Rout. “Role of Gist and PHOG Features in Computer-
Aided Diagnosis of Tuberculosis without Segmenta-
tion”. en. In: PLoS ONE 9.11 (Nov. 2014). Ed. by Hans
A. Kestler, e112980. issn: 1932-6203. doi: 10 . 1371 /
journal.pone.0112980. url: https://dx.plos.org/
10.1371/journal.pone.0112980.

[3] “Detection of Pulmonary Tuberculosis Manifestation
in Chest X-Rays using Different Convolutional Neural
Network (CNN) Models”. en. In: International Journal
of Engineering and Advanced Technology 9.1 (Oct. 2019),
pp. 2270–2275. issn: 2249-8958. doi: 10.35940/ijeat.
A2632.109119. url: https://www.ijeat.org/wp-
content/uploads/papers/v9i1/A2632109119.pdf.

[4] R. Dinesh Jackson Samuel and B. Rajesh Kanna.
“Tuberculosis (TB) detection system using deep neural
networks”. en. In: Neural Computing and Applications
31.5 (May 2019), pp. 1533–1545. issn: 0941-0643,
1433-3058. doi: 10.1007/s00521- 018- 3564- 4. url:
http://link.springer.com/10.1007/s00521-018-

3564-4.

[5] Linh T. Duong et al. “Detection of tuberculosis from
chest X-ray images: Boosting the performance with
vision transformer and transfer learning”. en. In: Expert
Systems with Applications 184 (Dec. 2021), p. 115519.
issn: 09574174. doi: 10.1016/j.eswa.2021.115519.
url: https://linkinghub.elsevier.com/retrieve/
pii/S0957417421009295.

[6] Andrew Howard et al. “Searching for MobileNetV3”.
In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). Seoul, Korea (South): IEEE, Oct.
2019, pp. 1314–1324. isbn: 9781728148038. doi: 10 .
1109/ICCV.2019.00140. url: https://ieeexplore.
ieee.org/document/9008835/.

13 EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

 11 2021 - 04 2022 | Volume 9 | Issue 30 | e4

https://doi.org/10.1186/s12859-019-2931-1
https://doi.org/10.1186/s12859-019-2931-1
https://doi.org/10.1371/journal.pone.0112980
https://doi.org/10.1371/journal.pone.0112980
https://dx.plos.org/10.1371/journal.pone.0112980
https://dx.plos.org/10.1371/journal.pone.0112980
https://doi.org/10.35940/ijeat.A2632.109119
https://doi.org/10.35940/ijeat.A2632.109119
https://www.ijeat.org/wp-content/uploads/papers/v9i1/A2632109119.pdf
https://www.ijeat.org/wp-content/uploads/papers/v9i1/A2632109119.pdf
https://doi.org/10.1007/s00521-018-3564-4
http://link.springer.com/10.1007/s00521-018-3564-4
http://link.springer.com/10.1007/s00521-018-3564-4
https://doi.org/10.1016/j.eswa.2021.115519
https://linkinghub.elsevier.com/retrieve/pii/S0957417421009295
https://linkinghub.elsevier.com/retrieve/pii/S0957417421009295
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://ieeexplore.ieee.org/document/9008835/
https://ieeexplore.ieee.org/document/9008835/


Truong-Minh Le, Vuong M. Ngo, Tat-Bao-Thien Nguyen

[7] Gao Huang et al. “Densely Connected Convolutional
Networks”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI:
IEEE, July 2017, pp. 2261–2269. isbn: 9781538604571.
doi: 10 . 1109 / CVPR . 2017 . 243. url: https : / /

ieeexplore.ieee.org/document/8099726/.

[8] Stefan Jaeger et al. “Two public chest X-ray datasets for
computer-aided screening of pulmonary diseases”. In:
Quantitative Imaging in Medicine and Surgery 4.6 (Dec.
2014), pp. 475–477. issn: 2223-4292. doi: 10.3978/j.
issn.2223- 4292.2014.11.20. url: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4256233/.

[9] Sonaal Kant and Muktabh Mayank Srivastava.
“Towards Automated Tuberculosis detection using
Deep Learning”. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). Bangalore, India:
IEEE, Nov. 2018, pp. 1250–1253. isbn: 9781538692769.
doi: 10 . 1109 / SSCI . 2018 . 8628800. url: https :

//ieeexplore.ieee.org/document/8628800/.

[10] T Karnkawinpong and Y Limpiyakorn. “Classification
of pulmonary tuberculosis lesion with convolutional
neural networks”. In: Journal of Physics: Conference
Series 1195 (Apr. 2019), p. 012007. issn: 1742-6588,
1742-6596. doi: 10.1088/1742-6596/1195/1/012007.
url: https://iopscience.iop.org/article/10.
1088/1742-6596/1195/1/012007.

[11] Tawansongsang Karnkawinpong and Yachai
Limpiyakorn. “Chest X-Ray Analysis of Tuberculosis
by Convolutional Neural Networks with Affine
Transforms”. en. In: Proceedings of the 2018 2nd
International Conference on Computer Science and
Artificial Intelligence - CSAI ’18. Shenzhen, China: ACM
Press, 2018, pp. 90–93. isbn: 9781450366069. doi:
10.1145/3297156.3297251. url: http://dl.acm.org/
citation.cfm?doid=3297156.3297251.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. “ImageNet classification with deep convolutional
neural networks”. en. In: Communications of the ACM
60.6 (May 2017), pp. 84–90. issn: 0001-0782, 1557-
7317. doi: 10.1145/3065386. url: https://dl.acm.
org/doi/10.1145/3065386.

[13] Paras Lakhani and Baskaran Sundaram. “Deep Learn-
ing at Chest Radiography: Automated Classification
of Pulmonary Tuberculosis by Using Convolutional
Neural Networks”. In: Radiology 284.2 (Aug. 2017),
pp. 574–582. issn: 0033-8419. doi: 10.1148/radiol.
2017162326. url: https://pubs.rsna.org/doi/10.
1148/radiol.2017162326.

[14] Luyao Ma et al. “Developing and verifying automatic
detection of active pulmonary tuberculosis from multi-
slice spiral CT images based on deep learning”. In:
Journal of X-Ray Science and Technology 28.5 (Sept.

2020), pp. 939–951. issn: 08953996, 10959114. doi: 10.
3233/XST- 200662. url: https://www.medra.org/
servlet/aliasResolver?alias=iospress&doi=10.

3233/XST-200662.
[15] Ilija Radosavovic et al. “Designing Network Design

Spaces”. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Seattle, WA,
USA: IEEE, June 2020, pp. 10425–10433. isbn:
9781728171685. doi: 10 . 1109 / CVPR42600 . 2020 .

01044. url: https : / / ieeexplore . ieee . org /

document/9156494/ (visited on 02/20/2022).

[16] Tawsifur Rahman et al. “Reliable Tuberculosis Detec-
tion Using Chest X-Ray With Deep Learning, Segmen-
tation and Visualization”. In: IEEE Access 8 (2020),
pp. 191586–191601. issn: 2169-3536. doi: 10 . 1109 /
ACCESS.2020.3031384. url: https://ieeexplore.
ieee.org/document/9224622/.

[17] Mohammad Imran Shah et al. “Ziehl–Neelsen sputum
smear microscopy image database: a resource to
facilitate automated bacilli detection for tuberculosis
diagnosis”. en. In: Journal of Medical Imaging 4.2 (June
2017), p. 027503. issn: 2329-4302. doi: 10.1117/1.
JMI . 4 . 2 . 027503. url: http : / / medicalimaging .
spiedigitallibrary.org/article.aspx?doi=10.

1117/1.JMI.4.2.027503.

[18] Manali Shaha and Meenakshi Pawar. “Transfer Learn-
ing for Image Classification”. In: 2018 Second Inter-
national Conference on Electronics, Communication and
Aerospace Technology (ICECA). Coimbatore: IEEE, Mar.
2018, pp. 656–660. isbn: 9781538609651. doi: 10 .

1109 / ICECA . 2018 . 8474802. url: https : / /

ieeexplore.ieee.org/document/8474802/.

[19] Karen Simonyan and Andrew Zisserman. “Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition”. In: International Conference on Learning Repre-
sentations. 2015.

[20] Christian Szegedy et al. “Going deeper with convolu-
tions”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Boston, MA, USA: IEEE,
June 2015, pp. 1–9. isbn: 9781467369640. doi: 10 .

1109/CVPR.2015.7298594. url: http://ieeexplore.
ieee.org/document/7298594/.

[21] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks”. en.
In: International Conference on Machine Learning. PMLR,
May 2019, pp. 6105–6114. url: http://proceedings.
mlr.press/v97/tan19a.html.

[22] World Health Organization. Global tuberculosis report
2021. en. Geneva: World Health Organization, 2021.
isbn: 9789240037021. url: https://apps.who.int/
iris/handle/10665/346387.

14 EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

 11 2021 - 04 2022 | Volume 9 | Issue 30 | e4

https://doi.org/10.1109/CVPR.2017.243
https://ieeexplore.ieee.org/document/8099726/
https://ieeexplore.ieee.org/document/8099726/
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/
https://doi.org/10.1109/SSCI.2018.8628800
https://ieeexplore.ieee.org/document/8628800/
https://ieeexplore.ieee.org/document/8628800/
https://doi.org/10.1088/1742-6596/1195/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/1195/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/1195/1/012007
https://doi.org/10.1145/3297156.3297251
http://dl.acm.org/citation.cfm?doid=3297156.3297251
http://dl.acm.org/citation.cfm?doid=3297156.3297251
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1148/radiol.2017162326
https://pubs.rsna.org/doi/10.1148/radiol.2017162326
https://pubs.rsna.org/doi/10.1148/radiol.2017162326
https://doi.org/10.3233/XST-200662
https://doi.org/10.3233/XST-200662
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/XST-200662
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/XST-200662
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/XST-200662
https://doi.org/10.1109/CVPR42600.2020.01044
https://doi.org/10.1109/CVPR42600.2020.01044
https://ieeexplore.ieee.org/document/9156494/
https://ieeexplore.ieee.org/document/9156494/
https://doi.org/10.1109/ACCESS.2020.3031384
https://doi.org/10.1109/ACCESS.2020.3031384
https://ieeexplore.ieee.org/document/9224622/
https://ieeexplore.ieee.org/document/9224622/
https://doi.org/10.1117/1.JMI.4.2.027503
https://doi.org/10.1117/1.JMI.4.2.027503
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.4.2.027503
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.4.2.027503
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.4.2.027503
https://doi.org/10.1109/ICECA.2018.8474802
https://doi.org/10.1109/ICECA.2018.8474802
https://ieeexplore.ieee.org/document/8474802/
https://ieeexplore.ieee.org/document/8474802/
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://ieeexplore.ieee.org/document/7298594/
http://ieeexplore.ieee.org/document/7298594/
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://apps.who.int/iris/handle/10665/346387
https://apps.who.int/iris/handle/10665/346387

	1 Introduction
	2 Related Works
	3 Proposed Methods
	3.1 Classification Problems
	3.2 Deep Neural Network Approaches
	3.3 Deep Learning Architectures
	a. VGG16
	b. EfficientNetB7
	c. MobileNetV3
	d. DenseNet121
	e. RegNet

	3.4 Early Stopping
	3.5 Neural Network layers

	4 Experimental Results
	4.1 Datasets
	a. Tuberculosis (TB) Chest X-ray Database
	b. Shenzhen Chest X-ray dataset
	c. Montgomery Chest X-ray dataset
	d. India Chest X-ray dataset

	4.2 Data Preparation
	4.3 Parameters Configuration
	4.4 Performance Evaluation Metrics
	Accuracy
	F1-score
	Confusion Matrix

	4.5 Experimental Results

	5 Further Discussion and Conclusion



