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Abstract

Anomaly detection is an important aspect of data mining, where the main objective is to identify anomalous
or unusual data from a given dataset. However, there is no formal categorization of application-specific
anomaly detection techniques for big data and this ignites a confusion for the data miners. In this paper, we
categorise anomaly detection techniques based on nearest neighbours, clustering and statistical approaches
and investigate the performance analysis of these techniques in critical infrastructure applications such as
SCADA systems. Extensive experimental analysis is conducted to compare representative algorithms from
each of the categories using seven benchmark datasets (both real and simulated) in SCADA systems. The
effectiveness of the representative algorithms is measured through a number of metrics. We highlighted the
set of algorithms that are the best performing for SCADA systems.
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1. Big Data Analysis in SCADA Systems

Supervisory Control and Data Acquisition (SCADA)
systems are widely used for monitoring and control
of Industrial Control System (ICS) of national critical
infrastructures, including the emerging energy system,
transportation system, gas and water systems, and so
on. Generally, ICS is comprised of Programmable Logic
Controllers (PLCs), Remote Terminal Units (RTUs)
with Intelligent Electronic Devices (IEDs), a telemetry
system, a Human Machine Interface (HMI) and a
supervisory (computer) system. In a SCADA based ICS,
communication infrastructures connect the supervisory
(computer) systems and the RTUs. The operational
process and requirements of SCADA systems, which
are used for industrial networks, have characteristics
distinct from enterprise networks. The primary
objective of a SCADA system is to control real-life
physical equipment and devices, e.g., an energy system
SCADA may be used for monitoring and control of the
generation plants. On the other hand, conventional
information based traffic network is used for data
processing and transfer [23]. As the primary objective
of the SCADA is different from the conventional
information network, the operational process and its
requirements vary significantly. Since the SCADA is
used to control critical infrastructures, the failure

severity is very high which requires a high level of
reliability. Moreover, the data acquisition, processing,
and transmission require real-time operation or atleast
near real-time operation. Besides, the data transferred
through the SCADA devices are both periodic and
aperiodic [23]. For example, in a SCADA based energy
transmission system, an RTU sends the information of
the voltages and currents of a node every few seconds
continually (which is periodic) and it also sends a
warning when the current exceeds the maximum
rating (which is aperiodic). It is also important to
ensure that the transmitted data is received without
losing any information within a specific time-frame. A
conventional information traffic network can withstand
even a high data loss but this is not the case for the
SCADA devices as the real-time physical process is
highly dependent on the data they receive. In Figure 1,
a brief overview of SCADA architecture is given. Next,
we briefly discuss the importance and significance of
Big Data analysis in a SCADA based ICS.

Typically, big data has three dimensional properties
(3V) that include volume, velocity and variety [28]. The
term ‘volume’ is related with the amount of data and
its dimensionality. ‘Velocity’ is the processing speed of
the data. The last property of big data, ‘variety’ refers
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Figure 1. An overview of SCADA Architecture

to the mix of different types of data. Now, we discuss
the essence of big data analysis in a SCADA network
considering the 3V properties of big data.

Generally, a SCADA system is dispersed across a
large geographic area and is combined of multiple
independent systems [23]. Hence, lots of sensor devices
and actuators are used to monitor and control of this
wide spread large networks. Therefore, the amount of
data received in a SCADA is also huge which makes
the data analysis a challenging issue. Moreover, the
recent trend of using Ethernet and web standards
combined with traditional SCADA standards has
shifted the SCADA paradigm from event-driven to
process-driven, enabling the control of SCADA devices
under streaming information exchange. Besides,
significant amount of monitoring devices are used
to ensure the observability of the processes. All of
these technological advancements have provided an
improved control performance of the SCADA system;
however, big data issue has been emerged with the
increased volume of information used in a SCADA

network [28].

The second property of the Big data is the ‘velocity’
at which the data is processed. In a SCADA system,
this property is very crucial as the time requirement
of SCADA data exchange is real-time or near real-
time. Therefore, those applications which need faster
processing, big data is a critical factor and needs
significant attention. Even applications which are
based on post-event analyses face noticeable challenge
to handle the huge amount of data from a SCADA
network. Therefore, improved and robust techniques,
which are capable of handling big data within sufficient
time frame, will add extra value to manage the SCADA
network more efficiently and reliably.

In a SCADA system, field devices are responsible
to collect different types of data for monitoring a
physical system. Therefore, data received from ‘variety’
of sources also make the processing very challenging.
As a result, the big data issues need to be addressed
as all 3V properties of big data is observed in the data
received from the SCADA system.

Based on this scenario, performance analysis of
anomaly detection techniques is a research require-
ment. Recently, a number of approaches have been
proposed for big data analysis [4–10]. However, for
SCADA systems, we are the pioneer to investigate the
anomaly detection techniques in big data perspective.
Our contribution in this paper are the following:

• We categorize the anomaly detection techniques
based on nearest neighbour, clustering and
statistics.

• Representative algorithms in each category are
applied on benchmark SCADA systems datasets.

• We evaluate the performance of the algorithms
using a number of metrics such as accuracy, false
positive rate, hit rate, F-measure andMCC.

• Finally, we highlight the set of techniques that are
efficient for big data analysis.

Rest of the papers are organized as follows. Section
2 provides fundamental aspects of anomaly detection
and a taxonomy. Section 3 contains the discussion
on the different categories of anomaly detection
algorithms. Section 4 discusses the proposed criterion
to benchmark anomaly detection algorithms and their
merits/demerits. Section 5 provides the experimental
results and detailed discussion on the performance
comparison. We conclude our paper in section 6.
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Figure 2. A simple taxonomy of anomaly

2. Anomaly Detection Fundamentals

Anomaly detection is an important data analysis task.
The main objective of anomaly detection is to detect
anomalous or abnormal data from a given dataset.
This is an interesting area of data mining research as
it involves discovering new and rare patterns from a
dataset. Anomaly detection has been widely studied
in statistics and machine learning. It is also known as
outlier detection, novelty detection, deviation detection
and exception mining [1]. Based on the characteristics
of data instances, anomalies are grouped into three
categories (Figure 2). These are discussed below:

• Point Anomaly: When a particular data instance
deviates from the normal pattern of the dataset,
it can be considered as a point anomaly. For a
familiar example, we can consider expenditure
on electricity bills. If the usual bill per month is
about 100 dollars, and if for one month it is 500
dollars then obviously it is a point anomaly [3].

• Contextual Anomaly: When a data instance is
anomalous in a particular context, but not in
other times, then it is termed a contextual
anomaly, or conditional anomaly. For example,
the expenditure on credit card during a festive
period, e.g., Christmas or New Year, is usually
higher than the rest of the year. Although, the
expenditure during a festive month can be high,
it may not be anomalous due to the expenses
being contextually normal in nature. On the other
hand, an equally high expense during a non-
festive month could be considered as a contextual
anomaly.

• Collective Anomaly: Collective anomaly is a
pattern in the data when a group of similar data
instances behave anomalously with respect to the
entire dataset. It might happen that the individual
data instance is not an anomaly by itself, but
due to its presence in a collection it is identified
as an anomaly. For example, a denial of service
attack can be considered as a group of network
traffic instances affecting the network as well as
collective anomaly [2, 24].

One important issue in anomaly detection is how the
anomalies are represented as output. Generally there
are two categories:

• Scores: Scoring based anomaly detection tech-
niques assign a score to each of the data instances.
Then the scores are ranked and analyst used to
choose the anomalies or use a threshold to select.

• Binary: According to these techniques, outputs
are considered in binary fashion, i.e. either
anomaly or not. Techniques which provide binary
labels are computationally efficient since each of
the data instances do not have to provide scores.

3. Anomaly Detection Techniques

In this section, we discuss the anomaly detection
techniques covered in the scope of this paper. There are
various kinds of anomaly detection techniques based on
different theories [1, 25]. In this paper, we classify the
anomaly detection techniques in two major categories.
These are the following:

• Supervised Learning: It is the machine learning
task of inferring a function from labelled training
data [39]. The training data consist of a set of
training examples. In supervised learning, the
training examples consist of an input object and
a desired output value. A supervised learning
algorithm learns from the training data and
creates a knowledge base which can be used for
mapping new and unseen data.

• Unsupervised Learning: It tries to find hidden
structure in unlabelled data, which distinguishes
unsupervised learning from supervised learn-
ing [44]. For example, clustering can be consid-
ered as unsupervised learning algorithms, where
pre-labelled data is not necessary [48].

Supervised learning algorithms require pre-labelled
data. Labelled data are rare and difficult to find.
However, when pre-labelled data is available, the
unseen data cannot be mapped which are not present
in the labelled data, such as zero day attacks in
the intrusion detection domain [24]. Inspired by this
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Figure 3. Taxonomy of Anomaly Detection Techniques

Figure 4. How k-NN works

fact, we emphasize unsupervised anomaly detection
algorithms based on nearest neighbours, clustering
and statistical approaches. Figure 3 shows a simple
taxonomy for anomaly detection in the scope of
this paper. The terms anomaly and outlier are used
interchangeably throughout the paper.

3.1. Nearest Neighbor (NN) based Anomaly
Detection and Related Works

The concept of nearest neighbor has been widely
used in several anomaly detection techniques. The
key assumption used in this scenario is ‘Normal data
instances stay in a dense neighborhoods and the anomalies
stay far away from their neighbors’ [20]. Next, we present
a couple of anomaly detection techniques [1] based on
this idea. Figure 4 shows a simple example of k-NN
method. The corresponding algorithm is shown in
Algorithm 1.

Knorr et al [20] presented an algorithm to detect
distance-based outliers. They consider a data point O
in a dataset T a DB(p;D)-outlier if at least a fraction
p of the data points in T lies greater than distance D
from O. Their index-based algorithm executes a range
search with radius D for each data point. If the number
of data points in itsD-neighborhood exceeds a threshold,
the search stops and that data point is declared as

Algorithm 1: Basic k-NN Algorithm
Input: D = { (x1,c1),....,(xN ,cN )}
x = (x1,....,xN ) new instance to be classified.
Begin
for each labelled instance (xi ,ci )
Calculate d(xi ,x), the distance from xi to x
Order d(xi ,x) from lowest to highest, (i=1,.....,N)

Let Dk
x be the k-nearest instances to x

Label x by the most frequent label in Dk
x

end
End

a non-outlier, otherwise it is an outlier. This concept
was further extended by Ramaswamy et al [11] where
the anomaly score is based on the k-nearest neighbor
implementation.
Ramaswamy et al [11] provided outlier definition based
on the distance of a point from its kth nearest neighbor.
They provided a ranking of top-n outliers by the
measure of the outlierness of the points. According
to them, top-n points with the maximum distance
to their own kth nearest neighbor are considered as
outliers. They also exploited index-based and nested-
loop algorithms to detect outliers. Furthermore, they
proposed a partition-based algorithm to prune and
process the partitioned groups to improve efficiency for
outlier detection. Their algorithm reduces the cost of
computation in large, multidimensional data sets.
Breunig et al [21] proposed to assign each object
a degree of being outlier. This degree is called the
Local Outlier Factor (LOF). LOF depends on how
isolated the object is with respect to the surrounding
neighbourhood. The local outlier factor of an object p is
calculated using the equation (2), where MinPts defines
the minimum number of points as a notion of density
and lrd is the local reachability density (1). (For more
details on the mathematical terms please see [21].
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reach − distk(p, o) = {k − distance(o), d(p, o)} (1)

LOFMinPts(p) =

∑

oǫNMinPts(p)
lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|
(2)

This outlier factor of object p calculates the degree to
which p can be called as outlier. The outlier factor is
the average of the ratio of the local reachability density
(lrd) of p and those of p’s MinPts-nearest neighbours.
The author also described mathematically the LOF for
objects deep in a cluster along with general bounds
(upper, lower, and tight). The Theorem 1 depicts a
general upper and lower bound on LOF(p) for any data
object p. For the theorem, following terms are necessary.

• directmin(p) = min{reach-dist(p,q)|r∈NMinPts(p)}

• directmax(p) = max{reach-dist(p,q)|r∈NMinPts(p)}

• indirectmin(p) = min{reach-dist(q,o)|q∈NMinPts(p) and
o∈NMinPts(q)}

• indirectmax(p) = max{reach-dist(q,o)|q∈NMinPts(p) and
o∈NMinPts(q)}

Theorem 1: When p is a data object from the
dataset D and 1 ≤ MinPts ≤ |D|. Then the LOF(p) can
be represented by equation (3) [21].

directmin(p)

indirectmax(p)
≤ LOF(p) ≤ directmax(p)

indirectmin(p)
(3)

Proof:

Left hand side:
directmin (p)

indirectmax (p)
≤ LOF(p). Following the

terms defined above,

LOF(p) =

∑

o∈NMinPts (p)
lrd(o)
lrd(p)

|NMinPts (p)|
≥

∑

o∈NMinPts (p)

1
indirectmax (p)

1
directmin (p)

|NMinPts (p)|
=

directmin (p)

indirectmax (p)
(4)

Right hand side: LOF(p) ≤ directmax (p)
indirectmin (p)

: analogously

proved.
Jin et al [36] proposed an approach for mining only

top-n local outliers because the LOF [21] values for
every data object require a large number of k-nearest
neighbour searches and can be very computationally
expensive. They proposed an efficient microcluster-
based local outlier mining algorithm to find the top-
n local outliers in a large database. A microcluster
MC (n, c, and r) is a summarized representation of a
group of data p1, , pn, which are so close together that
they are likely to belong to the same cluster. Here,

c =
∑n

i=1 pi
n , is the mean center while r = max(d(pi ,c)),

i = 1,...,n, is the radius. Data are compressed into
small clusters, and small clusters are represented using

some statistical information as microclusters. Three
different algorithms are combined to find top-n local
outliers. First, k-distance bounds for each microcluster
are computed. Then using these k-distance bounds,
the LOF bounds are calculated. Finally, given an
upper bound and a lower bound for the LOF of each
microcluster, top-n local outliers are ranked.
He et al [26] introduced a new definition for outlier,
the semantic outlier. A semantic outlier is a data point
that behaves differently from the other data points in
the same class. A measure for identifying the degree
of each object being an outlier is presented, which
is called the semantic outlier factor (SOF). To mine
semantic outliers, an algorithm is also proposed. They
used a SQUEEZER algorithm, which is used to produce
good clusters for categorical datasets, and then used
their algorithm to calculate the SOF value for each of
the objects. Their proposed outlier definition works by
identifying the similarity between a specific set and a
record. Given a set of records R and a record t, the
similarity between R and t is defined as follows:

Sim(t, R) =

∑|R|
i=1 similarity(t, ti )

|R| where ∀ ti ∈ R (5)

The semantic outlier factor of a record t is defined as
in equation (6).

SOF(t) =
pr(cli |CK ) ∗ Sim(t, R)

pr(cli |D)
(6)

Spiros et al [33] introduced local correlation integral
(LOCI) for evaluating outlierness, which is very
efficient in detecting outliers and groups of outliers.
The main advantage of this approach is an automatic
data-dictated cut-off to determine whether a point is an
outlier. They introduced the multigranularity deviation
factor (MDEF), which at radius r for a point pi is the
relative deviation of its local neighborhood density
from the average local neighborhood density in its
neighborhood.

Zhange et al [17] proposed a new outlier detection
definition, local distance-based outlier factor (LDOF),
which is sensitive to outliers in scattered datasets
(Figure 5). LDOF uses the relative distances from an
object to its neighborhood to measure howmuch objects
deviate from their scattered neighborhood. The higher
the violation degree an object has, the more likely the
object is an outlier. The local distance-based outlier

factor of pi is defined in equation (7) where dpi the k-

nearest neighbors are the distance of object pi and Dpi is
the k-nearest neighbor inner distance of pi .

LDOFk(pi ) =
dpi

Dpi

(7)
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Figure 5. The explicit outlierness of object pi with the help of
LDOF definition. A is the center of the neighborhood system of
pi . The dashed circle includes all neighbors of pi . The solid circle
is reformed neighborhood region of pi . Adapted from [1]

Kriegel et al [47] formulated a local density-based
outlier detection method providing an outlier score in
the range of [0,1] that is directly interpretable as a
probability of a data object for being an outlier. The
probabilistic local outlier factor (PLOF) of an object
o ∈ D w.r.t. a significance λ and a context set S(o),
can be defined as follows in equation (8). To achieve a
normalization making the scaling of PLOF independent
of the particular data distribution, the aggregate value
nPLOF (9) is obtained during PLOF computation.

PLOFλ,S (o) =
pdist(λ, o, S(o))

Es∈S(o)[pdist(λ, s, S(s))]
(8)

nPLOF = λ.

√

E[(PLOF)2] (9)

Finally, Local outlier probability (LoOP) (10), indicat-
ing the probability that a point o∈D is an outlier. In
equation (10) erf is the Gaussian error function.

LoOPs(o) = max

{

0, erf

(

PLOFλ,S (o)

nPLOF.
√
2

)}

(10)

3.2. Clustering based Anomaly Detection
and Related Works

As discussed earlier that anomaly deviates from the
regular characteristics of the data. Consequently, the
goal of clustering is to group together similar data and
it is used to detect anomalous patterns in a dataset [40].
There are three key assumptions when using clustering
to detect anomalies [24]:

1. Assumption 1: Once the clusters are created, any
new data that do not fit well with existing clusters
of normal data are considered as anomalous. For
example, if we consider density based clustering
algorithms [48] such as DBSCAN, we find that

it does not include noise inside the clusters.
As a result, noise is considered anomalous. For
example, in the Figure 6, C1 and C2 are clusters
containing normal instances and A1, A2 are
anomalies.

C1

C2

A2

A1

Figure 6. Example of anomaly based on assumption 1

C1

C2

Anomaly

Normal

Figure 7. Example of anomaly based on assumption 2

2. Assumption 2: In some cases, a cluster contains
both normal and anomalous data. It is expected
that normal data lie close to the nearest cluster
centroid and anomalies are far away from the
centroids (Figure 7). Based on this assumption,
anomalies are detected using a distance score.
In [40], the authors considered an outlier
according to distance of a data instance from
the centroid. If the distance is a fixed multiple
of mean distances of all other data points from
the centroid then it is considered as an outlier.
Formally, ‘an object in a set of data is an outlier if
the distance between the object and the centroid of
the dataset is greater than multi times the mean of
the distances between centroid and other objects in
the dataset’ [40]. They also showed that removing
outliers from clusters can significantly improve
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clustering objective function.
Svetlona et al [41] presented an outlier removal
clustering algorithm (ORC) that provides outlier
detection and data clustering simultaneously.
Their proposed algorithm has two stages. First,
the k-means clustering is applied and then
outlyingness factor oi for each of the data points,
pi is calculated by taking the ratio of a point’s
distance to the centroid C and the maximum
distance, dmax from the centroid to any other
point, stated in equation (11). If outlying factor
for any point is greater than a threshold T,
it is considered as an outlier and removed
from dataset. Their experimental data includes
synthetic data and some map images. Mean
Absolute Error (MAE) is used to evaluate their
algorithm performance.

oi =
‖pi − C‖
dmax

(11)

Figure 8. Anomalous clusters C1,C3; adapted from [22]

3. Assumption 3: In this scenario, it is assumed that
in a dataset normal data objects are significantly
high in volume than the anomalies. As a result,
after clustering the dataset, smaller and sparser
clusters are considered as anomalous and thicker
clusters are normal. The instances belonging to
clusters whose size and/or density is below a
threshold are considered anomalous.
He et al [22] proposed a definition for cluster
based local anomalies. According to their defini-
tion, all the data points in a certain cluster are con-
sidered as anomalies rather than a single point, as
shown in Figure 8. The clustersC1 andC3 are con-
sidered as anomalous. They used some numeric
parameters, i.e. α, β to identify Small Cluster (SC)
and Large Cluster (LC). The clustering technique
depends on these parameters but it is not clear

Algorithm 2: CBLOF Algorithm
Input: Dataset, D
The Parameters, α, β
Output: CBLOF score

Begin
Cluster the Dataset, D
Clusters: C={C1, C2, .., Ck} and |C1| ≥ |C2| ≥ ... ≥ |Ck |
Calculate LC and SC with the α, β
Let Ci be the cluster containing t

if Ci∈SC do

CBLOF = |Ci |* min
{

d(t, Cj )|Cj ∈ LC
}

else
CBLOF = |Ci | ∗ d(t, Ci )

End

how the values can be determined for various
datasets. They used the SQUEEZER algorithm
to cluster data, as it achieves both high quality
of clustering and can handle high dimensional
data. Then the FindCBLOF algorithm determines
outlier factor of each individual record in dataset
(shown inAlgorithm 2). CBLOF(t) for each record
t is calculated following equation (12):

CBLOF(t) =



























|Ci | ∗min(d(t, Cj )) where t ∈ Ci , Ci ∈ SC
and Cj ∈ LC f or j = 1 to b

|Ci | ∗ (d(t, Ci )) where t ∈ Ci
and Ci ∈ LC

(12)

Amer et al [14] introduced Local Density Cluster-
Based Outlier Factor (LDCOF) which can be
considered as a variant of CBLOF [22]. The
LDCOF score (16) is calculated as the distance to
the nearest large cluster divided by the average
distance to the cluster center of the elements in
that large cluster. LDCOF score will be A when p
∈ Ci ∈SC where Cj ∈LC and B when p∈ Ci ∈LC.

distanceavg(C) =

∑

i∈C d(i, C)

|C | (13)

A =
min(d(p, Cj ))

distanceavg(Cj )
(14)

B =
d(p, Ci )

distanceavg(Ci )
(15)

LDCOF(p) = A | B; (16)

Jiang et al [34] presented a two-phase clustering
technique to detect outliers. First, they used a
modified k-means algorithm to create clusters.
If the points in the same cluster are not close
enough, the cluster can be split into two smaller
clusters and merged when a given threshold
exceeds. In the second step, they construct a
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Figure 9. Concept of statistical anomaly detection, adapted from
Internet

minimum spanning tree with the cluster centres
and remove the longest edge. The smaller sub
trees are considered outliers. Their technique
considers an entire cluster as an outlier, which
may not be applicable for many datasets and may
increase False Positive rate.
Cluster Based Outlier Detection (CBOD) [37] is
another technique which consists of two stages. In
the first stage, it generates clusters from a given
dataset and in the second stage it computes outlier
factor as the weighted sum of distances between
a particular cluster and rest of the clusters. The
outlier factor of cluster Ci , OF(Ci ) is defined as the
weighted sum of distances between cluster Ci and
the rest of the clusters. The outlier factor OF(Ci )
measures the outlier degree of cluster, the bigger
the value is, the bigger the possibility of being an
outlier cluster.

OF(Ci ) = Σj,i(Cj ) ∗ d(Ci , Cj ) (17)

Minimum b clusters which satisfy the criteria as
follows are labelled as outlier clusters. They used
detection rate and false alarm rate to measure
performance.

3.3. Statistical based Anomaly Detection
and Related Works

The statistical approaches discussed here are
considered as the first generation techniques for
anomaly detection. Figure 9 portrays the the most
commonly used µ ± 3σ rule for detecting anomalous
data. A normally distributed data follows a bell
curve and can be mathematically represented in
equation (18). Here, µ stands for the mean or average, σ
is the standard deviation and σ2 is the variance. When

the µ=0 and σ = 1, the distribution is called standard
normal distribution. The data with values greater than
µ + 3σ or less than µ − 3σ is considered anomalous.

f (x, µ, σ) =
1

σ
√
2π

e
− (x−µ)2

2σ2 (18)

These techniques are also named as model-based
techniques. Models are based on probability distribu-
tion of the data and anomalies are detected as how well
the data fit into the model. Statistical based approaches
are categorized into two groups depending on probabil-
ity distribution as follows:

• Parametric Approaches: In these approaches the
probability distribution of the data is known
(supervised). Then, using the distribution param-
eters, anomalies are detected. A point is an
anomaly if it deviates significantly from the data
model. However in many situations prior knowl-
edge of distribution is not possible to attain. As a
result, supervised learning techniques are not pre-
ferred over the unsupervised learning techniques
instead of having less accuracy.
Wu et al [30] proposed two algorithms for out-
lying sensors and event boundary detection. The
basic idea of outlying sensor detection is as such,
each sensor first computes the difference between
its reading and the median of the neighboring
readings. Each sensor then collects all differences
from its neighborhood and standardizes them. A
sensor is an outlier if the absolute value of its
standardized difference is sufficiently large. The
algorithm for event boundary detection is based
on the outlying sensor detection algorithm. For an
event sensor, there often exist two regions, with
each containing the sensor, such that the absolute
value of the difference between the reading of
the sensor and the median reading from all other
sensors in one region is much larger than that in
another region. These approaches are not effective
because they do not consider the temporal corre-
lation of sensor readings [1].
Bettencourt et al [29] proposed an anomaly
detection technique to identify anomalous events
and errors in ecological applications of dis-
tributed sensor networks. This method uses
spatio-temporal correlation of sensor data to dis-
tinguish erroneous measurements and events. A
measurement is considered anomalous when its
value in the statistical significance test is less
than user specified threshold. The disadvantage of
this approach is dependence on the user specified
threshold [1].
Jun et al [31] presents a statistical based approach,
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which uses alpha-stable distribution. The pro-
posed algorithm consists of collaborative time-
series estimation, variogram application and prin-
ciple component analysis (PCA). Each node
detects any temporally abnormal data and trans-
mits the verified data to a local cluster-head,
which detects any survived spatial outlier and
determines the faulty sensors accordingly. Their
approach achieves 94% accuracy when the noise
level is alpha = 0.9. Although alpha-stable distri-
bution might be considered for real sensor data
and cluster based structure may be susceptible to
dynamic changes of network topology [1].

• Non Parametric Approaches: These approaches
have no knowledge about the underlying data
distribution like unsupervised learning methods.
A distance measure is used to identify anomalies
in this scenario. Anomalies are those points
which are distant from their own neighborhood
in a dataset. Various detection techniques are
available with a wide range of parameters.
They resemble anomaly detection using clustering
based assumption 2. Parametric methods are
not flexible enough like non-parametric methods
but due to dimensionality and computational
complexity the efficiency might deteriorate in
some cases. There are two widely used approaches
in this category are discussed as follows-

– Histogramming: This model counts the
frequency of occurrence of different data
instances and compares the test instance
with each of histogram categories to test
whether it belongs to any of them [18].
Sheng et al [32] proposed a histogram-
based technique for anomaly detection
to reduce communication cost for data
collection applications of sensor networks.
Rather than collecting all the data in
one location for centralized processing,
they propose collecting hints about the
data distribution and using the hints to
filter out unnecessary data and identify
potential anomalies. Main drawbacks of this
technique are communication overhead and
one dimensional data [1].

– Kernel Function: This function is used
to estimate the probability distribution
function (pdf) of the normal instances. Data
instances which lie in the low probability
area of pdf are declared as anomalies.
Palapans et al [15] proposed a technique
for online deviation detection in streaming
data. They discussed how their technique
can be operated efficiently in the distributed

environment of a sensor network. In the
sensor data, a value is considered as an
anomaly if the number of values being
in its neighborhood is less than a user
specified threshold. This technique can also
be implemented for identification for of
anomalies in a more global perspective [1].

4. Criteria for Benchmarking Anomaly
Detection Algorithms

This section provides a discussion on the key aspects
to evaluate anomaly detection algorithms in terms
of big data. We propose the following points to be
considered while selecting the benchmark anomaly
detection techniques in SCADA systems:

• Size of the Data (Volume): Size is an important
factor for anomaly detection algorithms. More
importantly, in case of big data, it is a crucial
parameter to measure the efficiency of the
anomaly detection algorithm. Some anomaly
detection technique might work well on small
dataset but perform poorly on big data and vice-
versa!

• Dimensionality: It is closely related with the
computing efficiency of any data mining tech-
niques. It is quite common that big data has
high dimensionality and as the dimensionality
increases the data become sparse. As a result sim-
ilarity/dissimilarity calculation at this situation is
challenging.

• Type of Data: Handling identical data type and
mixed type is completely different. For example,
handling only numerical data for anomaly
detection is more computationally efficient than
dataset with numerical, categorical and binary
type of data. Also, in case of big data, it is an
important issue to consider the efficiency of the
anomaly detection.

• Velocity: This criterion deals with complexity of
the anomaly detection algorithms.

• Input Parameter: Selecting the best possible
parameters for any algorithm is a challenge.
It is more challenging when input parameters
required for big data. A non-optimal value of
input parameter causes computational burden.
Also more the number of input parameters more
it gets complex. In unsupervised fashion, it is also
a challenge to provide the best parameter values
to the anomaly detection techniques. So, less is
better in this case.

In Table 1, we showcase the characteristics of
anomaly detection algorithms based on the criterion
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Table 1. Characteristics of anomaly detection algorithms

Category Size Dimensionality Variety Velocity Input Parameters
NN Large High Yes High ≥ 2

Clustering Large Low and High Yes Medium ≥ 2
Statistical Large High Yes High ≥ 1

discussed above. It is evident that each category has
the ability to handle a large volume of data. However,
clustering based techniques have greater computational
complexity than the others. Also, statistical techniques
are better in terms of selection of input parameters.

4.1. Strength and Weakness

We highlight the merits and demerits of the anomaly
detection techniques discussed in Section 3.

Nearest Neighbour Techniques: The main advantage
of nearest neighbour based techniques is
their unsupervised characteristics. However,
when anomalies have a large number of close
neighbours, it is not possible to identify them
correctly. Also, the distance computation requires
significant computation and it becomes more
complex when the data has mixed type of data
such as numerical, categorical, binary etc.

Clustering Techniques: The techniques used to detect
anomalies in binary fashion are computationally
efficient irrespective of the clustering algorithm
since each object in dataset is not required
to assign an outlying factor like scoring based
output. The top-N anomaly concept is absent in
these techniques and hence are unsupervised. The
main drawback of these techniques is inaccuracy
of detecting all the rare class instances. Since not
all the data objects are taken into consideration for
being outlier, many of them might be missing and
normal instances may be detected as anomalies.
The scoring based techniques have the maximum
effectiveness in detecting anomaly accurately
since all the objects are under consideration as
candidate anomalies. But the loophole of these
techniques is computational cost. Since all the
objects are taken under consideration to assign
outlyingness factor.Top-N anomalies must have to
be specified by data analyst and thus the approach
becomes supervised.

Statistical Techniques: Statistical approaches come
with strong mathematical background to detect
anomalies. But parametric approaches are not
feasible when the prior knowledge on the data
distribution is not available and hence quite
useless in many aspects. In comparison, non-
parametric methods are quite useful since the

data distribution knowledge is not required.
However, these methods might have high
computational complexity for high dimensional
datasets. Also user-defined parameters are not
easy to set.

Table 2. Characteristics of the SCADA datasets

Dataset Normal Anomaly

Urban Waster Water
Treatment Plant (WTP)

97.5% 2.5%

Single-hop Indoor (SI) 97.35% 2.65%

Single-hop Outdoor (SO) 99.37% 0.63%

Simulated-Data1 (Sim1) 99.02% 0.98%

Simulated-Data2 (Sim2) 99.05% 0.95%

Multi-hop Indoor (MI) 97.86% 2.14%

Multi-hop Outdoor (MO) 98.76% 1.24%

5. Experimental Evaluation on SCADA
Systems Big Data

This section starts with a brief discussion on the
datasets used. Then we discuss about the evaluation
metrics used in the paper. Finally, we showcase the
evaluation results showing in figures and tables.

5.1. SCADA Datasets used in this paper

Table 2 contains the description of the characteristics
of some of the common SCADA datasets widely
used [28]. Figure 10 displays a simple taxonomy of
anomalous scenarios in SCADA systems. There are
three major categories of anomalies based on the
datasets used in this paper. The real anomalies are
from water treatment plant. The simulated anomalies
are designed by computer software. In real sensor
nodes, the anomalies are injected by creating changes
in temperature.

The real anomalies in the WTP dataset [35] are
caused by the inclement weather. It contains data of
the daily measures of sensors in a urban waste water
treatment plant. Solid overload caused by stormy
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Figure 10. Taxonomy of anomaly in SCADA systems

weather are considered anomalous data in the system.

The simulated anomalies in the Sim1 and Sim2
contain man-in-the-middle attacks [38]. Here a water
distribution system is simulated using the EPANET
library [46]. Anomalies were created using the man-in-
the-middle attacks. In this scenario, water pumps were
turned off when the reserve in the tanks are low.

In the single-hop, multi-hop (indoor and outdoor)
datasets, anomalies are injected [45]. For the single-
hop scenario, two indoor and two outdoor sensor nodes
are used to collect the temperature and humidity
data for six hours. Anomalies are introduced by using
a kettle of hot water at one of the sensors. The
simultaneous raise in the temperature and humidity is
considered anomalous in this scenario. In the multi-hop
situation, multi-hop routing is used to create a larger
sensor network. Like single-hop datasets, anomalies are
introduced using the hot water at the temperature and
humidity sensors.

5.2. Evaluation Measures

We measure the performance of the anomaly detection
algorithms using the standard evaluation criteria [1].
These are briefly discussed here. All of them share some
common concept of confusion matrix. The 2 × 2 matrix
contains the number of True Positive (TP), False Positive
(FP), True Negative (TN), False negative (FN). Table 3
displays the confusion matrix.

TP: No. of anomalies correctly identified as anomalous.

FP: No. of normal data incorrectly identified as
anomalous.

TN: No. of normal data correctly identified as normal.

FN: No. of anomalies incorrectly identified as normal.

Listed below are the five evaluation measures based
on confusion matrix.

• Accuracy - The accuracy is computed using
equation (19).

Table 3. Standard confusion metrics for evaluation of anomaly
detection algorithm

Label Normal Anomaly

Normal TN FP

Anomaly FN TP

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

• FPR - False Positive Rate also named as FPR
is another metric which is the proportion of
non-relevant data that are retrieved, out of all
non-relevant data available. The lower the value
is better the anomaly detection technique is.
Equation (20) shows the way to calculate FPR.

FPR =
FP

FP + TN
(20)

• Recall - Recall is the fraction of the data that
are relevant to the query that are successfully
retrieved. In the case of anomaly detection, recall
is also known as TPR, Hit Rate, can be calculated
using (21).

Recall =
TP

TP + FN
(21)

• F-1 - F-1 score is the harmonic mean of precision
(TP/TP + FP) and recall. Equation (22) shows the
way to calculate F-1.

F-1 =
2TP

2TP + FP + FN
(22)

• MCC - The Matthews correlation coefficient is a
popular measure in machine learning to identify
the quality of binary (two-class) classifications.
It considers the true and false positives and
negatives for calculating the measure. The MCC
provides a value between -1 and +1. A MCC
score of +1 represents a perfect anticipation and
-1 indicates complete opposite scenario between
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observation and prediction (23).

MCC =
(TP ∗ TN ) − (FP ∗ FN )

√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
(23)

Last but not least, we also consider the run time
(in seconds) as an important evaluation criteria for
anomaly detection algorithms.

5.3. Experimental Results

This section contains the performance analysis of
anomaly detection techniques based on the evaluation
measures discussed in the previous section. For
simplicity, we scale all the metrics between 0 and ±100.
The representative algorithms are the following and
standard values are considered for the input parameters
for all the techniques:

• Nearest Neighbour:

– k-NN: Each data instance is given score
for being anomalous based on the average
distance to the nearest neighbours [11].

– LOF: LOF provides anomaly score to the data
instances based on the local density of the
data points [21].

– COF: The connectivity based outlier factor
is a modification of the LOF approach
which can handle outliers deviating from
low density patterns [43]

– aLOCI: Calculates the outlier score based on
local correlation integral [33].

– LoOP: The LoOP score represents the
probability that the object is a local density
outlier [47].

– INFLO: Calculates the outlier score based
on Influenced outlierness, proposed by Jin et
al [19].

• Clustering:

– CBLOF: CBLOF creates clusters from the
given dataset and then it categorizes the
clusters into small clusters and large clusters
using the parameters α and β. The anomaly
score is then calculated based on the size
of the cluster the point belongs to as well
as the distance to the nearest large cluster
centroid [22].

– LDCOF: This local density based anomaly
detection algorithm sets the anomaly score
based on the distance to the nearest large
cluster divided by the average cluster
distance of the large cluster [14].

– CMGOS: This method calculates the
anomaly score based on a clustering result.
The outlier score of an instance is dependent
on the probability of how likely its distance
to the cluster center is [14].

• Statistical:

– HBOS: Calculates an outlier score by creat-
ing an histogram with a fixed or a dynamic
binwidth [18].

– LIBSVM: Computes the outlier score using
one-class SVMs [42]. This operator extends
the semi-supervised one-class SVM such that
it can be used for unsupervised anomaly
detection.

Table 4. Performance of Anomaly Detection Techniques on Real
SCADA Dataset (WTP: Water Treatment Plant)

Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 85.71 0.38 97.39 85.71 85.32 ≤1
LOF 78.57 0.58 97.38 78.57 77.98 ≤1
COF 57.14 1.16 97.35 57.14 55.97 ≤1
aLOCI 85.71 0.38 97.39 85.71 85.32 ≤69
LoOP 42.85 1.55 97.33 42.85 41.29 ≤1
INFLO 57.14 1.16 97.35 57.14 55.97 ≤1
CBLOF 92.85 0.19 97.40 92.85 92.66 ≤1
LDCOF 85.71 0.38 97.39 85.71 85.32 ≤1
CMGOS 57.14 1.16 97.35 57.14 55.97 ≤1
HBOS 28.57 1.94 97.32 28.57 26.62 ≤1

LIBSVM 85.71 0.38 97.39 85.71 85.32 ≤1

Table 5. Performance of Anomaly Detection Techniques on
Simulated SCADA Datasets

Results on Sim1 Dataset
Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 64.70 0.34 99.03 64.70 64.35 ≤4
LOF 0 0.98 99.01 0 -0.98 ≤4
COF 0 0.98 99.01 0 -0.98 ≤5
aLOCI 0 0.98 99.01 0 -0.98 ≤10
LoOP 0.98 0.97 99.01 0.98 0.009 ≤4
INFLO 0 0.98 99.01 0 -0.98 ≤3.5
CBLOF 0 0.98 99.01 0 -0.98 ≤2
LDCOF 0 0.98 99.01 0 -0.98 ≤2
CMGOS 18.62 0.79 99.02 18.62 17.82 ≤2
HBOS 30.39 0.682757957 99.02 30.39 29.70 ≤2

LIBSVM 74.50 0.25 99.03 74.50 74.25 ≤322
Results on Sim2 Dataset

Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 63 0.35 99.05 63 62.64 ≤3
LOF 0 0.96 99.03 0 -0.96 ≤4
COF 2 0.94 99.03 2 1.05 ≤3
aLOCI 0 0.96 99.03 0 -0.96 ≤23
LoOP 0 0.96 99.03 0 -0.96 ≤4
INFLO 0 0.96 99.03 0 -0.96 ≤4
CBLOF 0 0.96 99.03 0 -0.96 ≤2
LDCOF 0 0.96 99.03 0 -0.96 ≤4
CMGOS 97 0.02 99.05 97 96.97 ≤2
HBOS 27 0.70 99.04 6 7.31 ≤1

LIBSVM 68 0.30 99.05 68 67.69 ≤220

We categorize the performance of the anomaly
detection algorithms based on the taxonomy of
anomaly in SCADA systems (Figure 10). For the real
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Figure 11. Performance of anomaly detection techniques on SCADA datasets, scaled to 0±100

SCADA dataset WTP, from Table 4 it is evident that the
clustering based anomaly detection technique CBLOF
performs best and second best performance is attained
by the nearest neighbour based technique k-NN.
Statistical based approach HBOS does not perform well
here.

For the simulated datasets, it is surprising that
semi-supervised anomaly detection technique LIBSVM

has better recall than others, however suffers from
unacceptable run time. On the other hand, nearest
neighbour based method k-NN has very low run
time complexity and acceptable recall. Clustering
based approaches are not well suited for the
simulated datasets here and statistical approach
HBOS outperforms clustering techniques. Table 5
displays the results on simulated datasets.
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Table 6. Performance of Anomaly Detection Techniques on
Datasets with Injected Anomalies

Results on Multi-hop Indoor (MI) Dataset
Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 96 0.08 97.90 96 95.91 ≤1
LOF 38.33 1.61 97.43 38.33 36.72 ≤1
COF 9 1.98 97.82 9 7.01 ≤1
aLOCI 91 0.19 97.90 91 90.80 ≤11
LoOP 10 1.96 97.83 10 8.03 ≤1
INFLO 12 1.91 97.83 12 10.08 ≤1
CBLOF 24 1.65 97.84 24 22.34 ≤1
LDCOF 100 0 97.91 100 100 ≤1
CMGOS 100 0 97.91 100 100 ≤1
HBOS 98 0.04 97.91 98 97.95 ≤1

LIBSVM 86 0.30 97.90 86 85.69 ≤39
Results on Multi-hop Outdoor (MO) Dataset

Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 91.37 0.10 98.77 91.37 91.27 ≤1
LOF 55.17 0.56 98.76 55.17 54.61 ≤1
COF 25.86 0.92 98.75 25.86 24.93 ≤1
aLOCI 84.48 0.19 98.77 84.48 84.28 ≤13
LoOP 27.58 0.90 98.75 27.58 26.67 ≤1
INFLO 43.10 0.71 98.76 43.10 42.39 ≤1
CBLOF 63.79 0.45 98.76 63.79 63.33 ≤1
LDCOF 63.79 0.45 98.76 63.79 63.33 ≤1
CMGOS 50 0.62 98.76 50 49.37 ≤1
HBOS 65.51 0.43 98.76 65.51 65.08 ≤1

LIBSVM 91.37 0.10 98.77 91.37 91.27 ≤39

Table 7. Performance of Anomaly Detection Techniques on
Datasets with Injected Anomalies (Single-Hop)

Results on Single-hop Indoor (SI) Dataset
Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 100 0 97.41 100 100 ≤1
LOF 17.09 2.25 97.30 17.09 14.83 ≤1
COF 6.83 2.53 97.28 6.83 4.30 ≤1
aLOCI 96.58 0.09 97.41 96.58 96.48 ≤114
LoOP 6.83 2.53 97.28 6.83 4.30 ≤9
INFLO 11.11 2.41 97.29 11.11 8.69 ≤14
CBLOF 54.70 1.23 97.35 54.70 53.46 ≤1
LDCOF 100 0 97.41 100 100 ≤1
CMGOS 99.14 0.02 97.41 99.14 99.12 ≤1
HBOS 99.14 0.02 97.41 99.14 99.12 ≤1

LIBSVM 87.17 0.34 97.40 87.17 86.83 ≤22
Results on Single-hop Outdoor (SO) Dataset

Technique Recall FPR Accuracy F-1 MCC Run Time

k-NN 96.87 0.01 99.36 96.87 96.85 ≤2
LOF 21.87 0.49 99.36 21.87 21.37 ≤1
COF 21.87 0.49 99.36 21.87 21.37 ≤1
aLOCI 75 0.15 99.36 75 74.84 ≤16
LoOP 21.87 0.49 99.36 21.87 21.37 ≤2
INFLO 18.75 0.51 99.36 18.75 18.23 ≤2
CBLOF 93.75 0.03 99.36 93.75 93.71 ≤1
LDCOF 78.12 0.13 99.36 78.12 77.98 ≤1
CMGOS 78.12 0.13 99.36 78.12 77.98 ≤1
HBOS 43.75 0.35 99.36 43.75 43.39 ≤1

LIBSVM 96.87 0.01 99.36 96.87 96.85 ≤16

For the datasets with injected anomalies in multi-
hop senario, we found the performance (Table 6) of
clustering based approaches is the best considering
the evaluation measures. Nearest neighbour based
approaches are the next best. Among the HBOS and
LIBSVM approach, the latter has the better results
in terms of anomaly detection but attains high
computational burden (run time).

Finally, for the datasets in single-hop scenario, it
is seen that, the clustering-based methods perform

consistently well, but the nearest neighbour methods
are quite variable (Table 7). LIBSVM performs better
than HBOS but still suffers from high run time
complexity.

It is interesting to observe that, for all the anomaly
detection techniques the Recall and F-1 values are
identical. Since, top N anomalies detected by the
techniques are matched with the actual N number of
anomalies in the dataset, the Recall and F-1 scores
will always yield exactly the same values. Finally, we

Table 8. Characteristics of anomaly detection algorithms

Category Real Simulated Injected
NN

√ √ √

Clustering
√ × √

Statistical × √ ×

summarise the performance of each of the anomaly
detection techniques in Figure 11. In Table 8 we
also summarize the performance on different SCADA
datasets. We suggest the usage of these techniques
analysing the results discussed earlier. The sign (

√
)

indicates the affirmative gesture to apply the techniques
and the sign (×) discourages the usage.

6. Conclusion and Future Works

This paper gives a detailed discussion on the popular
anomaly detection techniques on SCADA systems and
analysed their performance. We come to a conclusion
that nearest neighbour and clustering based approaches
are more suitable for SCADA systems than statistical
and semi-supervised support vector machine based
approaches. In future we will investigate the following:

• How to find the most suitable input parameter
values?

• How to incorporate the idea of contextual
anomaly in big data perspective?

• How can incorporation of multi-view clus-
tering [16], hierarchical clustering [12] and
co-clustering [13] improve the efficiency of
clustering-based anomaly detection techniques?

• How to reduce the run time complexity of
semi-supervised support vector machine based
anomaly detection?
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