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Abstract

Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information
and communication technologies. To accelerate industrial application developments, the use of web services
for networking applications is seen as important in IoT communications. In this paper, we present a RESTful
web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data
collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN
nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes. We describe
the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect
sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of
our proposed scheme.
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1. Introduction
In recent years, the Internet-of-things (IoT) has emerged
as an important research focus of both industry and
academia. The concept of IoT can be traced back to
the pioneering work done by Kevin Ashton in 1999
[1] on using radio frequency identification (RFID) tags
in supply chain management. Soon after, this term
became popular and is well known as a new type
of communication system in which the Internet is
extended to the physical world via wireless sensor
networks (WSNs) [2].
With the rapid development of IoT technologies in

the past few years, a wide range of intelligent and
tiny sensing devices have been massively deployed in
a variety of vertical applications, and several major
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standardization alliances or forums have emerged
based on the interests of technology developments
and commercial markets. Generally, sensing devices
are constrained by limitations in energy resources
(battery power), processing and storage capability, radio
communication range and reliability, etc., and yet
their deployment must satisfy the real-time nature
of applications under little or no direct human
interactions. Over the past decades, the research
community has invested substantial efforts to develop
networking systems called WSNs that meet the
challenges stated above. With large-scaled deployments
of WSNs and their interconnection into the global IoT,
a new ecosystem supporting ubiquitous deployment of
smart applications has been formed.

Technically speaking, current IoT solutions can be
categorized as non-IP based or IP based solutions. Most
off-the-shelf solutions belong to the former, especially
those from some well-known standard alliances, such
as ZigBee [3], Z-Wave [4], INSTEON [5] and WAVE2M
[6]. However, most of these non-IP solutions are
isolated within their own verticals, which hinder the
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global IoT development due to incompatibility across
heterogeneous communication systems.
Motivated by the fact that the Transmission Control

Protocol (TCP)/Internet Protocol (IP) suite is the
de-facto standard for computer communications in
today’s networked world, IP based solutions could
be the future for networks that form the IoT [7].
In order to tackle the technical challenges, such
as extensive protocol overheads against memory
and computational limitations of sensor devices, the
Internet Engineering Task Force (IETF) has taken
the lead to develop and standardize communication
protocols for resource constrained devices, including
Routing Protocol for Low Power and Lossy Networks
(RPL) [8], and Constrained Application Protocol
(CoAP) [9]. Besides, the IP Smart Object Alliance
(IPSO) [10] also actively promotes the use of IP version
6 (IPv6) embedded devices for machine-to-machine
(M2M) applications. Although it is still in its early stage
to be commercialized, there are already a substantial
number of IP-based WSN solutions supported by
growing availability of products and systems.
To promote organic-growth of IoT systems, open

technologies are preferred for integration into IoT,
and IPv6-based solutions are promising. In order
to well-maintain sensor devices as well as facilitate
the efficient development of IoT applications, e.g., to
monitor the performance of sensor devices and send
commands to sensor nodes, trusted-entities in an IoT
system should be provided with a reliable and efficient
way to remotely monitor and control WSNs without
consuming significant resources. We take an approach
based on the Representational State Transfer (REST)
paradigm [11] whereby a lightweight web server can
be embedded in resource constrained sensor devices.
In essence, not only can the proposed method integrate
IoT devices into the network, but also connect them to
the “web".
The following summarizes our contributions and key

results:

• We present an implementation of the full IPv6
protocol stack on WSN nodes to enable wire-
less connectivity among sensor devices. Specifi-
cally, the 6LowPAN/IPv6/RPL/UDP/CoAP pro-
tocol stack has been deployed on WSN nodes
employing the IEEE 802.15.4 radio platform.

• We integrate IEEE 802.15.4 connectivity into
an open-platform gateway and implement the
Hypertext Transfer Protocol (HTTP)-CoAP proxy
using OpenWrt, an open-source operating system
based on Linux in the gateway to realize remote
access from any IP terminal to IPv6 sensor
devices.

• We propose two alternative access methods to
enable REST based applications with sensor
devices. In the direct access method, the user can
directly visit any sensor devices by sending CoAP
request, whereas for the proxy access method, the
user can use the normal HTTP requests to access
sensor devices, but the gateway needs to help
convert the HTTP requests to CoAP requests and
vise versa.

The remainder of this paper is organized as follows.
A survey of related works is provided in Section 2.
The implementation of the RESTful protocol stack in
WSNs is introduced and analyzed in Section 3. The
prototype implementation of the remote access schemes
is presented in Section 4 and performance evaluation
results are shown in Section 5. Finally, concluding
remarks are given in Section 6.

2. Related Works
Recent technology trends in the Web Services (WS)
are primarily focused on two different architectures,
namely Big WS (or WS-*) and RESTful WS. Cesare et
al. in [12] compare these two architectures and argue
that the RESTful WS can create a loosely coupled
system that is better suited for simple and flexible
integration scenarios, whereas WS-* can provide more
advanced quality-of-service support for enterprise-class
applications.
Many recent works are dedicated to the development

of REST-style IoT systems to enable easy access
from application servers to wireless sensor devices,
since the REST-style device would not require any
additional application programming interface (API) or
descriptions of resources/functions. REST is a general
architectural design style for developing lightweight
WS to access resources over the Internet using standard
protocols. It provides a design concept that all the
objects in the Internet are abstracted as resources. Each
resource corresponds to a unique identity. Through a
general interface, all the operations on a resource do
not change its identity as they are stateless. REST-
style can make applications as sharable, reusable
and loose coupling services. The uniform operation
and interaction mechanisms on resources can help
developers or decision makers to quickly react to
market changes.
Weijun et al. in [13] propose an adaptation layer

to integrate RESTful WS infrastructures, which can
enable connectivity of embedded devices with mobile
Internet applications. Vlad in [14] proposes a resource
discovery mechanism based on RESTful principles,
which enables a plug and play experience in web
of things. Dominique et al. in [15] and [16] also
propose a RESTful mechanism to integrate wireless
energy monitors with application servers to build
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mashup applications. However, most of the embedded
devices considered in the above works are not IP
based, which means that a multiprotocol translation
gateway is needed. As discussed in [2], network
protocol translation can bring more complexity than
just a packet format conversion, which usually involves
semantics translations between different mechanisms
and logics for routing, quality of service, security, etc.
There are some recent papers focusing on the imple-

mentation of IPv6 protocol stacks on various hard-
ware platforms. Thomas et al. in [17] demonstrate an
intelligent container testbed in which CoAP is imple-
mented on the embedded operating system TinyOS
[18]. Moreover, a couple of other implementations of
CoAP are also available on the Contiki platform [19]-
[21]. However, most of these implementations are only
for the purpose of connectivity evaluations on different
operation platforms and usually assume that a virtual
gateway, which is usually a IEEE 802.15.4 USB dongle
connected to a personal computer (PC), is mounted as a
root node to collect upstream packets from leaf nodes.
Different to the above works, our contribution in

this paper is that we consider both IPv6 protocol
implementation on sensor devices as well as an
integrated gateway solution to allow any normal
Internet device (e.g., PC and smart phone) to access an
IPv6 sensor device. Specifically, we integrate real-world
things into the existing web by turning real objects into
RESTful resources that can be retrieved directly using
HTTP.

3. A RESTful Protocol Stack for WSN
We employ the IPv6 based protocol stack for WSNs.
Some protocols within this stack, which have been
developed for resource constrained networks, are
introduced as follows.

3.1. 6LoWPAN
From the very beginning, IPv6 has been selected
by IETF as the only choice to support wireless
communications in IoT. Its key features such as
universality, extensibility and stability, etc., have been
designed to overcome many known problems in
the existing version of IP, i.e., IP version 4, and
therefore IPv6 is expected to be widely adopted for
the future Internet. To develop a standard that enables
IP connectivity in resource constrained WSNs, the
6LoWPAN working group [22] was established to work
on protocol optimization of IPv6 over networks built on
top of IEEE 802.15.4 [23]. Specifically, the 6LoWPAN
protocol considers how to integrate IPv6 with the
medium access control (MAC) and physical (PHY)
layers of IEEE 802.15.4.
In fact, there are two key challenges to run IPv6

over the IEEE 802.15.4 network. On the one hand,

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

6LowPAN

IPv6

TCP/UDP

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

6LowPAN

IPv6

TCP/UDP

sensor sensor

Figure 1. The position of 6LoWPAN in the IPv6 protocol stack

the maximum frame size supported by IEEE 802.15.4
is only 127 Bytes. Considering that significant header
overheads are occupied by layered protocols (e.g.,
MAC layer header, IPv6 header, security header and
transmission layer), the payload size available for the
application layer is very limited. On the other hand,
since the minimum value of maximum transmission
unit (MTU) specified by IPv6 is 1280 Bytes (RFC
2460), if MTU supported by the under layer (i.e., IEEE
802.15.4) is smaller than this value, the data link
layer must fragment and reassemble data packets. In
order to address these issues, 6LoWPAN incorporates
an adaptation layer right above the data link layer
to fragment large IPv6 packets into small pieces
required by the under layer and reassemble them at the
receiving end. Moreover, 6LoWPAN specifies stateless
compression methods for IP header in order to reduce
the overhead of IPv6. The position of 6LoWPAN in the
IPv6 protocol stack is shown in Figure 1.
Note that the fundamental purpose of header

compression methods is to remove the redundant
information from the header by using compression
encoding schemes. Although the IPv6 header takes 40
Bytes, most of information bits can be compressed in
the link layer. The compression methods for each field
of IPv6 header are as follows:

1. Version (4 bits): The value is 6. It can be omitted
in the IPv6 network.

2. Traffic Class (8 bits): It can be compressed by
compression encoding methods.

3. Flow label (20 bits): It can be compressed by
compression encoding methods.

4. Payload Length (16 bits): It can be omitted
because the length of IP header can be obtained
through the Payload Length field in the MAC
header.

5. Next Header (8 bits): It can be compressed by
compression encoding methods if the next header
is assumed to be one of UDP, ICMP, TCP or
extended header.
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6. Hop Limit (8 bits): This is the only field that
cannot be compressed.

7. Source Address (128 bits): It can be compressed by
omitting the prefix or Interface Identifier (IID).

8. Destination Address (128 bits): It can be com-
pressed by omitting the prefix or IID.

In order to implement the stateless compression
on IPv6 header, the 6LoWPAN working group has
specified two compression algorithms: LOWPAN_HC1
(RFC4944) [24] and LOWPAN_IPHC (RFC6282) [25].
HC1 algorithm is applicable to networks using
link-local addresses. The prefix of a node’s IPv6
address is fixed as FE80::/10 and IDD can be
obtained via the MAC address. Since this algorithm
cannot efficiently compress global/routable addresses
or broadcast addresses, it cannot be used to connect
a 6LoWPAN with the Internet. LOWPAN_IPHC,
however, is proposed to improve the efficiency of
compressing routable addresses.
Both LOWPAN_HC1 and LOWPAN_IPHC define an

8-bit dispatch field after the MAC header. Its possible
values as shown in Table I determine the specific format
of the type-specific header and algorithm. For example,
if the first 8 bits is 01000010, the following filed is the
header corresponding to the LOWPAN_HC1 algorithm;
if the first 3 bits is 011, the following field is the header
corresponding to the LOWPAN_IPHC algorithm.

Table 1. 6LoWPAN dispatch field

Type Header type
00 xxxxxx NALP - Not a LoWPAN frame
01 000001 IPv6 - Uncompressed IPv6 Addresses
01 000010 LOWPAN_HC1 - LOWPAN_HC1 com-

pressed IPv6
. . . Reserved

01 010000 LOWPAN_BC0 - LOWPAN_BC0
broadcast

. . . Reserved
01 XXXXXX IPv6 header compressed by LOW-

PAN_IPHC
01 000000 ESC-There are others subsequent

header
10 xxxxxx MESH - Mesh Header
11 000xxx FRAG1- Fragmentation Header (first)
11 100xxx FRAGN - Fragmentation Header (sub-

sequent)

The dispatch field is immediately followed by the
type-specific header, which consists of some indicating
bits. The indicating bits indicate specific compression
schemes for IPv6. Readers can refer to RFC4944 for
more details.

In addition to stateless IPv6 header compression,
6LoWPAN also includes other relevant standards
including schemes supporting mesh routing, simplified
IPv6 neighbour discovery protocol, use cases and
routing requirements. In summary, the 6LoWPAN
working group provides the fundamental of IETF on
IoT communications.

3.2. RPL
IETF Routing over Lossy and Low-power Networks
working group (RoLL) was established in February
2008. It focuses on routing protocol design and is
committed to standardize the IPv6 routing protocol for
lossy and low power networks (LLN). Its tasks start
with the routing requirements of various application
scenarios. So far, the routing requirements of four appli-
cation scenarios have been standardized, i.e., Home
Automation (RFC5826), Industrial Control (RFC5673),
Urban Environment (RFC5548) and Building Automa-
tion (RFC 5867).
In order to develop suitable standards for LLN,

RoLL first provides an overview of existing routing
protocols for wireless sensor networks. The literature
[26] analyzes the characteristics and shortcomings
of the relevant standards and then discusses the
quantitative metrics for constructing routing in the
routing protocol. RFC6551 [27] introduces two kinds
of quantitative metric: node metrics including node
state, node energy and hop count, and link metrics
including throughput, latency, link reliability, expected
transmission count (ETC) and link colour object. In
order to assist dynamic routing, nodes can incorporate
objective functions to determine the rule for path
selection based on the quantitative metrics.
Based on the results of routing requirements and

quantitative static link metrics, RoLL has developed a
routing protocol for LLN (RPL) as specified in RFC6550
[28]. RPL supports three kinds of traffic flows including
point-to-point (between devices inside the LLN), point-
to-multipoint (from a central control point to a subset
of devices inside the LLN) and multipoint-to-point
(from devices inside the LLN towards a central control
point). RPL is a distance-vector routing protocol, in
which nodes construct a Directed Acyclic Graph (DAG)
by exchanging distance vectors. Through broadcasting
routing constraints, the DAG root node (i.e., central
control point) filters out the nodes that do not meet the
constraints and select the optimum paths according to
the metrics.

3.3. CoAP
CoAP, as specified by the IETF Constrained RESTful
Environments working group (CoRE) [9], is a special-
ized web transfer protocol for resource constrained
nodes and networks. CoAP conforms to the REST
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Application

Request/Responses

Messages

UDP

CoAP

Figure 2. CoAP protocol stack

style. It abstracts all the objects in the network as
resources. Each resource corresponds to a unique Uni-
versal Resource Identifier (URI), based on which the
resources can be operated upon in a stateless manner
using commands including GET, PUT, POST, DELETE
and so on.
Strictly speaking, CoAP is not a HTTP compression

protocol. On the one hand, CoAP realizes a subset
of HTTP functions and is optimized for constrained
environments. On the other hand, it offers features such
as built-in resource discovery, multicast support and
asynchronous message exchanges.
Unlike HTTP, CoAP utilizes a datagram-oriented

transport protocol underneath, such as UDP. In order
to ensure reliable transmissions over UDP, CoAP
introduces a two-layer structure as shown in Figure
2. The messaging sublayer is used to deal with
asynchronous interactions using UDP. Specifically,
there are 4 kinds of CoAP messages:

1. Confirmable (CON): ACK is needed.

2. Non-confirmable (NON): ACK is not needed.

3. Acknowledgment (ACK): To represent that a
Confirmable message is received.

4. Reset (RST): To represent that a Confirmable
message is received but can’t be processed.

The Request/Response interaction sublayer is used
to transmit resource operation requests and the
request/response data. As a summary, CoAP has the
following features:

• Constrained web protocol fulfilling M2M require-
ments.

• Asynchronous message exchanges.

• Low header overhead and parsing complexity.

• URI and Content-type support.

• Simple proxy and caching capabilities.

• Built-in resource discovery.

Figure 3. Direct access vs. Proxy access

• UDP binding with optional reliability supporting
unicast and multicast requests.

• A stateless HTTP-CoAP mapping, allowing a
proxy to provide access to CoAP resources via
HTTP in a uniform way and vice versa.

3.4. HTTP-CoAP protocol implementation
Applying REST-style network structure in WSN can
largely facilitate connection between WSN and the
Internet. By applying CoAP protocol on wireless
sensors devices, Internet services can access WSNs as
resources directly or via gateway as a proxy. Basically,
there are two methods to enable remote access from an
Internet client to a sensor device.

Direct access. Direct access means that the an Internet
user accesses a WSN through a gateway that only
implements protocol conversions between the IPv6
network layer and 6LoWPAN, but does not process
the upper layers protocols (e.g., CoAP). As an example
shown in Figure 3 (a), a sensor node in WSN can be
accessed through an IPv6 address and the gateway
only needs to implement conversion between IPv6 and
6LoWPAN, which significantly reduces the processing
overhead.

Proxy access. Proxy access means that an Internet user
accesses a WSN through a proxy that can convert an
incompatible data format from outside networks into a
WSN compatible data format. For example, in our case,
the proxy can have functions of protocol conversion
from a HTTP request to a CoAP request, and vice
versa, payload conversion and blockwise segmentation
of large data packets (e.g., those representing an image),
etc.
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Figure 4. System Architecture

The advantage of this method is that current Internet
services can easily access WSN resources without
any changes, because of the existence of the proxy
gateway. Moreover, since low power sensor nodes
cannot support TCP efficiently, the proxy mechanism
can buffer and process the requests to avoid TCP
time out. However, the protocol conversion increases
the complexity of the gateway and thereafter affects
communication efficiency. Figure 3 (b) illustrates the
protocol conversion between HTTP and CoAP via a
gateway.

4. Prototype Implementation
In this section, we present our prototype to illustrate
the implementation of the RESTful access methods
to IPv6 wireless sensor devices, considered as the
representative of future embedded devices in IoT. A
RESTful gateway supports both IEEE 802.11 Wi-Fi and
IEEE 802.15.4 interfaces for communications. The web
resources in sensor devices are accessible through the
RESTful APIs. The system architecture is shown in
Figure 4, where a PC acts as a client to retrieve sensor
resources via the RESTful gateway.

4.1. Sensor node
We deploy wireless sensor devices to monitor air
temperature and humidity, detect movements and take
photos. All these sensors are equipped with the same
ATmega1284P MCU and AT86RF231 radio transceiver
to support 250kbps data transmissions at 2.4GHz
using the IEEE 802.15.4 protocol. To support IPv6
connectivity, all the sensor devices run the Contiki
v2.6 operating system and incorporate 6LowPAN, IPv6
and RPL protocols on top of IEEE 802.15.4. The web

Figure 5. A snapshot of sensor platform

service running on the sensor devices relies on the
application protocol CoAP. A snapshot of the sensor
platform is illustrated in Figure 5 and the detailed
technical specifications are shown in Table II.

4.2. RESTfull Gateway
To ease access from Internet applications to sensor
resources, especially for those Internet users without
CoAP support, we integrate IEEE 802.15.4 connectivity
into an open-platform gateway and port the HTTP-
CoAP proxy implementation to the OpenWrt, the
operation system of the gateway, to realize remote
access from an ordinary IP terminal to an IPv6 sensor
device. Figure 6 gives the hardware architecture of
the RESTful gateway, which technical specifications are
provided in Table III.
The HTTP-CoAP (HC) proxy provides translation and

mapping between HTTP and CoAP protocol. CoAP can
be directly mapped to HTTP, because CoAP actually
implements a subset of HTTP functions. The mapping
is performed only at the Request/Response interaction
sublayer of the CoAP protocol and is invisible to the
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Table 2. Technical specifications of sensor device

Parameters Note
CPU
Performance
Internal storage 128KB
External
storage

16KB

EEPROM 4KB
Serial commu-
nication

UART / USART TTL Transmis-
sion Level

A/D converter 10-bit ADC 8 channels, 0-
3V input

Other
Interfaces

Digital I/O,
I2C,SPI

Maximum Cur-
rent

18mA Work mode

2uA Sleep mode
RF transceiver
Frequency band 2400-2485MHz ISM global free

band
Data rate 250Kbps/

1000Kbps/
2000Kbps

RF power 3.2 dBm
Receiving sensi-
tivity

-104 dBm

Adjacent Chan-
nel Suppression

36 dBc +5M Channel
bandwidth

34 dBc -5M Channel
bandwidth

Outdoor trans-
mission

≥ 300m

Indoor
transmission

≥ 10m

Maximum Cur-
rent

12mA Receiving Mode

14mA Tx -3dBm
Extended inter-
face

51 pins

BROADCOM

GCM6358

MIPS CPU

WSN radio

Radio: At86RF231

MCU: Atmega1287

802.15.4

Ethernet portUSB port

Rechargeable

battery

RESTful gateway

WiFi Radio

BROADCOM

BCM4318

802.11b/g

RAM 32MB

FLASH 16MB

Figure 6. Hardware architecture of gateway

Table 3. Technical specifications of gateway

Parameters Note
CPU frequency 300MHz
RAM 32MB
Flash 16MB
Serial commu-
nication

UART /
USART

TTL Transmission
Level

A/D converter 10-bit ADC 8 channels, 0-3V
input

USB HOST 2
RJ45 4
WiFi 1 IEEE 802.11abg
OS OpenWrt v12.09-beta2
Protocol IPv6, IPv4

HTTP-CoAP Mapping 

HTTP Client 

CoAP Request/Response 

libcoap 

CoAP Server 

HTTP Request 

CoAP Request 

CoAP Message 

CoAP Message CoAP Message 

CoAP Message 

CoAP Response 

HTTP Response 

H
C

 P
ro

x
y

 

UDP/IPv6 

TCP/IPv4/IPv6 

Figure 7. Interaction process of HC proxy

messaging sublayer. There are two kinds of mapping:
CoAP-to-HTTP andHTTP-to-CoAP. In our case, we only
realize HTTP-to-CoAP mapping, which is implemented
by specifying CoAP-URI as the request address for
transmitting HTTP request to the HTTP-CoAP proxy.
Note that compared to CoAP-to-HTTPmapping, HTTP-
to-CoAP mapping is more complex since it is necessary
to determine whether to ignore the content or report an
error by checking unsupported HTTP request methods,
response codes, content-types and options.
In our prototype gateway, the HC proxy is imple-

mented based on libcoap [29] which is an open-source
C-Implementation of CoAP and conforms to GPL v2 or
higher licenses.
The interaction process of the HC proxy is shown in

Figure 7. Specifically, for each of the HC proxy layers,
we have the following implementations:

libcoap layer. libcoap implements the CoAP messaging
sublayer based on UDP. It defines CoAP message
structure and methods to operate CoAP messages.
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CoAP Request/Response layer. The CoAP
Request/Response layer implements the function of the
Request/Response interaction sublayer in Figure 2 by
encapsulating the data structure and methods relevant
to CoAP Requests and Responses. It is responsible to
transmit CoAP requests in the form of CoAP messages
through the messaging sublayer and generate CoAP
response based on received CoAP messages. Because
CoAP messaging sublayer adopts unreliable UDP,
certain issues need to be solved in order to implement
a reliable transmission, including CoAP message
acknowledgement, message retransmission for timeout,
message process, asynchronous message process and
segmented message process, etc. The following code
header is provided to illustrate the implementation of
CoAP Request/Response.

1 / ∗ r e qu e s t . h ∗ /
2

3 typedef s t ruc t {
4 unsigned char msgtype ;
5 method_t method ;
6 coap_ l i s t _ t ∗ op t l i s t ;
7 s t r proxy ;
8 unsigned short proxy_port ;
9 s t r payload ;

10 int ready ;
11 char l p o r t _ s t r [NI_MAXSERV]
12 coap_uri_t ur i ;
13 int f l a g s ;
14 coap_block_t block ;
15 unsigned int wait_seconds ; / ∗

d e f a u l t t imeout in s e conds ∗ /
16 coap_t ick_t max_wait ; / ∗

g l o b a l t imeout ( changed by
s e t _ t imeou t ( ) ) ∗ /

17 unsigned int obs_seconds ; / ∗
d e f a u l t o b s e r v e t ime ∗ /

18 coap_t ick_t obs_wait ; / ∗ t imeout f o r
cu r r en t s u b s c r i p t i o n ∗ /

19 } coap_request_t ;
20

21 void coap_request_method ( coap_request_t
∗ request , char ∗ arg ) ;

22 void coap_request_uri ( coap_request_t ∗
request , char ∗ arg ) ;

23 int coap_request_proxy ( coap_request_t ∗
request , char ∗ arg ) ;

24 void coap_option_content_type (
coap_request_t ∗ request , char ∗ arg ,
unsigned short key ) ;

25 int coap_option_blocksize ( coap_request_t
∗ request , char ∗ arg ) ;

26 void coap_option_subscribe (
coap_request_t ∗ request , char ∗ arg ) ;

27 void coap_option_token ( coap_request_t ∗
request , char ∗ arg ) ;

28 int coap_send_request ( coap_request_t ∗
request , void ∗ context ) ;

29

30 void coap_ in i t_reques t ( coap_request_t ∗
request ) ;

31 void coap_reg i s ter_reques t_handler ( int
( ∗ handler ) ( coap_pdu_t ∗pdu , void ∗
context ) ) ;

32 void coap_reg is ter_request_data_handler (
int ( ∗ handler ) ( const unsigned char
∗data , s i z e _ t len , void ∗ context ) ) ;

HTTP-CoAP mapping layer. This layer implements
mappings from HTTP requests to CoAP requests and
vice versa. When converting a HTTP request to a CoAP
request, the HC proxy needs to convert the HTTP
request method, URI, header/option and payload,
respectively. If a proxy encounters an error, it has
to generate the corresponding error response. The C
function defined for handing the HTTP-CoAP mapping
is also provides as follows.

1 int coap_response_map_code ( int code ) ;
2 char ∗ coap_response_map_content_type ( int

content_type ) ;
3

4 BOOL coap_proxy_handler (SOCKET
localwebuser , char ∗ szLineBuffer ,
int nLineBuffer )

5. Performance Evaluations
In this section, we provide evaluation results of
the prototype system. Especially, we experimentally
evaluate the performance over the prototype system at
two layers: the routing layer where the round trip times
(RTTs) and packet loss rates of multi-hop transmissions
in the WSN are measured and the application layer
where web resources of sensor devices are retrieved
using RESTful methods.

5.1. System configuration
Our prototype system is composed of three different
sensor devices, one HC proxy gateway and one PC for
the tests. In order to ease the setup of WSN in a multi-
hop fashion, we manually assign IPv6 addresses for the
sensor devices as follows:

Camera sensor 2001:2::19
Humidity & temperature sensor 2001:2::14
Approach detecting sensor 2001:2::16

We deploy the prototype system in an open office
area. The HC proxy gateway and sensor devices are
connected wirelessly via IEEE 802.15.4 over channel
26. The PC client is connected to the gateway through
the Wi-Fi link. The network topology is built with
a maximum number of 2 hops, where the camera
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Remote Access Wireless Connection

Figure 8. Network topology of prototype system

Figure 9. Routing table and RTTs evaluations

sensor and humidity&temperature sensor are directly
connected to the gateway over single hops, and the
approach detecting sensor is the leaf node of the
humidity&temperature sensor and it is two hops away
from the gateway. Figure 8 provides the network
topology of the prototype system.

5.2. RTTs and Packet loss evaluations of RPL routing
Wireless sensor networks should be capable of forming
multi-hop transmissions among peer sensor devices.
In this evaluation, the RTTs and packet loss rate in a
single-hop and multi-hop scenarios using RPL routing
are measured. After setting up of the system, we use
the simple ping commands to evaluate the RTTs from
the PC client to the humidity&temperature sensor and
approach detecting sensor, respectively. The payload
size for each transmission packet is 32 bytes and the
RTTs results are averaged over 100 measurements.
Figure 9 (a) shows the routing table via the secure
shell client. As can be seen from Figure 9 (b), for one-
hop transmissions, the average RTTs is 24ms. When the
routing extends to two hops, the results as shown in
Figure 9 (c) are degraded to 43ms average RTTs.

To further evaluate the performance of a large scale
network, we set up another test to evaluate the packet
loss rate in a multi-hop environment. The test is carried
out in an open office area with strongWi-Fi background
noise and lowest possible WSN radio frequency output
power to ensure a multi-hop fashion, which makes
a sensor device can only communicate to each other
within around 30 cm.
A maximum number of 6 hops can be obtained

by optimizing the communication system. To retrieve
the onboard resources via GET request (i.e., <
/.well-known/core >) over the same number of mea-
surements, Table 4 shows the packet loss rate in a multi-
hop scenario. We can observe that the packet loss rate
increases dramatically with an increasing number of
hops, because of severe environmental interference and
channel congestions, etc. Moreover, additional config-
urations to ensure a multi-hop transmission, such as
one way communication, low output power and RPL
settings, also contribute to the high loss.

Table 4. Packet loss rate in a multiple-hop network

Hop 2 Hop 3 Hop 4 Hop 5 Hop 6
Received 2020 1704 1173 1112 944
Lost 161 474 1003 1068 1234
Packet
loss
rate

7.38% 21.76% 46.09% 48.9% 56.65%

5.3. RESTful method to retrieve sensor resources

To illustrate IoT applications, we initiate a trial
to ’GET’ an image from the camera sensor device.
Specifically, we use both proxy access and direct
access methods to retrieve the sensor data via
the gateway. Figure 10 (a) shows the proxy access
result by sending a HTTP GET request along with
the URI http://[2001:2::19]/camera. The HC
proxy then converts the HTTP request to CoAP
request and forwards the request to the camera
sensor. As a comparison, Figure 10 (b) shows the
direct access result by sending a CoAP request
coap://[2001:2::19]:5683/camera directly from
the CoAP browser [30] on the PC. Since the picture
takes about 27 kBytes, which exceeds the payload size
defined by the CoAP client, the CoAP protocol adopts
the blockwise transfer by dividing the response into
64-Byte blocks in such a way that the web server can
handle each block transfer separately, with no need
for a connection setup or other server-side memory of
previous block transfers. In summary, both methods
show an acceptable performance.
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Figure 10. HTTP vs. CoAP methods

6. Conclusion

We have implemented the 6LowPAN/IPv6/RPL/CoAP
protocol stack on an IEEE 802.15.4 radio platform to
enable wireless sensor communications. Furthermore,
by integrating IEEE 802.15.4 connectivity and HTTP-
CoAP proxy into an open-platform gateway, we have
realized remote access from any IP node to IPv6 sensor
devices. We have presented performance evaluations,
which have shown that the IP based solution is
promising to drive IoT development. In the future
work, we plan to design a more robust and reliable IP
solution for IoT. Especially, how to deploy large scale
networks with decent performance is a critical issue and
we need to continue to optimize both hardware and
software implementations. Moreover, other issues, such
as device management and control of sensor devices,
can also be explored via RESTful methods.
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