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Abstract

This contribution addresses the problem of extracting some representative data from complex datasets and 
connecting them in a directed graph. First we define a degree of representativeness (DoR) inspired of the 
Borda voting procedure. Secondly we present a method to connect pairwise data using neighborhoods and the 
DoR as an objective function. We then present case studies as illustrative purposes: unsupervised grouping of 
binary images, analysis of co-authorships in a research team and structuration of a medical patient-oriented 
database
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1. Introduction
The selection of a small subset from a dataset is
a classical way for both reducing the cost of data
processing and improving the efficiency of data
analysis. In statistics, the process is called sampling.
The selection of representative samples is generally
based on a randomization process. Unfortunately this
approach assumes implicitly or explicitly that data
distributions are known. Then the statistical analysis
often fails when exploring dataset with unknown
distributions. In data mining, the goal is very different.
The samples should define interesting patterns and
structures to analyse the data set. Then each sample is
selected taking into account its own representativeness.
These samples are called exemplars [1]. The extraction
of these representative elements presents a significant
interest in designing recommendation systems [2],
selecting leaders or specimens [3] for community
detection [4] or for customer Relationship analysis [5].
In this context, this paper proposes a new approach
for extracting exemplars (i.e. representative elements)
from a dataset and for linking data to visualize the
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structure of the dataset as a forest.

In the framework of data mining, the classical ways
to determine representative elements refer to the task
of clustering [6]. The representative elements are
prototypes selected from a partition of the dataset
into clusters. This approach assumes that the number
of exemplars is equal to the number of clusters.
Unfortunately when exploring a dataset, the number
of clusters is unkown. If a cluster contains more
than one sub-population, then only one prototype is
extracted. But more than one exemplar is expected.
Moreover the exemplars are real data extracted from
the dataset. But the prototypes are often virtual
elements that does not make sense. For instance the
classical k−means algorithm (see [7] for a review of
clustering methods including k−means algorithm)
determines k mean-elements as prototypes that are not
exemplars. There are multiple lacks of the approaches
based on clustering. Firstly the partition into clusters
is predate to the extraction of representative elements
and the clusters have to be validated and interpreted to
justify the prototypes. Secondly the choice of clustering
algorithms depends on implicit assumptions about
the shape of clusters and data distributions which are
unkown. Then we assume that these methods based on
clustering are not well suited for extracting exemplars
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from a dataset.

Most of the methods for extracting exemplars are
iterative. That is the case when using the k-medoids
algorithm [7] for determining k exemplars. First k
exemplars are randomly selected from the dataset.
Then the algorithm iteratively refines this set of
exemplars. The afinity propagation method of Frey
and Dueck [1] also proposes to extract exemplars by
iterative process. Unfortunately the final elements
proposed as exemplars are quite sensitive to the initial
selection, they depend on input parameters and on
the way to stop the iterative process. To circumvent
this drawback, this paper proposes a one pass method
to extract exemplars from a dataset without any
assumption on the shape or the density of data
distribution (unlike in [8]). The method we propose
is only based on a relation that permits a pairwise
comparison of data. Using this relation we define a
degree of representativeness (DoR). The exemplars are
finally chosen as local maxima of the DoR. Then we
show how to build a directed graph to visualize the
organization of dataset around the exemplars as trees.
By fitting the locality parameter called scale factor we
determine the exemplars at each scale that the user
needs.

The new method we propose is deterministic. Thus
each dataset leads to one specific set of exemplars. Some
properties can indicate the ability of the method to
reveal intrinsic structures of the dataset. Thus the paper
study the stability and the robustness of our method
to indicate this ability. When data is corrupted with
noise or outliers, the selection of exemplars should be
robust against such corruptions. When resampling the
dataset, the stability of exemplars (i.e. the exemplars
do not change when resampling) is another indication
of the ability of the method to reveal dataset structures.
Moreover our deterministic method gives one result at
each scale. When the scale increase, we also study the
variation of the set of exemplars and the forest we build
on the dataset.

To sum up this paper proposes a new method for
exemplar selection and it studies some of properties
of the method. It is organized as follows. In the
first section we introduce the context and expose our
method. We present the formal definition of degree of
representativeness (DoR) used to extract exemplars. The
notion of standard is defined when only one exemplar is
selected from the dataset. Then we show how to build
a directed graph (more precisely a forest) to visualize
the inherent structure of the dataset. For each definition
we present some interesting and remarkable properties
(robustness and stability).
The next section presents three case studies in very

different contexts. Firstly we apply our method on a
set of binary images. We compute scores and exemplars
and build the forest that emphases the structure of the
set. The second application concerns the analysis of co-
authorship in a research laboratory. We exhibit a co-
authoring network (the forest of the co-authors) that
permits to visualize how researchers are really clustered
and how they work together.
Last section is a brief conclusion that outlines our main
contributions and that expose our current and future
works.

2. Method
Let Ω be a set of n elements in a multidimensional
space. Let us describe the way we use to extract the
exemplars from Ω for structuring this set as a forest.
In this paper, the n elements are called objects. They
consist of qualitative, quantitative or mixed data. We
assume that Ω is only a relational dataset. We do not
need for any assumption on underlying distribution of
data. We only use the relation for comparisons between
objects.

2.1. Pairwise Valued Relation
Let us specify the relation. Let R be a pairwise valued
relation on Ω. R is defined by :

R : Ω ×Ω → R+

(x, y) 7→ R(x, y)

The use of such a pairwise valued relation is very
classical in data processing. For instance, the distance
is a special case of this kind of relation. But a distance
is frequently not available when processing qualitative
data. Thus a relation is more widespread than a distance
for pairwise comparisons of objects. In this paper, the
value R(x, y) is also called the cost from x to y, indicating
the generality of the relation.
The relation must follow three trivial properties.

• The relation must be total. This means that each
pair of objects of Ω is valued by R.

• The relation must be positive. The cost is a positive
value for all pairs.

• The cost from x to x is null forall x (i.e. ∀x ∈
Ω, R(x, x) = 0)

Unlike a distance, the relation does not necessarily
respect the property of symmetry. R(x, y) may be
different from R(y, x). For instance, if the cost from a
point x to a point y is the time to go from x to y,
then the cost from y to x could differ from the first
one because of the slope, wind, flow, etc. Moreover,
the relation does not respect the triangle inequality. A
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dissimilarity index gives a classical example of such a
relation which does not respect the triangle inequality.
x is dissimilar from y with R(x, y) and y is dissimilar
from z with R(y, z) but x could be dissimilar from z with
R(x, z) > R(x, y) + R(y, z).
Such a relation can lead to a vote to designate exemplars
within the dataset. Specifically, we can rank the objets
of Ω taking into account the relation to set up
votes between the objects themselves. The following
subsection describes this procedure.

2.2. Degree of representativeness (DoR)
In this paper, we select an exemplar object from Ω

according to the Borda voting method [9]. But firstly, we
transform values of the relation into ranks [10][11][12].
Let us define these ranks. Let x be an object of Ω. All
objects can be sorted by the ascending order of their
costs relative to x. Let us note Rkx(y) the rank of y
relative to x. Then the ranks are obtained when sorting
the set {R(x, z)/z ∈ Ω}. Using Borda method [9][13], the
object x assigns a relative score to all objects of Ω. The
score Scx relative to x is defined by:

∀y ∈ Ω, Scx(y) = n − Rkx(y)

where n is the number of objects in Ω. Thereby the
relative score is an integer and it lies between 0 and
n − 1. The lower the cost from x to y, the higher the
score of y relative to x.

Computing all relative scores, each object x receives n
scores corresponding to the votes of all objects of Ω (i.e.
the n values Scy(x) with y ∈ Ω). Then the relative scores
are aggregated to define the degree of representativeness
(DoR) of data. The DoR is finally used as an objective
function to choose the winner of the voting procedure.
The aggregate score is defined by:

DoR : Ω → R+

x 7→ Aggregy∈Ω(Scy(x))

In this paper, the aggregation function is the mean
function.

Let us observe the DoR in a simulated dataset.
Figure 1 displays an example of a dataset with 120 two
dimensional random samples (A). Euclidean distance is
used as the pairwise valued relation between samples.
The respective DoR (B) confirm that the score increases
when the sample approaches the center of the dataset,
i.e. in the midst of this one.

2.3. Standard
The object with highest DoR is called standard. The
standard is usefull when only one exemplar is expected
for resuming the dataset Ω.
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Figure 1. Example of a dataset with 120 random samples (A)
and their respective DoR (B). The DoR increases in the midst of
the dataset

Let us give three examples of standard. The figure 2
shows the graphical representations of three datasets
A, B, and C. Each dataset is randomly generated and
contains 100 data (n = 100) and two features x and
y. The DoR is computed using Euclidean distance as
pairwise valued relation. The maxima of the DoR are
respectively 68.75, 70.55, and 68.77 for A, B and C.
The red filled circles highlight the three respective
standards (i.e. data with the highest DoR). The figure 2
confirms that each standard lies in the midst of its
dataset.

Let us observe some properties of the standard. When
resampling the dataset using the bootstrap technique
[14], the standard could change. If it does not change,
the extraction of this standard is robust against the
resampling. We propose to quantify the robustness
of the standard by bootstraping the extraction of the
standard. We claim that the frequency of the extracted
standards indicates the stability of the standard
when resampling. This frequency characterizes the
robustness of the standard. Our experiments using
simulated data and real data show that the standard
depends very weakly on the resampling. We have
simulated three random datasets (let us call them
A B and C) of 100 elements. We have computed
the frequencies of the standards obtained with 200
bootstraps. The extracted standards remain in the
center of the three datatsets. The frequencies of the
most frequent standards when resampling the 100
initial samples are respectively equal to 40%, 32%, 36%.
These frequencies assess the stability of the standard
with respect to the samples. Respectively 90%, 88%,
and 90% of the dataset elements are never extracted as
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Figure 2. Standard examples (in red) for respectively the datasets (A), (B), and (C). The datasets have 100 random samples. The DoR
of the standards are respectively 68.75, 70.55, and 68.77.

standards when resampling.
Thus we assume that a standard gives a clue on
the center of the dataset. Because the standard is a
real element, it avoids the nonsense that the classical
averages could produce with a virtual out-of-scope
element outside of the data distribution. Note that
the stability of the standard (i.e. the frequency of the
most frequent standard) increases when the number of
objects increases.

Let us now examine the stability of the standard
when outliers are feared. We simulate outliers that
we append to an initial dataset. We consider that the
standard extraction is robust against outliers when the
extracted standard remains one of three most frequent
standards of the initial dataset.
In this paper we describe the study of robustness (see
[15] for more details about the concept of robustness)
using the datasets A, B and C of Figure 2. The outliers
are random elements out of the range of the initial
data domain. In this section, the domain is defined
by elements of coordinates (x, y) where −10 ≤ x ≤ 40
and −15 ≤ y ≤ 15. Outliers are simulated in a larger
domain defined by −10000 ≤ x ≤ 40000 and −15000 ≤
y ≤ 15000 (the initial limits are multiplied by 1000)
excluding the elements that are too close from the initial
domain by keeping the elements (x, y) where x ≤ −1000
or 4000 ≤ x and y ≤ −1500 or 1500 ≤ y (the limits of
initial domain are multiplied by 100). We add such
random outliers to an initial dataset until the extracted
standards changes (i.e. until the extracted standard
from the new dataset with outliers will not be one of
the three most frequent standards of the initial dataset).
When outliers are randomly generated in a such very
large domain, the percentage of outliers could be higher
than 200% without changing the initial standard. Then
the standard is robust when the outliers are spread in
a large domain. But the standard remains also robust
when outliers are concentrated into only one duplicate
object. When only one outlier is randomly generated

in the very large domain, we could add up to 20% of
out-of-range elements using this single outlier without
changing the initial standard. Then we assume that the
standard is particularly robust against outliers.

2.4. Exemplars and forest
The standard is the only exemplar extracted from a
dataset. But the dataset may be complex and it could
require more than one exemplar to represent the whole
set. This section describes how the dataset can be
structured to retrieve these exemplars from the set.
The first step consists in defining the neighborhood of
each object within Ω. Let x be one of the n objects of
Ω. Let k be a value between 0 and n. The k-nearest
neighbors of x are defined using the ranks relative to
x. Then the k−neighborhood of x in Ω is defined by:

∀x ∈ Ω, ∀k ∈ {1, ..., n}, Nk(x) = {y ∈ Ω/Rkx(y) ≤ k}

Thus Nk(x) is the set of k nearest objects of x.
In a second step, each object x is associated with the
neighbor having the highest DoR. Thus we define a link
from x to its preferred neighbor. Each object x is linked
to an object y. The links are defined by:

∀x ∈ Ω, x 7→ y = argmax
z∈Nk(x)

DoR(z)

In this definition, x is linked to y and y is generally
different from x when DoR(y) > DoR(x). If Sc(x) is
maximal inside Nk(x), then y = x and x is linked to
x itself. These self-linked objects are simply called
exemplars of Ω.
Using the links, the dataset becomes a forest where
the nodes are the objects. The exemplars become the
terminal nodes of this forest. The exemplars depend on
the value of k which influences the forest configuration.
In this paper, k is the size of the neighborhood we use.
This parameter is called scale factor.
Figure 3 displays four forests obtained from the
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simulated dataset of Figure 1 (A). The dataset has
the 120 samples (n = 120). The four forests are
configured using the scale factors 5, 10, 20, and 40.
The exemplars are displayed with a filled circle, they
are the terminal nodes of the forests. The numbers of
extracted exemplars are respectively equal to 8, 4, 2 and
1. Distinctly the number of exemplars depends on the
scale factor k. The following describes the influence of
the scale factor.

2.5. Scale Factor
The higher the scale factor, the lower the number of
exemplars. Moreover, when the scale factor increases
from one to n, the number of exemplars decreases from
n to one. Let us explain this property. When k = 1, N1(x)
is the singleton equal to x. Therefore each object x is
itself an exemplar of Ω (i.e. x is linked to x). Then the
set of exemplars is Ω and the number of exemplars is
equal to n. When k = n, Nn(x) is equal to Ω. Each object
x is linked to the standard which has the highest DoR
within Ω. Then the number of exemplars is equal to 1
the forest becomes only one tree and the standard is its
root. At the scale k, an exemplar x has the highest DoR
within the neighborhood Nk(x) (i.e. within the k nearest
neighbors of x). If k1 ≤ k2, then Nk1

(x) ⊆ Nk2
(x). If x is

an exemplar at the scale k2, then it is an exemplar at the
scale k1. Therefore the number of exemplars necessarily
decreases when the scale factor increases.
Increasing the scale factor, some exemplars could
disappear among those who were extracted. But an
object never appears as an exemplar if it was not
extracted at lower scale factor. Figure 4 displays the
duration of each exemplar when increasing the scale
factor. The exemplars are extracted from Figure 1
dataset (n = 100). When the scale factor is equal to 1,
all the objects are exemplars. When the scale factor
increases, some exemplars disappear and their duration
is shortened. Only the standard is kept from scale 1 to
the scale n. It has the longest duration equal to n.

At the scale k, we assume that the numbers of
exemplars is smaller than n − (k − 1) where k is the
scale factor and n is the number of objects of the
dataset. At each scale k, we want to reduce the number
of exemplars. When this number is equal to n − k +
1, we consider that the extraction of exemplars is
suboptimal. This case is observed when k = 1 or k = n.
In this paper, the scale factor becomes optimal when
the difference between n − k + 1 and the number of
extracted exemplars is maximum. Let koptimum be this
optimal value of the scale factor we propose in this
paper.
Figure 5 displays the numbers of exemplars according
to the scale factor k. It uses the dataset of Figure 1
(A) (n = 100). The scale factor increases from 1 to 100
and the number of exemplars decreases from 100 to

,
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Figure 4. Duration of exemplars increasing the scale factor: The
Figure 1 dataset has 100 objects (n = 100). The scale factor
increases from 1 (black) to 100 (red). When the scale factor is
equal to 1, all the objects are exemplars. When the scale factor
increases, some exemplars disappear. Only the standard is always
extracted when increasing scale factor. Then its duration is equal
to 100.

1. The numbers of exemplars is smaller than 101k.
The difference between 121 − k and the number of
exemplars is maximum when k = 9. The black filled
circle shows this optimum value. Then four exemplars
are extracted using k = 9.

3. Applications
This section presents applications of our method in two
typical and very different contexts. The first application
consists in extracting exemplars from a binary image
database and building the graph of exemplars of this
database. The second application present an analysis
of the co-authoring in a research team by extracting
exemplar authors and exhibiting the implicit structure.

3.1. Extraction of exemplars from a set of binary
images
In this first application we consider a set of binary
images contained in a database. The goal is to extract
exemplar images from this database. The interest could
be providing a set of resuming images or distinguishing
subsets of images according to their content. In a first
step we construct the matrix of the relation by using
the Asymetric Haussdorff Distance. Classical methods
of clustering have to work with symmetric distance.
They are inapplicable when distance from an image
A to image B is not equal to distance from image B to
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Figure 3. Networks obtained with scale factor k = 5, k = 10, k = 20, and k = 40 with dataset of Figure 1 (A). The exemplars are
displayed with blue filled circles.

image A. As we wrote at the beginning of this paper,
the symmetry property is not required in our method.

Firstly, we compute the score of each image of the
database. In a second step we build the associated
directed graph presented in Figure 6 and representing
the exemplars network (with a scale factor of 4).
This graph shows how the dataset is structured. We
can observe that the connected components of this
graph are grouping image according to the object they
represent. The three images that have no successors in
this network are the exemplars of this dataset and they
provide a good summary of the whole dataset.

3.2. Exploration of co-authoring network

The second application of our concept deals with
publication data inside a laboratory, a research team or
any other group of researchers.
Co-authoring informations can be considered as
relational data ([16], [17]). In this work, we consider
that the value of the relation from a researcher named
Alice to a researcher named Bob is computed as the
sum for each common publication of the product of the
number of coauthor on the publication and the number
of publication of Alice. This relation is not symmetric.
In fact, generally, Alice can be the "preferred" co-author
of Bob, but Bob is not necessarily the "preferred"
co-author of Alice. This valued relation characterizes
the "quality" of links between the members and takes
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Figure 5. Number of Exemplars (top) from Figure 1 (A) dataset
and Scale Factor : The number of exemplar is smaller than
100 − (k − 1) where k is the scale factor and 100 is the
number of objects of the dataset. The grouping index (bottom) (the
difference between 100 − (k − 1) (gray line) and the number of
extracted exemplars (red points)) is maximal when the scale factor
is equal to 9 (black circle).

account of their publication activity.

The dataset we used is the set of publications of the
CReSTIC Laboratory (University of Reims, France) [18].
This information is extracted from the web site of the
laboratory.

The graph of the Figure 7(Left) represents this
dataset. Each node is a lab member and each edge
between two members represents one common
publication. Different colors are used to represents

Figure 6. Network of the binary images where each image is
connected to one exemplar. This directed graph exhibits three
connected components forming three clusters coinciding with the
content of images

the different teams that compose the laboratory (but
this information is not used in the computation of the
exemplars). Therefore the scale factor is not used in
this application because the size of the neighborhood is
implicitly fixed in the dataset (according to the number
of co-author of each member of the team).

After computing the scores, we built the exemplars
forest represented on the Figure 7(Right). The size of the
node is proportional to its score. This graph is displayed
using the same position for the nodes.

The graphs presented in the Figure 7 show several
interests of our method. The first interests is the sim-
plification of the graph of the Figure 7 (Left). When the
numbers of vertices and edges are growing the graph
becomes more unreadable. For big data, resuming and
simplifying is a necessary task.
The second interest is to exhibit such a sub-structure
of the team (this task is called community detection
in a network [19]). The Figure 7 (Right) shows how
groups are connected, and which members are the most
representative. The exemplars members are connecting
the others and can be viewed as natural leaders (or
natural mentors) according to their publications and
their co-authors. It emphasizes the important (critical)
position of some members in a research team.
Incidentally, we can observe that the resulting cluster-
ing obtained by partitioning the graph in connected
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Figure 7. Left : Forest of the co-authoring in a laboratory. Each vertex is one researcher and each edge corresponds to one common
publication. Right : Representative Network. The higher is the score of one researcher, the higher is the diameter of its vertex in the
graph. In this graph, each edge is the link of one researcher to its exemplar.

components is a little bit different of the real partition-
ing in sub-groups (represented by the different colors)

3.3. Structuration of a medical database
In this case study, we consider a dataset of 71 diabetic
patients described by 10 variables. This dataset
was constitued by the endocrinology service of the
University Hospital Center (CHU) of Reims. Our goal
is to exhibit how the medical cases could be linked.
After computing the distance matrix between patients
with the Chebyshev distance [20], we obtain the forest
shown in the figure 8 according to the DoR of patients.

The resulting forest structures the raw database as
a network of medical cases. We can see this graph as
a knowledge representation extracted from data and
could be view as a first step for building a medical case
based reasoning system.

4. Conclusion
In the framework of data mining, this paper describes
a new way for extracting exemplars from a relational
dataset. The method we propose is based on a pairwise
comparison assuming a coarse relation on the dataset.
This approach is particularly adapted when no
distance is available or meaningful in the data domain.
Moreover the coarse relation between data does not

need symmetry or transitivity properties. Thus the
method is useful for any kinds of relational data.
The DoR is defined from these pairwise comparisons.
The paper defines the standard which is the sample
with the highest score. Simulations show the robustness
of the standard against outliers and the stability of the
standard when resampling dataset. Thus these results
confirm the standard as a robust location estimator.
Moreover the DoR is used to extract exemplars
which are real objects. Then our approach of location
estimator avoids the drawbacks of average objects
which are meaningless when processing qualitative
data.
Using a score based on the pairwise comparison, we
define the k nearest neighbors of each datum. This
approach permits us to extract exemplars depending
on this k value. We state that the number of local
exemplars decreases from n to 1 (n is the number of
data samples) when k value increases from 1 to n.
Thus k is considered as a scale factor. The method
we propose allows us to explore the dataset through
different scales. We can adjust the k value for extracting
a reduced number of exemplars. An automated
approach is proposed to determine an optimal number
of exemplars.
On top of the extraction of exemplars, the method
proposes to design a forest. The paper shows that the
forest is reconfigured when the scale factor changes.
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Figure 8. Forest obtained on a medical dataset. Data are
diabetic (type 2) patients described by 10 features including age,
sex, HBA1C, prescribed insulin, body mass index etc. Each vertex
is a patient and the circle diameter is proportional to the DoR
of the patient. The scale factor k is determined by the method
proposed in the section 2.5

The forest eases the explanation of the exemplar roles
in the dataset. When the scale factor increases, some
exemplars could disappear keeping the most important
ones (i.e. the exemplars which are important nodes for
connecting some data).

In future works we propose to use the fuzzy set theory
as in [21] to generalize our framework in the case of
fuzzy relation, when ranking data is not easy.
The major way we would to explore is the area of Social
Network Analysis. We are convinced that our concept
of exemplar could be a significant tool for extracting
leaders or mentors in social network and improve
recommendation systems. Our concept of degree of
representativeness should be compared to the different
definitions of centrality in a network [22].
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