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Abstract

In this paper†, we propose a low-density parity check (LDPC) code design scheme that improves 
the performance of the existing genetic algorithm-based LDPC scheme. In particular, we enhance the 
performance of the LDPC code by removing the girth-4 property of the parity check matrix and utilizing 
the min-sum decoding algorithm instead of the belief propagation decoding algorithm. In addition, we 
consider various short block-length scenarios, specifically focusing on 64-bit and 128-bit lengths, which are 
well-suited for IoT systems. Then, we evaluate the block error rate (BLER) of the LDPC code over the binary 
input additive white Gaussian noise (BI-AWGN) channel. Finally, extensive simulation results indicate that 
our proposed approach achieves more than 11% gain in terms of BLER compared with the benchmarked 
schemes.
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1. Introduction
Ultra-reliable low-latency communication (URLLC) is 
one of the key features of the fifth-generation (5G) 
and sixth-generation (6G) wireless networks, as well 
as Internet of Things (IoT) systems [2]. URLLC 
caters to applications with critical needs for extremely 
high transmission success rates, minimal delays in 
data delivery from source to destination, and the 
adaptability to handle packets of diverse lengths. These 
requirements make URLLC a challenging technology to 
implement, particularly for the design of forward error 
correction (FEC) encoding and decoding schemes in the 
physical layer [3].

FEC is a powerful technique used to control 
errors in data transmission over unreliable or noisy 
communication channels where redundancy codes are 
added to the information data to allow receivers to 
detect and correct possible errors, thus enhancing the
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data’s reliability. Consequently, by using strong FEC 
codes in short-packet transmission systems, we can 
achieve high reliability and low latency requirements 
for URLLC applications [4]. There are two main types of 
FEC, namely block codes and convolutional codes. One 
of the most popular types of block codes is low-density 
parity check (LDPC) codes, which play a vital role in 
improving the reliability of the data [4, 5]. In particular, 
LDPC codes first proposed by Robert Gallager in the 
1960s [6], are known for their high error-correcting 
capabilities and have been shown to approach the 
Shannon limit, which is the theoretical maximum 
rate at which data can be transmitted over a noisy 
channel without errors. Advantageously, LDPC codes 
lend themselves well to hardware implementation 
because of their inherent simplicity. This stems from 
the structure of their parity-check matrix, which 
is characterized by sparsity. In simpler terms, this 
matrix contains only a few non-zero elements in 
each row and column. This sparsity translates to 
a reduction in the complexity of the hardware 
required to implement LDPC code processing. This 
makes them highly appropriate for hardware resource-
constrained devices in IoT systems [7, 8]. This shift 
is also reflected i n t he d ecision b y t he 3 GPP (3rd
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Generation Partnership Project) to adopt LDPC codes 
instead of Turbo codes within their New Radio (NR) 
technology standard [9]. Furthermore, beyond cellular 
applications, LDPC codes are even used in near-earth 
and deep-space communication systems [10].

Prominent researchers from both academic institu-
tions and private businesses have conducted extensive 
research on LDPC codes for short-block transmission, 
but these studies still have some limitations. For exam-
ple, while the method proposed in [11] delivers good 
performance, it requires the user to have the experience 
to be effective. In another work [12], the proposal uses 
a combination of cyclic redundancy check (CRC) code 
and LDPC code for error correction. However, research 
in [12] doesn’t work well for cases where the decod-
ing algorithm utilizes classical iterative decoding with 
numerous iterations. In another work [13], this pro-
posal suggests replacing ordinary LDPC codes with NB-
LDPC codes (Non-Binary Low-Density Parity Check), 
because NB-LDPC codes offer significant benefits, par-
ticularly when dealing with variable information block 
lengths or transmission environments prone to burst 
errors. However, complex computation and high mem-
ory requirements of NB-LDPC codes make them less 
suitable for applications that use minimal hardware, 
like the IoT applications [14]. Consequently, it appears 
that no research has yet discovered an optimal method 
for enhancing LDPC code performance in ultra-short 
block transmissions within ultra-reliable low-latency 
communication scenarios.

Referring to the recent LDPC-related surveys, the 
work in [15] provides an overview as well as a per-
formance comparison between three error-correcting 
codes, including LDPC, Polar, and Turbo codes in 
terms of implementing their decoding algorithms 
in application-specific integrated circuits (ASIC) for 
mobile communication systems. In another research [7], 
the authors present a comprehensive survey that sum-
marizes and compares different L DPC d ecoding algo-
rithms based on key features, like error-correcting per-
formance. In addition, the authors emphasize the neces-
sity for versatile and computationally efficient decoding 
schemes, which can be utilized for both fixed and 
varying channel conditions. Furthermore, the authors 
propose to utilize optimization algorithms, linear pro-
gramming, and parameter estimation to enhance LDPC 
decoding performance in the future. On the other hand, 
the authors in [16] present a comprehensive brief of 
the genetic algorithm (GA) as well as its benefits and 
drawbacks. In addition, the authors in [17] propose to 
utilize the genetic algorithm to optimize the whitelist 
of the industrial firewall for industrial control systems. 
In this system, the genetic algorithm plays a crucial role 
in supporting the vector machine (GA-SVM) algorithm 
to automatically learn the rules, which improves the 
efficiency of  in dustrial co ntrol sy stems. Additionally,

in [18], an LDPC code design scheme for the short-
packet transmission systems is proposed. This proposal 
is constructed based on the well-known genetic algo-
rithm, similar to the proposal for polar codes in [19]. 
Specifically, the proposed scheme in [18] directly opti-
mizes the parity check matrix of the LDPC code. In 
the short-packet transmission scenario over both the 
binary input additive white Gaussian noise (BI-AWGN) 
channel and Rayleigh channel, the LDPC code designed 
using a genetic algorithm in [18] demonstrates better 
performance than other LDPC codes such as CCSDS 
Up-Link LDPC, Regular LDPC, and 5G LDPC [18]. 
Furthermore, the LDPC code designed using a genetic 
algorithm exhibits adaptability to practical decoding 
requirements and channel constraints since it does not 
have any special graph structure (i.e., due to crossover 
and mutation of the genetic algorithm).

To the best of the authors’ knowledge, the genetic 
algorithm-based LDPC code design scheme in [18] 
can be enhanced to attain better performance while 
slightly increasing the system’s complexity. The main 
contributions of our paper can be summarized as 
follows:

1. We propose an improved LDPC code design
scheme built based on the design scheme in [18].
Specifically, we eliminate the worst fitness case of
the genetic algorithm-based optimization process
by removing the girth-4 property of the parity
check matrix of LDPC codes and propose the
utilization of the min-sum decoding algorithm to
increase the decoding performance of the LDPC
code simultaneously.

2. We evaluate the performance of our proposed
design with different short block length scenarios,
including 64-bit and 128-bit block length. In
terms of the block error rate (BLER), our proposed
approach can achieve a gain of more than 11%
compared to the existing scheme.

The remainder of this paper is organized as follows. 
In Section 2, we review the fundamentals of LDPC code 
design, taking into account LDPC decoding algorithms 
as well as the effect of the girth on the decoding 
performance. In Section 3, we propose an LDPC 
code design scheme that improves the performance 
of the existing genetic algorithm-based LDPC scheme. 
In Section 4, we evaluate the performance of our 
proposed genetic algorithm-based LDPC design scheme 
in comparison with the conventional schemes. In 
Section 5, we conclude the paper.

2. Overview of LDPC codes
LDPC codes are a type of FEC codes that can be used 
to detect and correct errors in data transmission. In 
LDPC codes, the parity check matrix (m × n) is denoted
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by H =
[
hji

]
m×n

where n is the number of variable
nodes (VNs) (i.e., n is the number of codewords) and 
m is the number of check nodes (CNs) (i.e., m is the 
number of redundancy codes that is added to the data 
before transmission to improve the reliability of data 
transmission). The low density implies that the size of 
the parity check matrix is usually very large, but the 
density of nonzero elements is very low [20]. Let us 
denote k = n − m as the number of data bits. The code 
rate is then defined as the ratio of the number of data 
bits k and the total number of bits in the codeword n 
and is expressed as

Rc =
k
n
. (1)

1
2

A higher code rate means that more bits of data can 
be transmitted in a given amount of time, but the code 
is less able to correct errors i.e., lower data reliability. 
Therefore, according to [20], to achieve a balance 
between reliability performance and the number of data 
bits, the code rate is usually chosen to be Rc = .

LDPC codes can be classified into two types: regular 
LDPC codes and irregular LDPC codes. Regular LDPC 
codes are LDPC codes that the number of ones in each 
row and column of the parity-check matrix is the same. 
In contrast, irregular LDPC codes contain different 
numbers of ones in each row and column of the parity-
check matrix [20]. In this paper, we explore a random 
construction of the parity check matrix for the irregular 
LDPC codes.

The parity check matrix of LDPC codes can also 
be presented by the Tanner graph, respectively, in 
which VNs vi are connected to CNs cj if hij =
1 with i ∈ {1, ..., n} and j ∈ {1, ..., m}. For example, a 
(3 × 6) irregular LDPC code is presented by parity 
check matrix that is depicted in Matrix (2) and the 
Tanner graph, respectively, as depicted in Figure 1. 
During the LDPC decoding process, Log-Likelihood 
Ratio (LLR) values are passed back and forth between 
check nodes and variable nodes on the Tanner graph, 
iteratively refining t he e stimates u ntil t he correct 
data is recovered. It can be realized that the design 
of LDPC codes is the process of determining the
link hji = {0, 1} to achieve specific g oals f or different 
applications, including minimizing errors (target error 
floor) o r fi tting ha rdware li mitations. Performance 
and complexity metrics for various LDPC decoding 
algorithms are presented in Table 1.

H =

1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1

 . (2)

In addition, according to [20], in the Tanner graph, 
a sequence of connected nodes starting and ending at 
the same node is called a cycle and the number of

V1

V2

V3

V4

C1

C2

codeword

set of
variables

set of check
nodes

C3
V5

V6

Figure 1. An illustration of (3 × 6) irregular LDPC code using
Tanner Graph.

Table 1. Comparison of performance and complexity of different
LDPC decoding algorithms

Parameter Bit-Flipping Sum-Product Min-sum
Check
node
operation

XOR tanh
and
tanh−1

XOR
and
com-
pari-
son

Variable
node
operation

Comparison Addition Addition

LLR
quantiza-
tion

N-bit N-bit N-bit

Extrinsic
message

1-bit N-bit N-bit

BER per-
formance

Poor Best Good

Complexity Simple Complex Complex
for
long
codes

Clock per
decoding
iteration

1 1 1

edges in a cycle is called the cycle length. The minimum
cycle length is called girth. The minimum lower bound
distance for LDPC code with girth-g is written as:
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V4V3 V6V5V2V1

C1 C2 C3

Figure 2. A Tanner graph with girth-4.

dmin ≥

1 + wc + wc(wc − 1) + ... + wc(wc − 1)
g−6

4 , for odd g
2 ,

1 + wc + wc(wc − 1) + ... + wc(wc − 1)
g−8

4 , otherwise,
(3)

where wc is the column weight. Therefore, the 
minimum distance can be increased by raising the 
girth or the column weight [20]. This means that 
the effect o f g irth o n t he p erformance o f LDPC 
codes can be mitigated by selecting LDPC codes 
whose corresponding Tanner graphs exhibit larger girth 
values. Girth-6 is sufficient; hence, the removal of 
girth-4 is mandatory [20]. The girth-4 is illustrated 
in the Tanner graph by the blue line in Figure 2 or 
depicted by a 1-bit 4-square in the parity check matrix 
as follows:

H =

1 1 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1

 . (4)

3. THE PROPOSED GENETIC
ALGORITHM-BASED LDPC CODE DESIGN
We consider the LDPC code design process as an 
optimization process to reduce BLER at some fixed 
signal-to-noise ratio (SNR). Moreover, the code rate is
set at Rc = 1

2 to achieve a balance between performance 
and the number of data bits [20]. The number of 
variable nodes and check nodes is also fixed. In 
addition, each variable node (check node) must be 
connected to at least one check node (variable node). 
Our proposed genetic algorithm-based LDPC code 
design scheme can be summarized in Figure 3, in which 
a set of candidate LDPC codes is referred to as a 
population.

First, our proposed LDPC code design scheme 
begins with an initial population of some randomly 
constructed LDPC codes (i.e., population 1). An error 
rate computation framework is used to evaluate the 
error-rate performance of the LDPC code in a fixed-SNR 
environment. Next, the best-performing LDPC codes, 
which have the gain of BLER better than others, are 
selected to be parents in the new population. These 
LDPC codes are the input values for evolutionary 
transformations (mutations and crossovers), which are 
performed in the Update Population (Mutations & 
Crossovers) block. Then, girth-4 of the parity check

Initialize Population

LDPC encoder

Channel

LDPC decoder
(e.g., Min-sum)

Update Population
(Mutation & Crossover)

Detection and removal of Girth-4 of
parity check matrix

Select fittest parity check matrix

Terminate

BLERs

no

yes

improvement 2

improvement 1

: set of candidate LDPC codes

Figure 3. A summary of the proposed LDPC code design scheme.

matrix is detected and removed from the parity check 
matrix of these LDPC codes, which is carried out in 
the "Detection and Removal of Girth 4 of Parity Check 
Matrix" block. Finally, the above process is repeated 
until a target BLER is satisfied o r t he maximum 
population size is reached.

In genetic algorithms, choosing the right selection 
method is critical. It allows convergence towards 
optimal solutions because selected values are input 
values for evolutionary transformation. In our research, 
we pick the best offspring solutions to be parents in the
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1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

Parent 1 Parent 2

Crossover

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

Offspring 2 Offspring 3 Offspring 4

1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

Offspring 1

Figure 4. Illustration of the crossover operation.

1 0 1 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0

Parent

1 0 0 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0Mutation
Offspring

Figure 5. Illustration of the mutation operation.

new population based on the improvement of the BLER 
of the LDPC code as the fitness value.

The "Update Population (Mutations & Crossovers)" 
block encompasses two vital evolutionary transforma-
tions: crossovers and mutations. Combining crossover 
and mutation in genetic optimization algorithms offers 
a potent synergy. As illustrated in Figure 4, crossover 
operation leverages the strength of the parent, which 
operates like tools that shuffle the features of these 
good solutions (parents) to create entirely new solu-
tions (offspring), that inherit their desirable features. 
This ensures continuity and refinement of promising 
solutions. Therefore, the crossover probability should 
be large, about 0.5. Conversely, as depicted in Fig-
ure 5, mutation operation introduces randomness and 
diversity into the population, fostering exploration of 
uncharted territories within the search space. Because 
mutation operates based on random changes, the prob-
ability should be small, around 0.0001. This ensures 
that only a small part of the individuals is changed. As 
a result, the balance between exploitation and explo-
ration allows the algorithm to escape local optima and 
ultimately achieve superior performance [21, 22].

This work introduces two key enhancements over 
the prior method described in [18]. First, to achieve 
better decoding performance, we implement the min-
sum decoding algorithm within the LDPC decoder, 
replacing the BP decoding algorithm used in [18]. 
Second, we incorporate a "Detection and Removal of 
Girth 4 of Parity Check Matrixes" block which functions 
as a penalty function, filtering out undesirable scenarios 
(specifically, identifying and eliminating girth-4 within 
each parity check matrix). This additional step helps 
reduce the time and computational cost required for the 
optimization process, as referenced in [20].

Matrix 

Detection of girth-4Removal of
 girth-4

yes

no

Matrix 

Matrix  without girth-4

Figure 6. Block diagram of “Detection and Removal of Girth 4 
of Parity Check Matrix” block.

According to [20], in the parity check matrix H , 
the existence of a square with 4 sides of 1s is called 
girth-4. As mentioned, girth-4 has the worst negative 
impact on the performance of the LDPC code for short-
length code. Conversely, the larger girths tend to have 
less impact. Therefore, it is crucial to identify and 
remove the girth-4 in the parity check matrix before the 
encoding and decoding processes. This can be achieved 
by strategically rearranging elements within the parity-
check matrix to break up the squares with 4 sides of 1s 
while preserving the overall structure of the matrix.

As a crucial step in the process, detailed in Figure 6, 
this task involves identifying and eliminating a specific 
structural issue within the parity-check matrix, known 
as girth-4. The process can be broken down into two key 
stages:

1. Detection: The system meticulously examines the
parity-check matrix to pinpoint the presence of
girth-4.

2. Correction: If girth-4 is detected, the system takes
corrective measures to remove it from the matrix.
Only matrices free of girth-4 are transmitted for
further processing.

N

To improve practicality, researchers developed the 
min-sum algorithm as a simpler alternative to the 
sum-product algorithm (SPA) by assuming Mji = 
yi instead of Mji = 4y

0
i as in SPA [20]. Min-sum

algorithm significantly reduces the computational 
complexity of the SPA while achieving nearly the 
same performance [20]. The LDPC decoding process 
using the min-sum algorithm is illustrated in Figure 7 
through five steps as follows.
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Step 1: Initialization

Li = Lci |yi = yi . (5)

If hi,j = 1, assign Mji = Li , where i ∈ (0, .., n − 1) and
j ∈ (0, .., m − 1).
Step 2: Update Check Nodes
Calculating the prediction of each variable node by

the following equations

αji = sign(Mji), (6)

βji = |Mji |, (7)

Eji =
∏
i′

αji′ ×min
i′

βji′ . (8)

Step 3: The sum of LLR

Ltotali = Li +
∑
j∈Ai

Eji , (9)

where Ai is set of parity check equations of ith bit in
received vector y.
Step 4: Code recovery

ci =
{

1 if Ltotali < 0
0 else.

(10)

If cHT = 0 or the number of iterations is larger than
the limit (ite > Nite,max), the decoding process stops;
otherwise, proceed to Step 5.
Step 5: Update Variable Nodes

Mji = Li +
∑

j ′∈Ai ,j
′
,j

Eji . (11)

Assign ite = ite + 1 and go back to Step 2.

4. PERFORMANCE EVALUATION
In this section, we conduct extensive simulation results
using Matlab to evaluate the performance of our
proposed genetic algorithm-based LDPC code design
compared with the conventional schemes as follows:

(i) Scheme 1: LDPC code design scheme in [18].

(ii) Scheme 2: the original scheme in [18] added 
“Detection and removal of Girth 4 of parity check 
matrix” block.

(iii) Scheme 3: our proposed scheme where both 
"Detection and Removal of Girth 4 of Parity Check 
Matrices" block and "Min-sum algorithm-based 
decoder" block are added as illustrated in Figure 
3.

Initialization

Update check nodes

Total LLR

Code recovery

orUpdate variable
nodes

Received vector: y

Codeword: c

yes

no

Figure 7. Summary of LDPC decoding process using min-sum 
algorithm.

4.1. Scenario of 64-bit block length code
BLER versus the number of populations. The performance 
evaluation of our proposed LDPC code design scheme 
is performed according to the simulation settings as 
summarized in Table 2. In particular, we design LDPC 
codes with the number of variable nodes n = 64, the
number of check nodes m = 32, and code rate Rc = 1

2 . In 
addition, all LDPC codes considered in this section are 
simulated over the Binary Additive White-Gaussian-
Noise (BI-AWGN) channel.

Table 2. Summary of simulation settings with 64-bit block length 
code

Parameter Value
The number of variable nodes 64
The number of check nodes 32
SNR (dB) 3
Noise model BI-AWGN
Npop,max 50
Nite,max 200

In Figure 8, we assess the changing of the BLER as 
a function of the population index in the BI-AWGN 
channel with SNR = 3 dB. Simulation results indicate
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Figure 8. BLER as a function of population index with 64-bit 
block length code

that our proposed scheme (scheme 3) outperforms 
scheme 1 and scheme 2 with BLER gains up to 11.1%
and 4%, respectively. This is because the min-sum 
decoding algorithm has better decoding performance 
and a more optimized process due to eliminating 
worse fitness c ases, s pecifically by  id entifying and 
removing girth-4 cycles in each parity check matrix H. 
The detailed comparison of the BLER gain obtained 
with the proposed scheme in comparison with the 
conventional schemes is summarized in Table 3. It is 
noted that the performance of a genetic algorithm is 
measured in terms of the number of required fitness 
function evaluations until the optimum is found or 
approximated with the desired accuracy. For the genetic 
algorithm to find the best possible solution (optimal 
solution), we need to run it numerous repetitions. This 
increases the chance of the GA discovering the best 
option. Research suggests that at least 25 repetitions 
are beneficial, with 50 or 100 repetitions being even 
more recommendable [21]. Therefore, to achieve a 
balance between performance and computational cost, 
the population size, which represents repetitions, is 
chosen at 50.

Table 3. BLER gain obtained with the proposed scheme 
according to 64-bit block length.

Scheme SNR Population index Gain
1 3 dB 50 11%
2 3 dB 50 4%

BLER versus a range of SNR. In this subsection, we 
evaluate the BLER performance for a range of SNR 
in the BI-AWGN channel with a 64-bit block length 
code. As depicted in Figure 9, we can observe that as 
SNR increases, the BLER obtained with our proposed 
schemes is significantly improved when compared with 
the original work in [18]. This improvement comes from

Figure 9. BLER as a function of SNR in BI-AWGN channel with 
64-bit block length.

the utilization of the min-sum decoding algorithm, 
which is known as a soft-decision message-passing 
algorithm that accepts the probability of each received 
bit as input, to enhance the performance of the LDPC 
code [20]. In particular, Table 4 depicts the BLER gain of 
scheme 3 compared with scheme 1 and 2, respectively, 
for different values of SNR ratio.

Table 4. BLER gain obtained with the proposed scheme for a 
range of SNR according to 64-bit block length code.

Scheme Population index 3 dB 4 dB 5 dB
1 50 11% 17.7% 33.3%
2 50 4% 8% 12.2%

4.2. Scenario of 128-bit block length code
BLER versus the number of populations. In the subsection, 
we evaluate the performance of our proposed LDPC 
code design scheme with 128-bit block length. To be 
specific, we consider the LDPC code with the number of 
variable nodes n = 128, the number of check nodes m =
64, and code rate Rc = 1

2 . The simulation settings are 
summarized in Table 5. As shown in Figure 10, scheme 
3 obtains a significant i mprovement i n  t erms o f  BLER 
compared to the benchmarked schemes at SNR = 3dB 
for a range of population index.

BLER versus a range of SNR. We also evaluate the BLER 
according to different v alues o f S NR i n t he BI-AWGN 
channel with 128-bit block length. Figure 11 indicates 
that as SNR increases, the BLER of our proposed scheme 
is significantly i  m proved w  h en c  o mpared w  i th the 
benchmarked schemes.

We also compare the performance of our proposed 
LDPC code design in the scenario of 64-bit block-
length code and the scenario of 128-bit block-length 
code with different SNR levels. As shown in Figure 12,
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Table 5. Summary of simulation settings with 128-bit block
length code.

Parameter Value
The number of variable nodes 128
The number of check nodes 64
SNR (dB) 3
Noise BI-AWGN
Npop,max 50
Nite,max 200

Figure 10. BLER as a function of population index with 128-bit
block length.

Figure 11. BLER with different s chemes a s a  f unction o f SNR 
in AWGN channel with 128-bit block length.

we can see that the BLER performance of the 128-bit 
block length code exhibits a substantial enhancement 
over that of the 64-bit block length code. In particular, 
Table 6 highlights the BLER gain of the 128-bit block-
length code compared to the 64-bit block-length code. 
This observation aligns with the theoretical framework 
proposed by Robert Gallager in his seminal work during 
the 1960s [6] that the typical decoding error probability 
decreases exponentially with increasing coding block 
length.

Figure 12. BLER with our proposed code design as a function
of SNR according to different block lengths.

Table 6. BLER gain obtained with our proposed scheme
according to 128-bit block length and 64-bit block length.

SNR 3 dB 4 dB 5 dB
Gain 27% 32% 48%

5. CONCLUSION
In this paper, we proposed an improved LDPC code
design scheme that is built based on the conventional
genetic algorithm. In particular, first, for the LDPC
decoding algorithm, we applied the min-sum decoding
algorithm to improve the decoding performance.
Second, we incorporated a module for detecting and
removing girth-4 within the parity-check matrix. This
module functions as a penalty function, prioritizing
the elimination of these unfavorable configurations. We
then evaluated the BLER performance of the proposed
LDPC code design scheme over the BI-AWGN channel
with different short block length scenarios, including
64-bit and 128-bit block length. Extensive simulation
results indicated that our proposed design achieves a
significant improvement in terms of the BLER reaching
11% compared to the conventional schemes.

As part of future work, we intend to apply the self-
adaptive genetic algorithm, which can further improve
the performance of the genetic algorithm for the LDPC
design scheme.
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