
Efficient LDPC Code Design based on Genetic
Algorithm for IoT Systems
Thanh-Loc Nguyen-Van1, Tan Do-Duy1,∗, Thien Huynh-The1

1Department of Computer and Communication Engineering, Faculty of Electrical and Electronics Engineering, Ho
Chi Minh City University of Technology and Education (HCMUTE), Vietnam

Abstract

In this paper†, we propose a low-density parity check (LDPC) code design scheme that improves
the performance of the existing genetic algorithm-based LDPC scheme. In particular, we enhance the
performance of the LDPC code by removing the girth-4 property of the parity check matrix and utilizing
the min-sum decoding algorithm instead of the belief propagation decoding algorithm. In addition, we
consider various short block-length scenarios, specifically focusing on 64-bit and 128-bit lengths, which are
well-suited for IoT systems. Then, we evaluate the block error rate (BLER) of the LDPC code over the binary
input additive white Gaussian noise (BI-AWGN) channel. Finally, extensive simulation results indicate that
our proposed approach achieves more than 11% gain in terms of BLER compared with the benchmarked
schemes.

Received on 11 02 2024; accepted on 01 07 2024; published on 01 08 2024
Keywords: LDPC, genetic algorithm, short block length, Internet of Things.

Copyright © 2024 Nguyen-Van et al., licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in
any medium so long as the original work is properly cited.

doi:10.4108/eetinis.v11i4.5843

1. Introduction
Ultra-reliable low-latency communication (URLLC) is
one of the key features of the fifth-generation (5G)
and sixth-generation (6G) wireless networks, as well
as Internet of Things (IoT) systems [2]. URLLC
caters to applications with critical needs for extremely
high transmission success rates, minimal delays in
data delivery from source to destination, and the
adaptability to handle packets of diverse lengths. These
requirements make URLLC a challenging technology to
implement, particularly for the design of forward error
correction (FEC) encoding and decoding schemes in the
physical layer [3].

FEC is a powerful technique used to control
errors in data transmission over unreliable or noisy
communication channels where redundancy codes are
added to the information data to allow receivers to
detect and correct possible errors, thus enhancing the

∗Corresponding author: Tan Do-Duy. Email: tandd@hcmute.edu.vn
†The paper has been presented in part at the International Conference
on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam
[1].

data’s reliability. Consequently, by using strong FEC
codes in short-packet transmission systems, we can
achieve high reliability and low latency requirements
for URLLC applications [4]. There are two main types of
FEC, namely block codes and convolutional codes. One
of the most popular types of block codes is low-density
parity check (LDPC) codes, which play a vital role in
improving the reliability of the data [4, 5]. In particular,
LDPC codes first proposed by Robert Gallager in the
1960s [6], are known for their high error-correcting
capabilities and have been shown to approach the
Shannon limit, which is the theoretical maximum
rate at which data can be transmitted over a noisy
channel without errors. Advantageously, LDPC codes
lend themselves well to hardware implementation
because of their inherent simplicity. This stems from
the structure of their parity-check matrix, which
is characterized by sparsity. In simpler terms, this
matrix contains only a few non-zero elements in
each row and column. This sparsity translates to
a reduction in the complexity of the hardware
required to implement LDPC code processing. This
makes them highly appropriate for hardware resource-
constrained devices in IoT systems [7, 8]. This shift
is also reflected i n t he d ecision b y t he 3 GPP (3rd

1

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

EAI Endorsed Transactions on
Industrial Neworks and Intelligent Systems

 | Volume 11 No.4 | 2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<tandd@hcmute.edu.vn>

Thanh-Loc Nguyen-Van, Tan Do-Duy, Thien Huynh-The

Generation Partnership Project) to adopt LDPC codes
instead of Turbo codes within their New Radio (NR)
technology standard [9]. Furthermore, beyond cellular
applications, LDPC codes are even used in near-earth
and deep-space communication systems [10].

Prominent researchers from both academic institu-
tions and private businesses have conducted extensive
research on LDPC codes for short-block transmission,
but these studies still have some limitations. For exam-
ple, while the method proposed in [11] delivers good
performance, it requires the user to have the experience
to be effective. In another work [12], the proposal uses
a combination of cyclic redundancy check (CRC) code
and LDPC code for error correction. However, research
in [12] doesn’t work well for cases where the decod-
ing algorithm utilizes classical iterative decoding with
numerous iterations. In another work [13], this pro-
posal suggests replacing ordinary LDPC codes with NB-
LDPC codes (Non-Binary Low-Density Parity Check),
because NB-LDPC codes offer significant benefits, par-
ticularly when dealing with variable information block
lengths or transmission environments prone to burst
errors. However, complex computation and high mem-
ory requirements of NB-LDPC codes make them less
suitable for applications that use minimal hardware,
like the IoT applications [14]. Consequently, it appears
that no research has yet discovered an optimal method
for enhancing LDPC code performance in ultra-short
block transmissions within ultra-reliable low-latency
communication scenarios.

Referring to the recent LDPC-related surveys, the
work in [15] provides an overview as well as a per-
formance comparison between three error-correcting
codes, including LDPC, Polar, and Turbo codes in
terms of implementing their decoding algorithms
in application-specific integrated circuits (ASIC) for
mobile communication systems. In another research [7],
the authors present a comprehensive survey that sum-
marizes and compares different L DPC d ecoding algo-
rithms based on key features, like error-correcting per-
formance. In addition, the authors emphasize the neces-
sity for versatile and computationally efficient decoding
schemes, which can be utilized for both fixed and
varying channel conditions. Furthermore, the authors
propose to utilize optimization algorithms, linear pro-
gramming, and parameter estimation to enhance LDPC
decoding performance in the future. On the other hand,
the authors in [16] present a comprehensive brief of
the genetic algorithm (GA) as well as its benefits and
drawbacks. In addition, the authors in [17] propose to
utilize the genetic algorithm to optimize the whitelist
of the industrial firewall for industrial control systems.
In this system, the genetic algorithm plays a crucial role
in supporting the vector machine (GA-SVM) algorithm
to automatically learn the rules, which improves the
efficiency of in dustrial co ntrol sy stems. Additionally,

in [18], an LDPC code design scheme for the short-
packet transmission systems is proposed. This proposal
is constructed based on the well-known genetic algo-
rithm, similar to the proposal for polar codes in [19].
Specifically, the proposed scheme in [18] directly opti-
mizes the parity check matrix of the LDPC code. In
the short-packet transmission scenario over both the
binary input additive white Gaussian noise (BI-AWGN)
channel and Rayleigh channel, the LDPC code designed
using a genetic algorithm in [18] demonstrates better
performance than other LDPC codes such as CCSDS
Up-Link LDPC, Regular LDPC, and 5G LDPC [18].
Furthermore, the LDPC code designed using a genetic
algorithm exhibits adaptability to practical decoding
requirements and channel constraints since it does not
have any special graph structure (i.e., due to crossover
and mutation of the genetic algorithm).

To the best of the authors’ knowledge, the genetic
algorithm-based LDPC code design scheme in [18]
can be enhanced to attain better performance while
slightly increasing the system’s complexity. The main
contributions of our paper can be summarized as
follows:

1. We propose an improved LDPC code design
scheme built based on the design scheme in [18].
Specifically, we eliminate the worst fitness case of
the genetic algorithm-based optimization process
by removing the girth-4 property of the parity
check matrix of LDPC codes and propose the
utilization of the min-sum decoding algorithm to
increase the decoding performance of the LDPC
code simultaneously.

2. We evaluate the performance of our proposed
design with different short block length scenarios,
including 64-bit and 128-bit block length. In
terms of the block error rate (BLER), our proposed
approach can achieve a gain of more than 11%
compared to the existing scheme.

The remainder of this paper is organized as follows.
In Section 2, we review the fundamentals of LDPC code
design, taking into account LDPC decoding algorithms
as well as the effect of the girth on the decoding
performance. In Section 3, we propose an LDPC
code design scheme that improves the performance
of the existing genetic algorithm-based LDPC scheme.
In Section 4, we evaluate the performance of our
proposed genetic algorithm-based LDPC design scheme
in comparison with the conventional schemes. In
Section 5, we conclude the paper.

2. Overview of LDPC codes
LDPC codes are a type of FEC codes that can be used
to detect and correct errors in data transmission. In
LDPC codes, the parity check matrix (m × n) is denoted

2
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

Efficient LDPC Code Design based on Genetic Algorithm for IoT Systems

by H =
[
hji

]
m×n

where n is the number of variable
nodes (VNs) (i.e., n is the number of codewords) and
m is the number of check nodes (CNs) (i.e., m is the
number of redundancy codes that is added to the data
before transmission to improve the reliability of data
transmission). The low density implies that the size of
the parity check matrix is usually very large, but the
density of nonzero elements is very low [20]. Let us
denote k = n − m as the number of data bits. The code
rate is then defined as the ratio of the number of data
bits k and the total number of bits in the codeword n
and is expressed as

Rc =
k
n
. (1)

1
2

A higher code rate means that more bits of data can
be transmitted in a given amount of time, but the code
is less able to correct errors i.e., lower data reliability.
Therefore, according to [20], to achieve a balance
between reliability performance and the number of data
bits, the code rate is usually chosen to be Rc = .

LDPC codes can be classified into two types: regular
LDPC codes and irregular LDPC codes. Regular LDPC
codes are LDPC codes that the number of ones in each
row and column of the parity-check matrix is the same.
In contrast, irregular LDPC codes contain different
numbers of ones in each row and column of the parity-
check matrix [20]. In this paper, we explore a random
construction of the parity check matrix for the irregular
LDPC codes.

The parity check matrix of LDPC codes can also
be presented by the Tanner graph, respectively, in
which VNs vi are connected to CNs cj if hij =
1 with i ∈ {1, ..., n} and j ∈ {1, ..., m}. For example, a
(3 × 6) irregular LDPC code is presented by parity
check matrix that is depicted in Matrix (2) and the
Tanner graph, respectively, as depicted in Figure 1.
During the LDPC decoding process, Log-Likelihood
Ratio (LLR) values are passed back and forth between
check nodes and variable nodes on the Tanner graph,
iteratively refining t he e stimates u ntil t he correct
data is recovered. It can be realized that the design
of LDPC codes is the process of determining the
link hji = {0, 1} to achieve specific g oals f or different
applications, including minimizing errors (target error
floor) o r fi tting ha rdware li mitations. Performance
and complexity metrics for various LDPC decoding
algorithms are presented in Table 1.

H =

1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1

 . (2)

In addition, according to [20], in the Tanner graph,
a sequence of connected nodes starting and ending at
the same node is called a cycle and the number of

V1

V2

V3

V4

C1

C2

codeword

set of
variables

set of check
nodes

C3
V5

V6

Figure 1. An illustration of (3 × 6) irregular LDPC code using
Tanner Graph.

Table 1. Comparison of performance and complexity of different
LDPC decoding algorithms

Parameter Bit-Flipping Sum-Product Min-sum
Check
node
operation

XOR tanh
and
tanh−1

XOR
and
com-
pari-
son

Variable
node
operation

Comparison Addition Addition

LLR
quantiza-
tion

N-bit N-bit N-bit

Extrinsic
message

1-bit N-bit N-bit

BER per-
formance

Poor Best Good

Complexity Simple Complex Complex
for
long
codes

Clock per
decoding
iteration

1 1 1

edges in a cycle is called the cycle length. The minimum
cycle length is called girth. The minimum lower bound
distance for LDPC code with girth-g is written as:

3 EAI Endorsed Transactions on
Industrial Neworks and Intelligent Systems

 | Volume 11 No.4 | 2024

Thanh-Loc Nguyen-Van, Tan Do-Duy, Thien Huynh-The

V4V3 V6V5V2V1

C1 C2 C3

Figure 2. A Tanner graph with girth-4.

dmin ≥

1 + wc + wc(wc − 1) + ... + wc(wc − 1)
g−6

4 , for odd g
2 ,

1 + wc + wc(wc − 1) + ... + wc(wc − 1)
g−8

4 , otherwise,
(3)

where wc is the column weight. Therefore, the
minimum distance can be increased by raising the
girth or the column weight [20]. This means that
the effect o f g irth o n t he p erformance o f LDPC
codes can be mitigated by selecting LDPC codes
whose corresponding Tanner graphs exhibit larger girth
values. Girth-6 is sufficient; hence, the removal of
girth-4 is mandatory [20]. The girth-4 is illustrated
in the Tanner graph by the blue line in Figure 2 or
depicted by a 1-bit 4-square in the parity check matrix
as follows:

H =

1 1 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1

 . (4)

3. THE PROPOSED GENETIC
ALGORITHM-BASED LDPC CODE DESIGN
We consider the LDPC code design process as an
optimization process to reduce BLER at some fixed
signal-to-noise ratio (SNR). Moreover, the code rate is
set at Rc = 1

2 to achieve a balance between performance
and the number of data bits [20]. The number of
variable nodes and check nodes is also fixed. In
addition, each variable node (check node) must be
connected to at least one check node (variable node).
Our proposed genetic algorithm-based LDPC code
design scheme can be summarized in Figure 3, in which
a set of candidate LDPC codes is referred to as a
population.

First, our proposed LDPC code design scheme
begins with an initial population of some randomly
constructed LDPC codes (i.e., population 1). An error
rate computation framework is used to evaluate the
error-rate performance of the LDPC code in a fixed-SNR
environment. Next, the best-performing LDPC codes,
which have the gain of BLER better than others, are
selected to be parents in the new population. These
LDPC codes are the input values for evolutionary
transformations (mutations and crossovers), which are
performed in the Update Population (Mutations &
Crossovers) block. Then, girth-4 of the parity check

Initialize Population

LDPC encoder

Channel

LDPC decoder
(e.g., Min-sum)

Update Population
(Mutation & Crossover)

Detection and removal of Girth-4 of
parity check matrix

Select fittest parity check matrix

Terminate

BLERs

no

yes

improvement 2

improvement 1

: set of candidate LDPC codes

Figure 3. A summary of the proposed LDPC code design scheme.

matrix is detected and removed from the parity check
matrix of these LDPC codes, which is carried out in
the "Detection and Removal of Girth 4 of Parity Check
Matrix" block. Finally, the above process is repeated
until a target BLER is satisfied o r t he maximum
population size is reached.

In genetic algorithms, choosing the right selection
method is critical. It allows convergence towards
optimal solutions because selected values are input
values for evolutionary transformation. In our research,
we pick the best offspring solutions to be parents in the

4
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

Efficient LDPC Code Design based on Genetic Algorithm for IoT Systems

1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

Parent 1 Parent 2

Crossover

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 0 0
0 1 0 0

0 0 1 0
0 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

0 0 0 0
0 1 0 0

1 0 1 0
0 1 0 0

Offspring 2 Offspring 3 Offspring 4

1 0 1 0
1 1 0 0

0 0 1 0
1 1 0 0

1 0 1 0
1 0 0 0

1 0 1 0
1 1 0 0

Offspring 1

Figure 4. Illustration of the crossover operation.

1 0 1 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0

Parent

1 0 0 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0Mutation
Offspring

Figure 5. Illustration of the mutation operation.

new population based on the improvement of the BLER
of the LDPC code as the fitness value.

The "Update Population (Mutations & Crossovers)"
block encompasses two vital evolutionary transforma-
tions: crossovers and mutations. Combining crossover
and mutation in genetic optimization algorithms offers
a potent synergy. As illustrated in Figure 4, crossover
operation leverages the strength of the parent, which
operates like tools that shuffle the features of these
good solutions (parents) to create entirely new solu-
tions (offspring), that inherit their desirable features.
This ensures continuity and refinement of promising
solutions. Therefore, the crossover probability should
be large, about 0.5. Conversely, as depicted in Fig-
ure 5, mutation operation introduces randomness and
diversity into the population, fostering exploration of
uncharted territories within the search space. Because
mutation operates based on random changes, the prob-
ability should be small, around 0.0001. This ensures
that only a small part of the individuals is changed. As
a result, the balance between exploitation and explo-
ration allows the algorithm to escape local optima and
ultimately achieve superior performance [21, 22].

This work introduces two key enhancements over
the prior method described in [18]. First, to achieve
better decoding performance, we implement the min-
sum decoding algorithm within the LDPC decoder,
replacing the BP decoding algorithm used in [18].
Second, we incorporate a "Detection and Removal of
Girth 4 of Parity Check Matrixes" block which functions
as a penalty function, filtering out undesirable scenarios
(specifically, identifying and eliminating girth-4 within
each parity check matrix). This additional step helps
reduce the time and computational cost required for the
optimization process, as referenced in [20].

Matrix

Detection of girth-4Removal of
 girth-4

yes

no

Matrix

Matrix without girth-4

Figure 6. Block diagram of “Detection and Removal of Girth 4
of Parity Check Matrix” block.

According to [20], in the parity check matrix H ,
the existence of a square with 4 sides of 1s is called
girth-4. As mentioned, girth-4 has the worst negative
impact on the performance of the LDPC code for short-
length code. Conversely, the larger girths tend to have
less impact. Therefore, it is crucial to identify and
remove the girth-4 in the parity check matrix before the
encoding and decoding processes. This can be achieved
by strategically rearranging elements within the parity-
check matrix to break up the squares with 4 sides of 1s
while preserving the overall structure of the matrix.

As a crucial step in the process, detailed in Figure 6,
this task involves identifying and eliminating a specific
structural issue within the parity-check matrix, known
as girth-4. The process can be broken down into two key
stages:

1. Detection: The system meticulously examines the
parity-check matrix to pinpoint the presence of
girth-4.

2. Correction: If girth-4 is detected, the system takes
corrective measures to remove it from the matrix.
Only matrices free of girth-4 are transmitted for
further processing.

N

To improve practicality, researchers developed the
min-sum algorithm as a simpler alternative to the
sum-product algorithm (SPA) by assuming Mji =
yi instead of Mji = 4y

0
i as in SPA [20]. Min-sum

algorithm significantly reduces the computational
complexity of the SPA while achieving nearly the
same performance [20]. The LDPC decoding process
using the min-sum algorithm is illustrated in Figure 7
through five steps as follows.

5
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

Thanh-Loc Nguyen-Van, Tan Do-Duy, Thien Huynh-The

Step 1: Initialization

Li = Lci |yi = yi . (5)

If hi,j = 1, assign Mji = Li , where i ∈ (0, .., n − 1) and
j ∈ (0, .., m − 1).
Step 2: Update Check Nodes
Calculating the prediction of each variable node by

the following equations

αji = sign(Mji), (6)

βji = |Mji |, (7)

Eji =
∏
i′

αji′ ×min
i′

βji′ . (8)

Step 3: The sum of LLR

Ltotali = Li +
∑
j∈Ai

Eji , (9)

where Ai is set of parity check equations of ith bit in
received vector y.
Step 4: Code recovery

ci =
{

1 if Ltotali < 0
0 else.

(10)

If cHT = 0 or the number of iterations is larger than
the limit (ite > Nite,max), the decoding process stops;
otherwise, proceed to Step 5.
Step 5: Update Variable Nodes

Mji = Li +
∑

j ′∈Ai ,j
′
,j

Eji . (11)

Assign ite = ite + 1 and go back to Step 2.

4. PERFORMANCE EVALUATION
In this section, we conduct extensive simulation results
using Matlab to evaluate the performance of our
proposed genetic algorithm-based LDPC code design
compared with the conventional schemes as follows:

(i) Scheme 1: LDPC code design scheme in [18].

(ii) Scheme 2: the original scheme in [18] added
“Detection and removal of Girth 4 of parity check
matrix” block.

(iii) Scheme 3: our proposed scheme where both
"Detection and Removal of Girth 4 of Parity Check
Matrices" block and "Min-sum algorithm-based
decoder" block are added as illustrated in Figure
3.

Initialization

Update check nodes

Total LLR

Code recovery

orUpdate variable
nodes

Received vector: y

Codeword: c

yes

no

Figure 7. Summary of LDPC decoding process using min-sum
algorithm.

4.1. Scenario of 64-bit block length code
BLER versus the number of populations. The performance
evaluation of our proposed LDPC code design scheme
is performed according to the simulation settings as
summarized in Table 2. In particular, we design LDPC
codes with the number of variable nodes n = 64, the
number of check nodes m = 32, and code rate Rc = 1

2 . In
addition, all LDPC codes considered in this section are
simulated over the Binary Additive White-Gaussian-
Noise (BI-AWGN) channel.

Table 2. Summary of simulation settings with 64-bit block length
code

Parameter Value
The number of variable nodes 64
The number of check nodes 32
SNR (dB) 3
Noise model BI-AWGN
Npop,max 50
Nite,max 200

In Figure 8, we assess the changing of the BLER as
a function of the population index in the BI-AWGN
channel with SNR = 3 dB. Simulation results indicate

6
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

Efficient LDPC Code Design based on Genetic Algorithm for IoT Systems

Figure 8. BLER as a function of population index with 64-bit
block length code

that our proposed scheme (scheme 3) outperforms
scheme 1 and scheme 2 with BLER gains up to 11.1%
and 4%, respectively. This is because the min-sum
decoding algorithm has better decoding performance
and a more optimized process due to eliminating
worse fitness c ases, s pecifically by id entifying and
removing girth-4 cycles in each parity check matrix H.
The detailed comparison of the BLER gain obtained
with the proposed scheme in comparison with the
conventional schemes is summarized in Table 3. It is
noted that the performance of a genetic algorithm is
measured in terms of the number of required fitness
function evaluations until the optimum is found or
approximated with the desired accuracy. For the genetic
algorithm to find the best possible solution (optimal
solution), we need to run it numerous repetitions. This
increases the chance of the GA discovering the best
option. Research suggests that at least 25 repetitions
are beneficial, with 50 or 100 repetitions being even
more recommendable [21]. Therefore, to achieve a
balance between performance and computational cost,
the population size, which represents repetitions, is
chosen at 50.

Table 3. BLER gain obtained with the proposed scheme
according to 64-bit block length.

Scheme SNR Population index Gain
1 3 dB 50 11%
2 3 dB 50 4%

BLER versus a range of SNR. In this subsection, we
evaluate the BLER performance for a range of SNR
in the BI-AWGN channel with a 64-bit block length
code. As depicted in Figure 9, we can observe that as
SNR increases, the BLER obtained with our proposed
schemes is significantly improved when compared with
the original work in [18]. This improvement comes from

Figure 9. BLER as a function of SNR in BI-AWGN channel with
64-bit block length.

the utilization of the min-sum decoding algorithm,
which is known as a soft-decision message-passing
algorithm that accepts the probability of each received
bit as input, to enhance the performance of the LDPC
code [20]. In particular, Table 4 depicts the BLER gain of
scheme 3 compared with scheme 1 and 2, respectively,
for different values of SNR ratio.

Table 4. BLER gain obtained with the proposed scheme for a
range of SNR according to 64-bit block length code.

Scheme Population index 3 dB 4 dB 5 dB
1 50 11% 17.7% 33.3%
2 50 4% 8% 12.2%

4.2. Scenario of 128-bit block length code
BLER versus the number of populations. In the subsection,
we evaluate the performance of our proposed LDPC
code design scheme with 128-bit block length. To be
specific, we consider the LDPC code with the number of
variable nodes n = 128, the number of check nodes m =
64, and code rate Rc = 1

2 . The simulation settings are
summarized in Table 5. As shown in Figure 10, scheme
3 obtains a significant i mprovement i n t erms o f BLER
compared to the benchmarked schemes at SNR = 3dB
for a range of population index.

BLER versus a range of SNR. We also evaluate the BLER
according to different v alues o f S NR i n t he BI-AWGN
channel with 128-bit block length. Figure 11 indicates
that as SNR increases, the BLER of our proposed scheme
is significantly i m proved w h en c o mpared w i th the
benchmarked schemes.

We also compare the performance of our proposed
LDPC code design in the scenario of 64-bit block-
length code and the scenario of 128-bit block-length
code with different SNR levels. As shown in Figure 12,

7
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

Thanh-Loc Nguyen-Van, Tan Do-Duy, Thien Huynh-The

Table 5. Summary of simulation settings with 128-bit block
length code.

Parameter Value
The number of variable nodes 128
The number of check nodes 64
SNR (dB) 3
Noise BI-AWGN
Npop,max 50
Nite,max 200

Figure 10. BLER as a function of population index with 128-bit
block length.

Figure 11. BLER with different s chemes a s a f unction o f SNR
in AWGN channel with 128-bit block length.

we can see that the BLER performance of the 128-bit
block length code exhibits a substantial enhancement
over that of the 64-bit block length code. In particular,
Table 6 highlights the BLER gain of the 128-bit block-
length code compared to the 64-bit block-length code.
This observation aligns with the theoretical framework
proposed by Robert Gallager in his seminal work during
the 1960s [6] that the typical decoding error probability
decreases exponentially with increasing coding block
length.

Figure 12. BLER with our proposed code design as a function
of SNR according to different block lengths.

Table 6. BLER gain obtained with our proposed scheme
according to 128-bit block length and 64-bit block length.

SNR 3 dB 4 dB 5 dB
Gain 27% 32% 48%

5. CONCLUSION
In this paper, we proposed an improved LDPC code
design scheme that is built based on the conventional
genetic algorithm. In particular, first, for the LDPC
decoding algorithm, we applied the min-sum decoding
algorithm to improve the decoding performance.
Second, we incorporated a module for detecting and
removing girth-4 within the parity-check matrix. This
module functions as a penalty function, prioritizing
the elimination of these unfavorable configurations. We
then evaluated the BLER performance of the proposed
LDPC code design scheme over the BI-AWGN channel
with different short block length scenarios, including
64-bit and 128-bit block length. Extensive simulation
results indicated that our proposed design achieves a
significant improvement in terms of the BLER reaching
11% compared to the conventional schemes.

As part of future work, we intend to apply the self-
adaptive genetic algorithm, which can further improve
the performance of the genetic algorithm for the LDPC
design scheme.

References
[1] Nguyen-Van-Thanh, Loc and Do-Duy, Tan (2023)

Efficient Genetic Algorithm-based LDPC Code Design for IoT
Applications (International Conference on System Science
and Engineering (ICSSE)), 598–603.

[2] Siddiqui, M. U. A., Abumarshoud, H., Bariah, L.,

Muhaidat, S., Imran, M. A. and Mohjazi, L. (2023) Urllc
in beyond 5g and 6g networks: An interference management
perspective (IEEE Access), 11, 54639-54663.

8 EAI Endorsed Transactions on
Industrial Neworks and Intelligent Systems

 | Volume 11 No.4 | 2024

Efficient LDPC Code Design based on Genetic Algorithm for IoT Systems

[3] Yue, C., Miloslavskaya, V., Shirvanimoghaddam, M.,

Vucetic, B. and Li, Y. (2023) Efficient decoders for short
block length codes in 6G URLLC (IEEE Communications
Magazine), 61(4), 84-90.

[4] Moon, T. K. (2020) Error correction coding: mathematical
methods and algorithms (John Wiley & Sons).

[5] Yang, K. and Du, W. (2022, November) LLDPC: A low-
density parity-check coding scheme for LoRa networks (In
Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems), 193-206.

[6] Gallager, R. (1962) Low-density parity-check codes (IRE
Transactions on information theory), 8(1), 21-28.

[7] Roberts, M. K. and Anguraj, P. (2021) A comparative
review of recent advances in decoding algorithms for low-
density parity-check (LDPC) codes and their applications
(Archives of Computational Methods in Engineering),
28(4), 2225-2251.

[8] Chander, B. and Gopalakrishnan, K. (2023) An ECC-
based enhanced and secured authentication protocol for IoT
and cloud server (International Journal of Communication
Networks and Distributed Systems), 29(4), 407-425.

[9] Richardson, T. and Kudekar, S. (2018) Design of low-
density parity check codes for 5G new radio (IEEE
Communications Magazine), 56(3), 28-34.

[10] Liu, J. and Feng, Q. (2021) A miniaturized LDPC encoder:
Two-layer architecture for CCSDS near-Earth standard (IEEE
Transactions on Circuits and Systems II: Express Briefs),
68(7), 2384-2388.

[11] Ebada, M., Elkelesh, A., Cammerer, S. and ten Brink, S.

(2018, May) Scattered EXIT charts for finite length LDPC
code design (In 2018 IEEE International Conference on
Communications (ICC)), 1-7.

[12] Van Wonterghem, J., Alloum, A., Boutros, J. J. and
Moeneclaey, M. (2016, November) Performance compar-
ison of short-length error-correcting codes (In 2016 Sym-
posium on Communications and Vehicular Technologies
(SCVT)), 1-6.

[13] Wijekoon, V. B., Viterbo, E., Hong, Y., Micheloni, R.

and Marelli, A. (2019) A novel graph expansion and a

decoding algorithm for NB-LDPC codes (IEEE Transactions
on Communications), 68(3), 1358-1369.

[14] Ferraz, O., Subramaniyan, S., Chinthala, R., Andrade,

J., Cavallaro, J. R., Nandy, S. K. and Falcao, G.

(2021) A survey on high-throughput non-binary LDPC
decoders: ASIC, FPGA, and GPU architectures (IEEE
Communications Surveys & Tutorials), 24(1), 524-556.

[15] Shao, S., Hailes, P., Wang, T. Y., Wu, J. Y., Maunder,

R. G., Al-Hashimi, B. M. and Hanzo, L. (2019) Survey of
turbo, LDPC, and polar decoder ASIC implementations (IEEE
Communications Surveys & Tutorials), 21(3), 2309-2333.

[16] Katoch, S., Chauhan, S. S. and Kumar, V. (2021)
A review on genetic algorithm: past, present, and future
(Multimedia tools and applications), 80, 8091-8126.

[17] Zhou, X., and Shi, W. (2024) Research on the optimisation
of whitelisting technology for network firewall in industrial
control system using genetic algorithm (International
Journal of Communication Networks and Distributed
Systems), 30(1), 30-41.

[18] Elkelesh, A., Ebada, M., Cammerer, S., Schmalen, L.

and Ten Brink, S. (2019) Decoder-in-the-loop: Genetic
optimization-based LDPC code design (IEEE access), 7,
141161-141170.

[19] Elkelesh, A., Ebada, M., Cammerer, S. and Ten Brink,

S. (2019) Decoder-tailored polar code design using the genetic
algorithm (IEEE Transactions on Communications), 67(7),
4521-4534.

[20] Rao, K. D. (2015) Channel coding techniques for

wireless communications (Berlin, Germany: Springer
India).

[21] Kramer, O. and Kramer, O. (2017) Genetic algorithms
(Springer International Publishing).

[22] Eremia, M., Liu, C. C. and Edris, A. A. (2016) Advanced
solutions in power systems: HVDC, FACTS, and Artificial
Intelligence (John Wiley & Sons).

9
EAI Endorsed Transactions on

Industrial Neworks and Intelligent Systems
 | Volume 11 No.4 | 2024

	1 Introduction
	2 Overview of LDPC codes
	3 THE PROPOSED GENETIC ALGORITHM-BASED LDPC CODE DESIGN
	4 PERFORMANCE EVALUATION
	4.1 Scenario of 64-bit block length code
	BLER versus the number of populations
	BLER versus a range of SNR

	4.2 Scenario of 128-bit block length code
	BLER versus the number of populations
	BLER versus a range of SNR

	5 CONCLUSION

