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Abstract
Composite Web service architectures are demanding much guarantee on the Quality of Service (QoS) in 
order to meet user requirements. Performance evaluation of these architectures has become therefore a very 
challenging issue, as the task is very complex due to synchronization inside the orchestration of services. 
We propose in this paper to use stochastic automata networks which a is powerful formalism as it provides 
semantics to specify synchronization within a very smart formalism. Contrary to previous approaches, the 
modeling and the performance evaluation of a variable number of remote service invocation become possible. 
The reported simulation results advocate the use of our approach in the performance evaluation of composite 
Web service architectures.
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1. Introduction

The use of web services is continuously growing and the 
technological and economic potential is not yet tapped. 
The web services have become in recent times by far the 
technology application integration par excellence as it is 
now feasible to host basic web services on a smart phone 
without requiring additional technologies .
Web Services are software components that can be 

accessed over the Internet using well established web 
mechanisms. For instance, in the IT domain the impact 
of XML Web Services has increased during recent years, 
since the Extensible Markup Language (XML) has been 
enforced as a meta language for structured information 
and its representation [1].
Web services are self-descriptive loosely coupled 

and interact with each other. They are defined and 
described regardless of their platforms, implementation 
details. The biggest advantage of Web Services lies 
in their simplicity in expression, communication and 
servicing. The componentized architecture of Web 
Services also makes them reusable, thereby reducing 
the development time and costs [2].
Unlike its predecessors, such as the Common Request 

Broker Architecture (CORBA), Remote Method Invoca-
tion (RMI) and Distributed Component Object Model 
(DCOM), web services have responded satisfactorily to

interoperability in the context of distributed systems,
as well as to the scale of the Internet. Indeed, Web ser-
vices can be seen as the standardized way to distribute
services on the Internet. It uses Internet protocols to
communicate and uses a standard language to describe
its interface. The success of Web services is in fact due
to the use of Internet technology as a communication
infrastructure and the availability of a working frame-
work based on a set of standards which are [3]:

• SOAP (Simple Object Access Protocol) a com-
munication protocol for structuring the messages
exchanged between software components [4]

• WSDL (Web Services Description Language)
a specification for describing Web services
interfaces [6]; and finally

• UDDI (Universal Description Discovery and
Integration) a specification for publishing and
localization of Web services [5].

There are, two key players, in Web services architecture: 
The service provider (which publishes the service), and 
the service requester. A third actor, the service registry, 
may be associated with this pair, but its presence is 
not essential as the service requester needs only to be 
aware of the address of the service provider. These three 
participants must be able to interact with each other.
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Figure 1. Deployment, research and invocation of web service

Hence, three types of interconnection have defined, as
illustrated by the the figure 1.
Living in a competitive world, businesses are nat-

urally interested in information technology support-
ing them for competitive advantage. As cooperation
becomes increasingly important for companies, new
challenges arise for the support of business to business
scenarios by information technology. The emergence of
Web services marks the beginning of a new evolution
in this context. This development, a priori technical
and architectural introduced a true revolution in how
to design and build information systems. Therefore, it
became possible to develop an application of high-level
by federating some Web services already provided on
the Internet by various organizations; hence the concept
of composite Web service.
In actual fact, available services on the Internet

have limited functionalities which do not always
meet the user requirements. Therefore, services must
often be composed to build more complex services
to achieve specific user requirements. In their turn,
these new created services are potential candidates for
another composition [7]. A composite Web service may
be distributed over a network, running on different
platforms, implemented in different programming
languages and offered by different vendors.
A Web service is said to be composite when

its execution involves interactions with other Web
services in order to call for their functionalities. The
composition of Web services specifies which services
need to be invoked, in what order, and how to manage
the exceptions. Clearly, it describes a business process,
involving different web services.
There are several languages to describe a composition

which are classified into two major groups: non-
semantic approaches and semantic approaches [8].
Within this context, BPEL4WS (Business Process
Execution Language for Web Services), has emerged
among non semantic approaches, whereas OWL-
S (Web Ontology Language for Services) becomes
the representative standard of semantic approaches.

However, existing models have been also used to model
and compose web services, such as: workflows graphs,
Petri nets and currently programming languages as Java
and C.
The composition languages show two levels of

abstraction:
The abstract level (the abstract process), where the

description of a process does not indicate the internal
behavior of the parts involved in the process; and
the executable level (the executable process), where
the description is complete and specifies the order
of execution of activities, the list of partners, the
messages exchanged and treatment of exceptions.
These languages provide two methods of execution:
orchestration and choreography.
Orchestration: It describes the interaction of services

at message level, including the business logics and the
order of execution of interactions. The services run
independently of the context of business processes.
Only the coordinator of the orchestration needs to be
aware about the orchestration.
Choreography: Unlike the first way to compose Web

services, the choreography has no central coordinator.
Each Web services involved in the composition knows
the conditions of the execution of its operations and
with which other services the interaction have to take
place.
The BP EL4WS has become a standard composition

of business processes. It allows the manipulation
of services as activities and processes. A process
BP EL4WS, is a container where we find a list of
external partners, declarations of data exchanged
with these partners, managing exceptions and more
importantly, the list of activities of the process.
The composition can be made at the time of design

of composite Web services, or at runtime. At time
of design, the composition is manual, and all the
web services that take part, are known as well as
their execution order. At runtime, the composition
is dynamic and automatically performed and only
a specification of the required abstract services is
given. Hence, services must first be discovered, then
selected and integrated. Microsoft BizTalk Server and
BEA WebLogic are examples of platforms of static
composition and eFlow and StarWSCoP are platforms
for dynamic composition [9].
The composition of web services raises complex

problem, being given the multitude of web services
on the Internet located at different providers with
identical functionalities but however with different
qualities. Indeed, for both run time and design time
compositions, the choice of concrete services for a
particular abstract service may be based on non–
functional parameters. Examples of such parameters
are availability, throughput, response time, security
and cost. In actual fact, web services operate in an
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environment which is very dynamic (the Web) and
thus, their QoS values are frequently changing due to
updating in elementary services (disappearance of a
service for example) or a change in the environment
of their execution (a heavy load on the system). This
shows the importance of dynamic service composition
since services are selected and adapted dynamically at
runtime, with services previously discovered to meet
user requirements. Consequently, it becomes necessary
to integrate, in the web services, such non-functional
properties (QoS) in order to distinguish them at
runtime [10], [11].
As the market capture of Web services is increasing

significantly, in the past years, the applications
are quite welcoming the ability to provide secure
and reliable communication in the vulnerable and
volatile mobile networks. Performance evaluation of
these architectures is essential but complex due to
synchronization inside the orchestration of services.
Consequently, the increasing complexity of such
architectures requires the development of methods and
tools in order to monitor and evaluate their QoS. In fact,
the QoS degradation can lead to serious consequences
including a significant economic impact.
We propose in this paper to address this issue. We

mainly focus on the composite Web service (CWS)
response time computation, where the requests are
decomposed into sub-queries to different elementary
Web services and then merged into a final result. This
includes the following models:

• parallel invocation of a constant number of
elementary Web services merged by a federating
component;

• parallel invocation of a variable number of
elementary Web services merged by a federating
component.

To this aim, we consider Stochastic Automata 
Network (SAN), to model such architectures. 
Contrarily to other probabilistic models, as Markov’s 
chains for instance, SANs are a very powerful tool as 
they can specify systems with complex synchronization 
requirements in a very compact and elegant way. Hence, 
it becomes possible to specify the composition of a 
variable number of web services, when it is hard to 
achieve with other models. To advocate the use of 
our approach, we provide some empirical studies by 
simulating the obtained models to compute response 
times.
This remainder of the paper is organized as follows. 

In Section 2, we give the related work. In Section 3, 
we give a brief introduction to SAN model. In section 
4, we describe our different models to specify web 
services composition, where in Section 5, we give some

numerical results. Finally, we conclude and give future
research perspectives in Section 6.

2. Related works
In the literature, performance evaluation of Web
services have been conducted either by using tests or
formal methods.
As concerns testing Web services, XML specification

and SOAP protocol have been studied in [13–15] by
testing and measuring their response times. In [13]
a comparative study of existing protocols, like RMI,
RMI/IIOP or CORBA/IIOP, is presented. A critical
study of XML-based protocols for Web services is
presented and binary encoded protocol has been
proposed instead of text XML-based ones in [14].
In [16], information about past workflow executions is
collected in a log. Starting from this log a continuous
Markov chain is derived, in order to compute the
execution response time and the cost of this workflow.
In [11], the composite Web service response time is

considered as a response time of fork and join model.
This model states that a single Internet application can
invoke in parallel a set of elementary Web services
and gather their responses from all these launched
services in order to return the results to a client. In
this considered study, authors analyze the effects of
exponential response times based on their earlier work
in [17].
An exact analysis of fork and join system is possible

when the system is significantly simplified. This is the
case for example when the job arrival process in the
system follows a Poisson distribution with execution
task having exponential distribution and the number of
queues is equal to two. The exact computation response
time of a such system can be found in [18], [19] and
[20]. An approximation technique has been proposed
in the case where the number of servers is greater than
two and the servers are homogeneous [20]. This last
study is extended in [21]. General arrival process and
services times are considered in [22]. The most general
case is considered in [23]. In this work, upper and lower
bounds are proposed by assuming that the response
times in each queue are mutually independent. Two
approximation techniques are presented: one is based
on a decomposition approach and the other is based on
an iterative solution method.
In order to overcome the limitations of these studies

and particularly the one presented in [11], we have
proposed a general model taking into account the fact
that elementary Web services are heterogenous and the
number of invoked services can be variable (this is
the case when we use for example the BPEL multi-
choice constructor) [24]. More recently, the problem of
computing the distribution of the throughput time in
workflow nets has been studied in [25]. In this paper,
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authors consider workflow with transition execution
time having exponential distributions, and formulas
have been proposed for each refinement rule (sequence,
parallel, synchronization and loop execution pattern).
Response time of a Web service middleware is

considered in [26], which follows a fork and join
model of execution. The author proposes that while
performing a join operation, servers with slow response
times can be eliminated to maximize the performances.
The work is more oriented towards studying fork and
join model in order to understand how to optimally
merge the results from various servers. In [27] we
have proposed a generic transformation of the studied
Markov chain which guarantees that the response time
of the new Markov chain is an upper bound of the
initial Markov chain response time. We instantiate this
transformation in three ways, where each obtained
new Markov chain is parameterized by a “quantitative”
parameter. By an appropriate choice of the parameter,
the recurrence equation systems can be resolved with
an algorithm with O(n) and O(n

√
n) respectively space

complexity and time complexity, where n is the number
of invoked elementary Web services. However, some
synchronization in the invocation of a variable number
of web services can not be handled by the proposed
models.

3. Stochastic Automata Networks
Stochastic Automata Networks have been introduced
as an efficient method to represent complex systems
with interacting components such as parallel systems
or distributed systems [12]. This method automatically
provides an analytic derivation of Markov chain
generator matrix using tensor algebra. The SAN seems
to be more efficient than Queueing Networks or
Stochastic Petri Nets to model systems with a large
number of states and complex synchronization.
Queueing Networks give a very compact represen-

tation of systems with resource contention among
independent customers. Analytical methods and well
known algorithms may be used to obtain either analyt-
ical or numerical results. However, queueing networks
are inefficient whenever complex synchronization con-
straints are to be taken into account. On the other side,
stochastic Petri Nets have been defined to represent
synchronization constraints of parallel systems or pro-
tocols. However, they do not generally yield compact
models as they build the transition matrix without any
knowledge about its properties.
In the SAN approach, the dynamic behavior of each

system component is modeled by an automaton and
the interactions between the different components by
labels on the directed edges which may represent
synchronization events and transition rates [12]. A
Stochastic Automata Network is a set of automata.

Each automaton Ai is defined by the tuple (Si , L, Qi)
where Si is the set of states of the automaton. Qi
is the transition function of the automaton Ai which
associates a label from L to every arc of Ai . Labels
describe the rate and the type of the transition. The rate
may be dependent of the others automata states. There
are 2 types of transitions: local and synchronized. A local
transition occurs only within the automaton, whereas
the synchronized transition occurs in several automata
at the same time. An automaton itself is not Markovian.
The Markovian assumption holds only for the global
SAN behavior if we assume exponential distribution
and independence for the firing of the transitions.
The transition rate matrix Q is automatically

translated from the SAN description. This translation
is based on tensor algebra of matrices (see [12] for more
details and proofs).
First let us define tensor operators:

Definition 1. Let A be a matrix of order n × n, and B a
matrix of order p × p. The tensor product of A and
B is a matrix C of order np × np such that C may be
decomposed into n2 blocks of size p.

C = A
⊗

B =


a11B ... ... a1nB
. . . .
. . . .
. . . .

an1B ... ... annB


A and B are matrices of real values but we generalize the
definition of tensor product on matrices of functional
values (i.e. the elements of A and B are functions using
states as arguments). Some properties of the classical
tensor product still hold.

Definition 2. Let A be a matrix of order n × n, and B a
matrix of order p × p. The tensor sum of A and B is
defined by :

E = A
⊕

B = A
⊗

IB + IA
⊗

B

where ID represents the identity matrix with the same
size as matrix D.

It has been proved in [12] that, if the states are in a
lexicographic order, then the generator matrix Q of the
Markov chain associated to a continuous-time SAN is
given by:

Q =
n⊕
i=1

Fi +
c∑

j=1

n⊗
i=1

Si,j +
c∑

j=1

n⊗
i=1

Ri,j

Where:

• n is the total number of automata in the network
and c is the number of synchronization.

• Fi is the transition matrix of automaton i without
synchronization.
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• Si,j is the transition matrix of automaton i due to
synchronization j.

• Ri,j is a matrix representing the normalization
associated to the synchronization j on automaton
i.

•
⊕

and
⊗

denote tensor sum and product,
respectively.

The transition matrix P of a Markov chain associated
to a discrete-time Stochastic Automata Network can be
obtained by a slightly different formula, given by:

P =
n⊗
i=1

Fi +
c∑

j=1

(
n⊗
i=1

Si,j −
n⊗
i=1

Ri,j

The main advantage of this methodology is its ability
to represent the Markov chain associated to the SAN
model by a compact formula. This point is particularly
important since it allows us to deal with systems which
may have very large state spaces. In the following
section, we show how we model our system using the
SAN methodology.

4. Considered composite Web service model
We focus on the composite Web service (CWS) response
time computation, where the requests are decomposed
into sub-queries to different elementary Web services
and thenmerged into a final result. The control patterns
considered here are not directly supported by BPEL
[28]:

• parallel invocation of a constant number of
elementary Web services merged by a federation
component. This model is described in section 4.1.

• parallel invocation of a variable number of
elementary Web services merged by a federation
component. This model is described in section 4.2.

4.1. Case n is constant
We consider a composite Web service where the data
is stored in databases and can be accessed using XML-
based protocols noted si for 1 ≤ i ≤ n. We assume that
when a composite Web service is invoked, n elementary
Web services are invoked in parallel and the partial
responses are then integrated into the global response to
provide to the client. We assume that the arrival of the
composite Web services follow a Poisson process with
rate λ. The response times of the servers si for 1 ≤ i ≤
n are also assumed to be of exponential distributions
with rate µi for 1 ≤ i ≤ n. We assume that the merging
time of the n elementary Web services is an exponential
distribution with rate µ (batch service).
As we have defined the behavior of the system as

Markov process, the considered model can be described

by a continuous time Markov chain denoted by X(t).
To describe this chain, we define the state x by
(x1, s1, s2, . . . , sn, a1, a2, . . . , an), where:

• x1 is the number of the composite Web services
requests.

• s1, s2, . . . , sn are the elementary Web services in
each queue.

• a1, a2, . . . , an are the elementary Web service
responses in the related queue waiting to be
merged in the global responses to give back to the
clients.

Associate queueing model Hereafter, we define the
queueing model when n is constant. Our model can be
specified by queuing network. We have one finite buffer
for requests with size b. n queues with finite buffers
with size bi for 1 ≤ i ≤ n. n others queues with finite
buffers with size bi for 1 ≤ i ≤ n where the elementary
Web services waiting for the batch service.
To illustrate the behavior of the system, we give

the behavior equations of the considered model in the
following:

x → CWS arrival

→ (x1 + 1, s1, s2, . . . , sn, a1, a2, . . . , an)

with rate λ × 1x1<b

→ Decomposition of CWC into n elementary WS

→ (x1 − 1, s1 + 1, s2 + 1, . . . , sn + 1, a1, a2, . . . , an)

with rate µλ × 1x1>0 × 1si<bi

→ End of service of WS1

→ (x1, s1 − 1, s2, . . . , sn, a1 + 1, a2, . . . , an)

with rate µ1 × 1s1>0 × 1a1<b1

→ End of service of WS2

→ (x1, s1, s2 − 1, . . . , sn, a1, a2 + 1, . . . , an)

with rate µ2 × 1s2>0 × 1a2<b2

→ . . .

→ End of service of WSn

→ (x1, s1, s2, . . . , sn − 1, a1, a2, . . . , an + 1)

with rate µn × 1sn>0 × 1an<bn

→ Synchronization of n WSs, so response of CWS

→ (x1, s1, s2, . . . , sn, a1 − 1, a2 − 1, . . . , an − 1)
with rate µ × 1ai>0

4.2. Case n is variable
We assume for this model that once a composite Web
service (CWS) is requested, it can be decomposed into
k Elementary Web Services (EWS) where 1 ≤ k ≤ n.
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The case is a generalization of the precedent case (n
constant).
Thus we define the following probabilities :

• p1 is the probability that CWB, is decomposed
into one elementary Web service

• p2 is the probability that CWB, is decomposed
into two elementary Web services

• pk is the probability that CWB, is decomposed
into k elementary Web services

• pn is the probability that CWB, is decomposed
into n elementary Web services, which is the case
of the first model.

Associate queueingmodel The considered model can
also be described by a continuous time Markov chain
denoted by X(t). To describe this chain, we define the
state x by (x1, s1, s2, . . . , sn, a1, a2, . . . , an), where:

• x1 is the number of the composite Web services
requests

• s1, s2, . . . , sn are the elementary Web services in
each queue.

• a1, a2, . . . , an) are the number elementary Web
services responses in each queue waiting for
merging and giving the responses to the clients.

As the system is complex, we give the behavior
equations only for the case that a CWS can be
decomposed into 1, 2 or 3 EWS (n = 3). We denote by s1,
s2 and s3 the elementary Web service that can compose
the CWS denoted by Sw. Thus we have the following
combinations:

• Sw is composed only by s1 with probability p1

• Sw is composed only by s2 with probability p2

• Sw is composed only by s3 with probability p3

• Sw is composed by s1 and s2 with probability p12

• Sw is composed by s1 and s3 with probability p13

• Sw is composed by s2 and s3 with probability p23

• Sw is composed by s1, s2 and s3 with probability
p123

Thus, the behavior equations are given as follows: x

→ CWS arrival

→ (x1 + 1, s1, s2, s3, a1, a2, a3)

with rate λ × 1x1<b

→ Decomposition of CWS into EWS 1

→ (x1 − 1, s1 + 1, s2, s3, a1, a2, a3)

with rate µλ × p1 × 1x1>0 × 1s1<b1

→ Decomposition of CWS into EWS 2

→ (x1 − 1, s1, s2 + 1, s3, a1, a2, a3)

with rate µλ × p2 × 1x1>0 × 1s2<b2

→ Decomposition of CWS into EWS 3

→ (x1 − 1, s1, s2, s3 + 1, a1, a2, a3)

with rate µλ × p3 × 1x1>0 × 1s3<b3

→ Decomposition of CWS into EWS 1 and EWS 2

→ (x1 − 1, s1 + 1, s2 + 1, s3, a1, a2, a3)

with rate µλ × p12 × 1x1>0 ×
1s1<b1 × 1s2<b2

→ Decomposition of CWS into EWS 1 and EWS 3

→ (x1 − 1, s1 + 1, s2, s3 + 1, a1, a2, a3)

with rate µλ × p13 ×
1x1>0 × 1s1<b1 × 1s3<b3

→ Decomposition of CWS into EWS 2 and EWS 3

→ (x1 − 1, s1, s2 + 1, s3 + 1, a1, a2, a3)

with rate µλ × p23 ×
1x1>0 × 1s2<b2 × 1s3<b3

→ Decomposition of CWS into EWS 1, EWS 2 and EWS 3

→ (x1 − 1, s1 + 1, s2 + 1, s3 + 1, a1, a2, a3)

with rate µλ × p123 ×
1x1>0 × 1s1<b1 × 1s2<b2 × 1s3<b3

→ End of service EWS1

→ (x1, s1 − 1, s2, s3, a1 + 1, a2, a3)

with rate µ1 × 1s1>0 × 1a1<B1

→ End of service EWS2

→ (x1, s1, s2 − 3, s3, a1, a2 + 1, a3)

with rate µ2 × 1s2>0 × 1a2<B2

→ End of service EWS3

→ (x1, s1, s2, s3 − 1, a1, a2, a3 + 1)

with rate µ3 × 1s3>0 × 1a3<b3

→ Response to CWS composed only by EWS1

→ (x1, s1, s2, s3, a1 − 1, a2, a3)
with rate µ × p1 × 1a1>0

→ Response to CWS composed only by EWS2

→ (x1, s1, s2, s3, a1, a2 − 1, a3)
with rate µ × p2 × 1a2>0

→ Response to CWS composed only by EWS3
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→ (x1, s1, s2, s3, a1, a2, a3 − 1)
with rate µ × p3 × 1a3>0

→ Response to CWS composed only by EWS1and EWS2

→ (x1, s1, s2, s3, a1 − 1, a2 − 1, a3)
with rate µ × p12 × 1a1>0 × 1a2>0

→ Response to CWS composed only by EWS1and EWS3

→ (x1, s1, s2, s3, a1 − 1, a2, a3 − 1)
with rate µ × p13 × 1a1>0 × 1a3>0

→ Response to CWS composed only by EWS2 and EWS3

→ (x1, s1, s2, s3, a1, a2 − 1, a3 − 1)
with rate µ × p23 × 1a2>0 × 1a3>0

→ Response to CWS composed only by EWS1, EWS2 and EWS3

→ (x1, s1, s2, s3, a1 − 1, a2 − 1, a3 − 1)
with rate µ × p123 × 1ai>0

4.3. Associated SAN
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Figure 2. stochastic Automata for elementary service execution

We present in this section how we specify our model
using SAN for the both considered models.

4.4. Case n is constant
Before giving the automata, we give the description of
the different synchronization in the following.

• Sλ is a synchronization which corresponds to the
fork which means that we decompose the request
(CWS) into n elementary Web services. Thus, its
rate is equal to λ.

λ
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Figure 3. stochastic Automata for elementary service execution

• Sµ1 is a synchronization which corresponds to the
service of elementary Web service from server 1.
Its rate is equal to µ1.

• Thus, we can note that Sµi is the synchronization
which corresponds to the service of elementary
Web service from server i for 1 ≤ i ≤ n. Hence, its
rate is equal to µi .

• Sν is a synchronization which corresponds to the
batch service of elementary Web service from all
servers. Thus, its rate is equal to ν.

For the considered model, we need several automata
as described in the following:

• We need one automaton for request arrival which
decompose the CWS into n EWS. The action is
done by the synchronization Sλ. The considered
automaton is given in figure 4.

• We describe one automaton for each servers where
are executed the elementary Web services. As we
consider that a CWS can be decomposed in n
EWS, we need n automata. These automata are
described in figure 3.

• We also need one automaton for each EWSwaiting
for the batch service. The batch service is provided
by synchronization Sν as shown in figure 5.

In the following, we give the associated stochastic
automata for the case where n is variable.
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4.5. Case n is variable
For a sake of readability, we represent only the case
where a CWS can be decomposed into 1, 2 or 3
EWS (n = 3) and where several automata are needed.
Before we describe this modeling, we give the used
synchronization:

• The synchronization S1, S2, . . . , S123 are used for
the decompositions of CWS into 1, 2 or 3 EWS
(n = 3).

• The synchronization Sµ1, Sµ2, Sµ3 are used for the
service of EWS

• The synchronization Sν1, Sν2, . . . , Sν123 are used
for the merge of 1, 2 or 3 EWS.

We present, now, the associated stochastic automata
network.

• We need one automaton for request arrival, which
decomposes the CWS into n EWS. The action is

2

λ λ λ λ

0 1 3 B

S

SS

SS

SS

S

S S S S1 1 1 1

2 2 2

123123123123

Figure 6. Automaton for request arrival

done by the synchronization Sλ. The considered
automaton is given in figure 6.

• We need one automaton for each server where
are executed the elementary Web services. As we
consider that a CWS can be decomposed in n EWS,
where n is variable, we use the corresponding
synchronization. These automata are described in
figure 7.

• We also need one Automaton for each EWS
waiting for the batch service. The batch service is
provided by synchronization Sν1, Sν2, . . . , Sν123 as
shown in figures 8, 9. and 10.

Once the automata are built, we develop, first, for
each automata the local and synchronization matrices.
Then we apply the compact formula.

Q =
n⊕
i=1

Fi +
c∑

j=1

n⊗
i=1

Si,j +
c∑

j=1

n⊗
i=1

Ri,j

The latter makes it possible to compute the rewards as
it is discussed in the next section.

5. Numerical results
In this paper, we are interested in assessing the response
times as it is most important Qos parameter in the
performance evaluation of Web services architecture.
We have solved the previous obtained models using the
numerical method (Gauss-Seidel) to obtain the steady-
state distribution which provides the performance
measures. The latter give the response times and the
mean requests ratio of the system. In figure 11, we
have plotted the response times results according to
the system load by considering that a composite Web
service can be decompose into n elementary Web
services where n is a constant. As we expected, the
response times increase when the system load increases.
In figure 12, we have considered the basic model (n
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Figure 11. Mean Response times for the case n is constant.
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Figure 12. Mean Response times for both cases.

times according to the system load are reported, thus
comparing both models. In figure 13, we compare
the performances of both models by computing the
mean request ratio of both models. As we can see the
variability of the number of composed elementary web
services has no effect on the behavior of the system
comparing where n is fixed.
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Figure 13. Mean Requests ratio of both cases.

6. Conclusion
The objective of this paper was to present the SAN
tool and to show how it can be used to evaluate
Web service architectures. Indeed, the proliferation of
Web services on the Internet and their interoperable
nature have shown very quickly the importance
of having the QoS in their operating model. This
enables the distinction between them and provides the
users with tools to select those which are the most
suitable for their needs. The performance evaluation
of such systems is therefore crucial to guarantee their
reliability and their QoS requirements. Because of the
complexity in the modeling of such requirements, new
tools and methods are therefore needed to handle
complex synchronization as well as variable number of
elementary services.
In this paper we have investigated the use of

stochastic automata networks and we have shown how
we can use this formalism to model and evaluate
these systems. The main objective was to compute
composite Web services response times when the
number of invoked elementary Web services can be
variable. Future work will lead us to generalize the
study by taking into account more complex patterns
(e.g. hierarchical composite Web services). Secondly, we
plan to consider time requirements in the modeling as
well as in the performance evaluation of Web service
architectures.
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