
A Secure Cooperative Image Super-Resolution
Transmission with Decode-and-Forward Relaying
over Rayleigh Fading Channels

Hien-Thuan Duong1,3,  Ca V. Phan1,∗, Quoc-Tuan Vien2

1Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 
Ho Chi Minh City 70000, Vietnam
2Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
3Faculty of Electronics and Telecommunications, Saigon University, Ho Chi Minh City 70000, Vietnam

Abstract
In addition to susceptibility to performance degradation due to hardware malfunctions and environmental
influences, wireless image transmission poses risks of information exposure to eavesdroppers. This paper
delves into the image communications within wireless relay networks (WRNs) and proposes a secure
cooperative relaying (SCR) protocol over Rayleigh fading channels. In this protocol, a source node (referred
to as Alice) transmits superior-resolution (SR) images to a destination node (referred to as Bob) with the
assistance of a mediating node (referred to as Relay) operating in decode-and-forward mode, all while
contending with the presence of an eavesdropper (referred to as Eve). In order to conserve transmission
bandwidth, Alice firstly reduces the size of the original SR images before transmitting them to Relay and
Bob. Subsequently, random linear network coding (RLNC) is employed by both Alice and Relay on the down-
scaled poor-resolution (PR) images to obscure the original images from Eve, thereby bolstering the security of
the image communications. Simulation results demonstrate that the proposed SCR protocol surpasses both
secure relaying transmission without a direct link and secure direct transmission without relaying links.
Additionally, a slight reduction in image quality can be achieved by increasing the scaling factor for saving
transmission bandwidth. Furthermore, the results highlight the SCR protocol’s superior effectiveness at Bob’s
end when compared to Eve’s, which is due to Eve’s lack of access to the RLNC coefficient matrices and
reference images utilised by Alice and Relay in the RLNC process. Finally, the evaluation of reference images,
relay allocations and diversity reception over Rayleigh fading channels confirms the effectiveness of the SCR
protocol for secure image communications in the WRNs.
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1. Introduction
The increasing fascination with collaborative wireless
communication stems from innovative advancements
that enhance the security and dependability of data
transmission. The intermediary participants, known
as relay nodes, facilitate a cooperative link between
two terminal users through the shared wireless media
[1]. Such cooperative strategies have been integrated
into various wireless network structures in which the
deployment of the relay nodes not only amplifies the

∗Corresponding author. Email: capv@hcmute.edu.vn

overall system capacity and extends the network’s
coverage but also concurrently elevates signal fidelity
and augments the benefits derived from spatial
diversity [2].

Relay nodes in wireless relay networks (WRNs)
possess the capability to process and store data, acting
both before it is dispatched to the destination nodes and
after reception from the source nodes. The throughput
of the WRNs has seen a significant enhancement with
the adoption of the network coding (NC) concept, first
introduced in [3]. This technique, when applied at the
relay nodes, serves to bolster the data transmission rate
of the wireless relay network, as evidenced by [4, 5]. In

1 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

 | Volume 11 No. 4 | 2024

EAI Endorsed Transactions  
on Industrial Networks and Intelligent Systems Research Article 

mailto:<capv@hcmute.edu.vn>


Hien-Thuan Duong et al.

NC, a relay node or a source applies a coding function
to numerous packets it receives from input to form a
output packet. The coding function might be linear or
nonlinear, deterministic or probabilistic, depending on
the specific applications. For instance, in random linear
network coding (RLNC) [6], nodes integrate input
packets linearly using randomly selected coefficients
to construct the coding function. Provided that a
sufficient quantity of mixed data packets is available,
and the destination nodes possess knowledge of the
linear coefficients, they have the ability to retrieve
the original data from the source nodes [7]. A variety
of protocols rooted in NC have been devised for
prevalent relay channel frameworks. These include
protocols for relay-supported bilateral channels [8],
broadcasting channels [9], and multi-channels [10].
Additionally, RLNC enhances security by limiting the
degrees of freedom (essentially the decoding potential)
that an eavesdropper can exploit, thereby protecting the
communications [11].

In the context of image transmission over wireless
relay networks (WRNs), image data from a source
node can be delivered to a destination node either
directly or through a dual-hop process with the
support of a relay node (for instance, via source-
to-relay and relay-to-destination links). Motivated by
the advantageous impact of cooperative diversity,
this study delves into a collaborative communication
approach aimed at boosting the efficacy of image
transfers in WRNs by leveraging both relay and
direct connections. Although image transmission can
be executed using RLNC and standard relaying
methods, it is crucial to consider various challenges
related to data privacy and the bandwidth required
for transmission. This research introduces a secure
collaborative communication protocol that minimizes
the bandwidth demands for image transfers in
WRNs and concurrently conceals the image content.
This is achieved by drawing on the principles of
RLNC and image super-resolution (ISR). The principal
contributions of this research are outlined as follows:

• The study broadens the assessment of the
secure image communication model’s efficacy,
as proposed in [12], within a fading radio
environment. It introduces a secure collaborative
wireless communication method for transmitting
images between Alice and Bob in WRNs, with the
aid of a relay user. To conserve bandwidth, Alice’s
original superior-resolution (SR) image is initially
down-scaled using the suggested technique. This
reduced poor-resolution (PR) image is then
merged with a reference image through RLNC
encoding, which effectively masks the true image
from Eve, a potential eavesdropper. Following

RLNC encoding, the composite image is binary-
converted and processed for transmission across
the fading channel using channel coding and
digital modulation. At the relay and Bob’s
end, the reverse process is executed, involving
signal equalization, demodulation, and channel
decoding. Bob can then apply RLNC decoding and
ISR to reconstruct Alice’s original SR image from
the relayed data. The proposed method’s intrigue
lies in its efficient fusion of RLNC and ISR benefits
into a unified protocol for image communication
in WRNs, particularly when operating under
constrained bandwidth. Notably, in scenarios with
high signal-to-noise ratio (SNR), there exists a
delicate balance between bandwidth conservation
and the quality of the restored SR image.

• The placement of the relay node significantly
influences the performance of the proposed pro-
tocol. The intersection of Source-Relay Transmis-
sion (SRT) and Source-Destination Transmission
(SDT) delineates two operational zones: low-SNR
and high-SNR. In the low-SNR region, SRT out-
performs SDT, while the reverse is true in the
high-SNR domain. Overall, the Secure Cooper-
ative Relay (SCR) protocol surpasses both SRT
and SDT across the entire evaluation spectrum.
Notably, the SCR protocol exhibits marginally
superior performance when the relay is positioned
closer to the destination (near Bob) compared to
when it is situated near the source (near Alice).

• The research reveals that the format, dimensions,
attributes, and structural discrepancies of the ref-
erence images distinctly impact the SCR proto-
col’s efficiency. Conversely, the effectiveness of
Eve’s decoding attempts fluctuates with the use of
various inaccurately estimated images; neverthe-
less, the performance remains substantially sub-
par, and the recovery of Alice’s original superior-
resolution (SR) image is unattainable.

• The proposed SCR protocol falls under the cat-
egory of Decode and Forward (DF) coopera-
tive protocols. Consequently, diversity reception
techniques such as Maximal Ratio Combining
(MRC), Equal Gain Combining (EGC), and Selec-
tion Combining (SC) can be utilized to improve
performance. This is particularly effective when
the relay has access to the identical shared refer-
ence image and RLNC coefficient matrix as Alice.

The structure of the remaining sections of the article is
as follows: Section 2 introduces the pertinent literature
that lays the groundwork and serves as the impetus
for our investigation. Section 3 delineates the system
architecture for conventional image communication
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within a WRN that includes wiretap links. The
proposed SCR protocol, designed for safeguarded ISR
across WRNs, is detailed in Section 4. Section 5 is
dedicated to showcasing simulation outcomes that
substantiate the SCR protocol’s efficacy and benchmark
it against alternative protocols. The article reaches its
culmination in Section 6, summarizing the key findings
and proposing avenues for future exploration.

2. Related Works
Graphic language is a ubiquitous element in our daily
lives, and ensuring the integrity and confidentiality
of superior-resolution image transmission over a
lossy, bandwidth-constrained wireless channel remains
a significant scientific challenge. Historically, the
approach in [13] involved a combined source and
channel coding technique for transmitting images
over block erasure channels, where higher frequencies
receive minimal shielding and lower frequencies
are more robustly protected by channel codes. The
synergy of channel coding and source coding is
also explored in [14]. Furthermore, the work in [15]
proposes an optimization framework that devises
an authentication graph, which strategically allocates
additional redundant authentication data to the most
critical image packets.

In the realm of image processing, the technique
known as Image Super-Resolution (ISR) has garnered
significant interest in recent times. This process
involves generating superior-resolution images from
poor-resolution counterparts. The rapid advancements
in deep learning have propelled deep learning-based
ISR methods to surpass traditional approaches, as
documented in references [16–18]. This progress has
given rise to various ISR frameworks, such as the
super-resolution feedback network [19], deep residual
network [20], super-resolution convolutional neural
network [21], Laplacian pyramid SR [22], deep back-
projection networks [23], and the VDSR (Very Deep
Super Resolution) [24]. An aggregate based on deep
learning (DL), such as the Reliability-Aware Neural
Network (RANN) [25], has been employed to enhance
performance in signature categorization tasks. The
VDSR, in particular, has demonstrated its capability
to reconstruct superior-resolution images from poor-
resolution versions, delivering impressive performance
and operational speed. Within the VDSR architecture,
each convolutional layer is equipped with 64 filters
and rectified linear units. Thanks to its robust design,
VDSR has been applied across diverse fields, including
image communications [26], industrial machinery [27],
seismic analysis [28], and network security [29]. It’s
important to highlight that the use of lower-resolution
images plays a pivotal role in reducing the bandwidth
required for transmission.

Considering privacy in the realm of image commu-
nication is essential. Picture protection can be broadly
divided into two techniques: cryptography and infor-
mation concealment. The latter includes watermarking
and steganography as its subcategories. Cryptography
employs encryption or hashing to scramble an image,
which is then decrypted at the receiver’s end to reveal
the hidden image. A particular strategy using secure
image hash-based geometric alterations was proposed
in reference [30] to safeguard images with minimal
shared details. Employing transformations such as rota-
tion, shift, and scale can enhance image security. Refer-
ence [31] explores various encryption methods. Water-
marking involves embedding digital data within a host
image, which can serve to authenticate images or pro-
tect copyrights and may be either visible or invisible.
Reference [32] discusses an advanced method combin-
ing semi-tensor product and compressed sensing for
digital watermarking, aimed at securing telemedicine
image transmissions. This technique has proven highly
effective against various disturbances, including white
Gaussian noise, Poisson noise, and impulsive noise.
Additionally, steganography is a popular method for
concealing information within other non-sensitive data,
as mentioned in references [33] and [34]. Although
their techniques vary, both aim to keep the data
protected from unauthorized access. Steganography is
often favored over encryption due to its simplicity, as
it does not require complex encryption and decryption
algorithms at both ends. It is a versatile technique
that can conceal text, images, audio, and video; how-
ever, images with ample redundant bits are particularly
well-suited for this purpose. A straightforward method
involving the least significant bit was introduced in
[35], utilizing the final bit of each pixel to store the
secret message’s data bits. The concealment can be
further enhanced through the use of DWT (Discrete
Wavelet Transform) [36] and DCT (Discrete Cosine
Transform) [37], which transition the image from the
spatial to the frequency domain, allowing alterations
across various frequency bands without detection. The
application of this technique may be constrained by the
requirement that the hidden image be smaller than the
cover image. In contrast to traditional image steganog-
raphy, coverless steganography embeds secret data
directly into the cover image’s edge, texture, brightness,
and color, without any overt alterations or markings.
This innovative approach has seen significant contri-
butions, as documented in [38]. For evaluating the per-
formance of secure image transmission, various metrics
have been listed in [39], including MSE (Mean Square
Error), MAE (Mean Absolute Error), PSNR (Peak Signal-
to-Noise Ratio), Image Entropy, Throughput, NPCR
(Number of Pixel Change Rate), CC (Correlation Coef-
ficient), NC (Normalized Coefficient), Hiding Capacity,
and SSIM (Structural Similarity Index). Among these,
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PSNR and SSIM [40] are well-known and frequently
used for assessment. Detailed explanations of PSNR
and SSIM will be provided in Section 5.

The NC has been widely adopted in scholarly works
to enhance the throughput of information transmission
over WRNs, as referenced in [41, 42]. The inception
of a secure NC methodology was introduced in [43].
Research detailed in [11] demonstrated that RLNC can
protect communications within a network susceptible
to interception by intermediate nodes. Implementing
NC at the physical layer of a two-way relay wireless
network has been shown to potentially double system
throughput, a concept initially put forth in [41]. Secure
relaying strategies, such as the modify-and-forward
approach in WRNs where the relay fuses decoded data
with an encrypted key in a random linear fashion before
relaying to the destination, have been employed as per
[44] to fortify the security against wiretap channels.
The authors in [45] advocate for the use of RLNC and
relay selection techniques to bolster security, reduce
latency, and cut down on energy consumption in WRNs.
Hybrid NC, outlined in [46], is presented as a strategy
to enhance the security of wireless channels. This
approach involves splitting the NC output into two
segments: one is openly broadcasted, while the other
is secured through covert security measures at the
physical layer.

Based on these techniques, we have created a secure
collaborative relaying protocol across WRNs. To secure
images communicated within the network, we achieve
this by combining the RLNC concept with a reference
image that acts as coverless steganography. Further-
more, in order to preserve transmission bandwidth at
Bob and the relay, we use ISR to retrieve the original SR
photos from their PR versions.

3. System Model
In our study, we employed a standard four-node system
model depicted in Fig.1 to assess the security of
image communication over fading WRN. The model
consists of a sender, Alice (A), who aims to transmit
a confidential image to the recipient, Bob (B), either
directly or via a relay node, Relay (R). An eavesdropper,
Eve (E), is positioned to intercept the image during
its transmission from Alice or through Relay. As
illustrated in Fig.1, two potential wiretap links are
highlighted in red. The model takes into account the
spatial positioning of the nodes, denoted by coordinates
(xA, yA) for A (Alice), (xR, yR) for R (Relay), (xB , yB) for
B (Bob) and (xE , yE ) for E (Eve). Transmission of images
between between nodes S and D, where S ∈ {A,R}, and
D ∈ {R,B, E}, is subject to the effects of a wireless fading
channel, which in our assumption is a flat Rayleigh
fading channel, and the additive white Gaussian noise
(AWGN) at the receiver’s end. The physical distances

between these nodes are also factored into the system
model.

Figure 1. System model of secure image communications in a
typical WRN.

In this study, we concentrate on a color image,
denoted as W, with dimensions P ×Q, represented by a
three-dimensional array of size P ×Q × 3. It is expected
that the communication of channels and decoding
information between Bob, Alice, and Relay will be
seamless over the assumed channels. The proposed SCR
protocol enables image transmission between Alice and
Bob in two distinct phases: (i) In the first phase, Alice
sends the RLNC-encoded image to both Bob and Relay;
(ii) In the subsequent phase, Relay decodes the received
image, re-encrypts it using RLNC and forwards the
newly encoded image to Bob. Throughout both phases,
Eve has the potential to intercept the communication
over the shared wireless network and may attempt to
decipher the images transmitted by Alice and Relay
using the wiretap links.

4. Secure Collaborative Relaying for Image
Communications
The protocol examined in this study mirrors the one
detailed in reference [12]. Our investigation extends
to analyzing the positions of the network nodes and
the impact of the wireless fading channel on the SCR
protocol. A comprehensive depiction of the protocol
can be found in Fig.2.

4.1. Signal Processing at Alice
Alice first uses bicubic interpolation (this work
considers the bicubic filter because of its low processing
complexity) to downscale the original SR image into
an PR version in order to minimize the amount of
transmission bandwidth required.

Alice is given an original RGB image, denoted

as W(SR)
A , with dimensions P ×Q × 3. This image

is intended to be transmitted to Bob. To create a
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Figure 2. Proposed SCR for image communications with ISR.

poor resolution (PR) version of this image, bicubic
interpolation is applied using a scaling factor τ ,

resulting in W(P R)
A with new dimensions P ′ ×Q′ × 3.

Here, P ′ is the smallest integer greater than or equal
to P ′ = ⌈P /τ⌉ and Q′ is the smallest integer greater
than or equal to Q′ = ⌈Q/τ⌉, indicated by the ceiling
function ⌈·⌉. For security reasons, RLNC is employed

to encode W(P R)
A . This process involves blending the PR

image with a reference image, W(ref )
A , which is randomly

selected from a shared image datastore, S. The resulting

encoded image at Alice’s end is referred to as W (enc)
A .

W(enc)
A = NA,1 ⊗W(P R)

A + NA,2 ⊗W(ref )
A (1)

In the context provided, NA,i , i ∈ {1, 2},, refers to RLNC
coefficient matrices at Alice, each with dimensions
P ′ ×Q′ × 3. The symbol, ⊗, represents the element-wise
multiplication, also known as the Hadamard prod-
uct, between two matrices. For any given element in

the matrix NA,i , represented as γ
(i)
A,p,q,k , where p ∈

{1, 2, . . . , P ′}, q ∈ {1, 2, . . . , Q′}, k ∈ {1, 2, 3}, it signifies the
coefficient at the corresponding position in the matrix.
To ensure that the pixel values of the encoded image
remain within the acceptable range, each coefficient

γ
(i)
A,p,q,k is constrained to be within the interval [0, 1].

Additionally, for every position (p, q, k), the sum of the
coefficients from both matrices must equal 1, expressed

as γ
(1)
A,p,q,k + γ

(2)
A,p,q,k = 1. 1 The RLNC-encoded image,

W(enc)
A , undergoes a binary conversion and is then

processed through SP2Tx (Signal Processing to Trans-
mit), which involves channel coding and modulation.
This coding method introduces redundancy into the
binary data to enhance the reliability of communica-
tion. Specifically, this paper utilizes a straightforward
1/2 convolutional coding scheme with a constraint
length of Kcons = 3 and a generator polynomial of
[111, 101]. For the transmission of the binary data over
a wireless communication channel, digital modulation
is necessary. This process involves the correspondence
between the binary data and signal sequences based
on the chosen modulation technique. In this case, a
simple Binary Phase Shift Keying (BPSK) modulation
is employed. The output from SP2Tx, denoted as xA,
is sent to Bob. However, during the initial transmission
slot, the Relay is susceptible to eavesdropping by Eve.
It is assumed that the distance between the source (S)

1Effects of coefficient matrices for RLNCs, γ(i)
A,p,q,k , and Impact of scale

factor, τ , are mentioned in [12]
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and destination (D) is dSD, where S ∈ {A, R} and D ∈
{R,D, E}.

4.2. Signal Processing at Relay
In the initial time slot, the signal that the Relay receives
can be represented as follows:

y
(1)
R =

hARxA

d
β
AR

+ g
(1)
R (2)

In the given context, hAR represents the fading channel
gain, and d

β
AR denotes the path loss from A to R,

with β being the path loss factor. The term g
(1)
R

refers to an independent Additive White Gaussian
Noise (AWGN) at the R node, characterized by a zero
mean and a variance of σ2

R,1 for each element. The
channel is assumed to be flat fading, which means
it has only a single tap in the multipath channel,
simplifying the convolution to a mere multiplication.
The received signal undergoes processing in RxSP
(Received Signal Processing), where it is equalized,
demodulated, and channel-decoded using the Viterbi
algorithm for maximum likelihood estimation. After
processing, the signal is converted back into an image
format, resulting in the estimated image, denoted as

X̂(1)
R . To remove noise from the image, a pretrained deep

neural network known as DnCNN [28] is employed,
producing the denoised image at R, represented as

W̄(1)
R . Utilizing the shared reference image from A,

W(ref )
A , along with the RLNC coefficient matrices, NA,1

and NA,2, the R is able to estimate the original poor-

resolution image, W(P R)
A , as

Ŵ(1)
R =

(
W̄(1)
R −NA,2 ⊗W(ref )

A

)
⊘NA,1, (3)

In the context provided, the symbol, ⊘, is used
to indicate the element-wise division between two
matrices. This means that each element in one matrix
is divided by the corresponding element in the other
matrix.

During the second time slot, the estimated image at

the Relay, denoted as Ŵ(1)
R , is combined with a reference

image, W(ref )
R . This reference image at the Relay may or

may not be identical to the one at Alice’s end, but it
is also randomly chosen from the same shared image
datastore, S, accessible to all authorized users. The
RLNC-encoded image at the Relay is expressed as:

W(enc)
R = NR,1 ◦ Ŵ

(1)
R + NR,2 ◦W

(ref )
R , (4)

Here, NR,i , i ∈ {1, 2}, are RLNC coefficient matrices at
the Relay, each with dimensions P ′ ×Q′ × 3. The coeffi-
cient in matrix NR,i at position (p, q, k) is represented by

γ
(i)
R,p,q,k , p ∈ {1, 2, . . . , P ′}, q ∈ {1, 2, . . . , Q′}, k ∈ {1, 2, 3}.

These coefficients are constrained to ensure that the
pixel values of the encoded image at the Relay do not

exceed their permissible range, meaning 0 ≤ γ
(i)
R,p,q,k ≤ 1

and the sum of the coefficients for each position equals

one, γ
(1)
R,p,q,k + γ

(2)
R,p,q,k = 1. The RLNC-encoded image,

W(enc)
R , undergoes the same processing as at Alice’s end

before being transmitted over the fading channel. This
includes conversion to binary, channel encoding, and
modulation. The processed signal is then conveyed to
Bob as a wireless signal, symbolized by xR.

4.3. Signal Processing at Bob
In the initial time slot, the signal that Bob receives from
Alice is expressed as:

y
(1)
B =

hABxA

d
β
AB

+ g
(1)
B (5)

Here, hAB and d
β
AB represent the fading channel gain

and path loss from Alice to Bob, respectively, with

β being the path loss factor. The term g
(1)
B is an

independent AWGN at Bob’s node, characterized by a
zero mean and a variance of σ2

B,1 for each symbol, which
is assumed to be equal to σ2

R,1. Similar to the process
at the Relay, the signal received by Bob is processed
through RxSP, where it is equalized, demodulated, and
channel-decoded using the Viterbi algorithm. Passing
RxSP, the signal is transformed into an image format,

resulting in the estimated signal, X̂(1)
B . This image

is then denoised using a DnCNN network [28]. The
denoised and estimated original poor-resolution image

at Bob is denoted as Ŵ(1)
B .

Ŵ(1)
B =

(
W̄(1)
B −NA,2 ⊗W(ref )

A

)
⊘NA,1, (6)

where W̄(1)
B is an estimated image after denoising. NA,1

and NA,2 are RLNC coefficient matrices used at Alice.
Following RLNC-decoding, Bob reconstructs the full-
size original superior-resolution (SR) image using an
VDSR ISR framework [24]. This VDSR ISR framework
was trained on the publicly available IAPR TC-12
Benchmark dataset [47]. The training hyper-parameters
for the proposed SCR protocol were set to a batch
size of 64 across 100 epochs, with an initial learning
rate of 0.1 and various scaling factors τ = {2, 4, 6, 8, 10}.
Consequently, the SR image that Bob recovers in the

first time slot, denoted as Ŵ(SR,1)
B , is acquired through

this method.
Ŵ(SR,1)
B = ∆τ (Ŵ(1)

B ), (7)

In the given context, the symbol ∆τ (·) represents
the VDSR ISR operator used to reconstruct superior-
resolution (SR) images. The scaling factor, denoted by τ ,
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is a parameter that determines the degree of upscaling
applied to enhance the image resolution.

In the second time slot, Bob receives a signal from the
Relay, which is formulated as:

y
(2)
B =

hRBxR

d
β
RB

+ g
(2)
B (8)

where hRB and d
β
RB are the fading channel gain and

path loss from the Relay to Bob, respectively; β is the

path loss exponent, and g
(2)
B is an independent AWGN

at Bob’s node with zero mean and a variance of σ2
B,2 for

each symbol.
If the reference image at the Relay is different from

Alice’s, Bob’s signal processing in the second time slot
mirrors that of the first time slot when he received the
signal from Alice. The received signal from the Relay
is processed through RxSP and then converted into an

image format, yielding the estimated image X̂(2)
B .

Alternatively, if the Relay and Alice use the same
reference image, the received signal at Bob in the
second time slot can benefit from diversity receiving
techniques such as Maximum Ratio Combining (MRC),
Equal Gain Combining (EGC), and Selection Combin-
ing (SC). The equalization process for combining the
signals from the two time slots is outlined in the com-
munication protocol as

ŷ
(2)
B.MRC = h∗ABy

(1)
B + h∗RBy

(2)
B (9)

ŷ
(2)
B.EGC = e−j∠hABy

(1)
B + e−j∠hRBy

(2)
B (10)

ŷ
(2)
B =

h−1
ABy

(1)
B if γ

(1)
B > γ

(2)
B

h−1
RBy

(2)
B if γ

(2)
B > γ

(1)
B

(11)

where y
(1)
B and y

(2)
B are in Eq.(5) and Eq.(8), respectively;

γ
(1)
B and γ

(2)
B are the instantaneous SNRs associated

with the A − B and R − B channels. Those equalized
signals will be demodulated and channel decoded (with
Viterbi Algorithm) then converted to image format.

Then we have the estimated image, x̂(2)
B.DR where DR ∈

{MRC, EGC,SC}. The estimated image X̂(2)
B or X̂(2)

B.DR is
denoised by using DnCNN network to get denoised PR

image W̄(2)
B or W̄(2)

B.DR. Bob can use RLNC decoding to
retrieve the PR image that was sent from Relay in the
manner described below.

Ŵ(2)
B =

(
W̄(2)
B −NR,2 ⊗W(ref )

R

)
⊘NR,1. (12)

Ŵ(2)
B.DR =

(
W̄(2)
B.DR −NA,2 ⊗W(ref )

A

)
⊘NA,1. (13)

To recover the image transferred from Relay, keep
in mind that Bob needs access to both the reference

image and the RLNC coefficient matrices used for
RLNC encoding at the Relay. Bob converts PR received
image to SR orignal image by employing an VDSR ISR

framework which is presented by Ŵ(SR,2)
B or Ŵ(SR,2)

B.DR

Ŵ(SR,2)
B = ∆τ (Ŵ(2)

B ). (14)

Ŵ(SR,2)
B.DR = ∆τ (Ŵ(2)

B.DR). (15)

Ultimately, Bob creates a composite image by layering
the superior-resolution images recovered from both

time slots. The process involves superimposing Ŵ(SR,1)
B

from Eq.(7) and Ŵ(SR,2)
B from Eq.(14), or Ŵ(SR,2)

B.DR from
Eq.(15), resulting in:

Ŵ(SR)
B = α1Ŵ

(SR,1)
B + α2Ŵ

(SR,2)
B , (16)

Ŵ(SR)
B.DR = α1Ŵ

(SR,1)
B + α2Ŵ

(SR,2)
B.DR , (17)

Here, αi , where i ∈ 1, 2, indicates the proportion of the
i-th superior-resolution image that contributes to the
final blended image. αi is also called Alpha blending
factor [48] in image fusion techniques.

4.4. Signal Processing at Eve
Due to the broadcast characteristics of the wireless
medium, Eve may intercept the data packets transmit-
ted by Alice and the Relay during both time slots, even
though they are not intended for her. The formulas rep-
resenting the signals that Eve captures in the first and
second time slots can be articulated accordingly. This
highlights the potential security concerns in wireless
communication where unintended recipients can access
the transmitted data.

y
(1)
E =

hAExA

d
β
AE

+ g
(1)
E (18)

y
(2)
E =

hRExR

d
β
RE

+ g
(2)
E (19)

where hZE , d
β
ZE are fading channel gain and path

loss from Z (with Z ∈ {A,R}) to E, respectively; β is

path loss factor; g
(i)
E , i ∈ {1, 2}, is an AWGN at Eve

in the i-th time slot with each entry having zero
mean and variance of σ2

E ,i . Eve attempts to discern
the origin of the data—whether it’s from Alice or
the Relay—using the same methods as the Relay and
Bob. The signals received are processed through RxSP,
where they are equalized, demodulated, and channel-
decoded. The output from RxSP yields the estimated

signals for both time slots, denoted as X̂(1)
E and X̂(2)

E .
These estimated signals are then converted into image
format and subsequently denoised using a deep neural
network equipped with a pretrained DnCNN network,
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resulting in the denoised images W̄(1)
E and W̄(2)

E . Eve is
unaware of the RLNC coefficient matrices, denoted as
{NA,1, NA,2} and {NR,1, NR,2} which Alice and Relay
utilize to conceal the original image. She also lacks

knowledge of the reference images, W(ref )
A and W(ref )

R ,
stored in the image database and accessible only to
authorized individuals. Eve attempts to deduce the
RLNC coefficient matrices and searches the database for
the reference images to recover the original images. The
approximated RLNC coefficient matrices at Alice and
Relay are represented by {N̂A,1, N̂A,2} and {N̂R,1, N̂R,2}.
The elements of the RLNC coefficient matrices at Alice
and Relay can be estimated using the following method:

γ̂
(1)
X ,p,q,k = γ

(1)
X ,p,q,k ± εX ,p,q,k , (20)

γ̂
(2)
X ,p,q,k = 1 − γ̂ (1)

X ,p,q,k , (21)

where X ∈ {A,R}, p ∈ {1, 2, . . . , P ′}, q ∈ {1, 2, . . . , Q′}, k ∈
{1, 2, 3} and εX ,p,q,k denotes the estimation error of

γ̂
(1)
X ,p,q,k at Eve. Additionally, the reference images that

Eve estimates, corresponding to those used by Alice

and the Relay, can be designated as Ŵ(ref )
A and Ŵ(ref )

R ,
respectively. Eve utilizes the information from the first
and second time slots in an attempt to reconstruct
the original image. The process for this reconstruction
follows specific steps outlined in the communication
protocol.

Ŵ(1)
E =

(
W̄(1)
E − N̂A,2 ⊗ Ŵ(ref )

A

)
⊘ N̂A,1, (22)

Ŵ(2)
E =

(
W̄(2)
E − N̂R,2 ⊗ Ŵ(ref )

R

)
⊘ N̂R,1. (23)

Eve may then recover the whole size of the SR original
image using VDSR ISR in the i-th time slot, where i ∈
{1, 2}, as

Ŵ(SR,i)
E = ∆τ (Ŵ(i)

E ). (24)

As a result, at Eve the recovered image from both time
slots are combined similarly at Bob.

Ŵ(SR)
E = α̂1Ŵ

(SR,1)
E + α̂2Ŵ

(SR,2)
E , (25)

where α̂i , i ∈ {1, 2}, represents the estimated Alpha
blending fraction of the i-th SR image in the composite
image at Eve.

For additional clarity, Fig.2 illustrates the workflow
of the suggested SCR protocol for image transmission
within a fading WRN. It confirms the existence of
legitimate direct communication paths from Alice to
Bob and relayed paths from Alice to Bob via the
Relay. The diagram also indicates the potential for
eavesdropping on both the direct Alice-to-Eve and the
relayed Relay-to-Eve links.

5. Simulation Results
This section, the simulation outcomes of the suggested
SCR method for secure image transmission over fading
channels in WRNs are presented. The effectiveness
of the proposed approach is evaluated using two
performance metrics [40]: the Structural Similarity
Index Measure (SSIM) and the Peak Signal-to-Noise
Ratio (PSNR).

The PSNR is used to measure the quality of the

image recovered by Bob, denoted as Ŵ(SR)
B , against

the original superior-resolution (SR) image from Alice,

W(SR)
A . Meanwhile, the SSIM assesses the level of

structural similarity between the recovered image

Ŵ(SR)
B and the original W(SR)

A . Specifically, the PSNR
[40] is calculated in decibels (dB) to quantify the image
quality.

PSNR
(a)
= 10 log10

1
MSE

(b)
= 10 log10

3PQ∑P
x=1

∑Q
y=1

∑3
z=1

(
WA(x, y, z) − ŴB(x, y, z)

)2 ,

(26)

In section (a), MSE represents the mean square
error, which measures the discrepancy between the

estimated superior-resolution image Ŵ(HR)
B and the

actual superior-resolution image W(HR)
A . In section (b),

it is acknowledged that RGB color images are typically
considered to have dimensions P ×Q. Furthermore, by
applying Eq.(26), one can calculate the PSNR for the
image reconstructed by Eve through wiretap channels,
which is a metric used to evaluate the quality of the
reconstructed image.

The average SSIM of the restored picture at Bob, or

Ŵ(HR)
B , is calculated using [49]:

SSIM =
1
PQ

P∑
x=1

Q∑
y=1

[bA,B(x, y)]λ[cA,B(x, y)]ρ[sA,B(x, y)]θ ,

(27)
where the brightness, contrast, and structure compo-
nents at pixel (x, y) are represented, respectively, by
bA,B(x, y), cA,B(x, y), and sA,B(x, y). In this case, λ, ρ, and
θ denote the respective weighted combinations of these
three elements.

In this simulation, MATLAB serves a dual purpose,
being employed for both the training and validation
phases. Training of the VDSR ISR network [24] is
conducted using a dataset comprising 20,000 static,
natural images from the IAPR TC-12 benchmark
[47]. The VDSR ISR network is characterized by its
architecture, which includes 20 convolutional layers,
and processes 64 image patches, each measuring 41
by 41 pixels, with scaling factors ranging from 2 to
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Figure 3. Images for testing and validation of the proposed
cooperative secure image super-resolution.

10. Specifically, the network’s initial layer contains
64 filters, each 3x3 in size, followed by 18 layers
that alternate between convolutional operations and
the application of the ReLU function. The second-
to-last layer consists of a single convolutional filter,
also 3x3x64, and the final layer employs a regression
approach to determine the mean square error between
the residual image and the network’s prediction.

The training process utilizes specific hyperparame-
ters: gradient clipping with an L2-norm technique and a
threshold of 0.01, a momentum value of 0.9, and an ini-
tial learning rate of 0.1, which decreases tenfold every
10 epochs until reaching 100 epochs. For validation,
20 pristine images from MATLAB’s Image Processing
Toolbox, shown in Fig.3, are used.

Significantly, this study pioneers the integration of
SCR with RLNC and VDSR ISR to enhance secure image
communication over fading WRNs. The fading channel
employed in the simulation adheres to the flat Rayleigh
model, and the simulation itself is executed using BPSK
modulation alongside convolutional coding, utilizing
the generator pattern [111; 101].

5.1. SCR versus SRT versus SDT
Figure 4 illustrates the relationship between PSNR
and SSIM values and the SNR (in dB) under Rayleigh
fading conditions for the direct link between Alice and
Bob (SDT) during the initial time slot, as well as the
relay link through Relay (SRT) across both time slots,
employing both the DF protocol and the suggested SCR
protocol which is the simple image fusion technique
where two images are overlayed and blended with
Alpha blending factor [48] .

The Figure 4 is results of simulation with parameters
listed in Table 1. This Figure shows that, the SRT

Table 1. Simulation Parameters

Parameter Description Value
Original SR images 1-4 in Fig.3
Running 10 loops
Reference image at Alice 17 in Fig.3
Reference image at Relay 17 in Fig.3
Location of Alice (0, 0)
Location of Bob (0, 3)
Location of Relay (1.6, 1)
Location of Eve (1.4,−1)
Path loss factor β = 2
Channels AWGN and Rayleigh
Downscale factor τ = 10
RLNC coefficients [0.3, 0.5]
Modulation BPSK
Channel coding 1/2 Convolution code
Diversity receiving MRC
Image denoised DnCNN [28]
Image super-resolution VDSR [24]

protocol is dominant over SDT protocol and SCR is a
little better than SRT’s performance with SNR below
around 28dB (intersection of SRT and SDT which is
depending on the location of Relay investigated in
figure 10, the intersection divides evaluated SNR into
two range: low range SNR - below 28dB and high
range SNR - above 28dB). In high range SNR above
28dB, SCR protocol gives better results than SDT and
SRT protocols about 0.2dB and 1dB respectively. The
recovery of Eve is very poor compared to the SCR
(below around 9 dB), which mean that Eve is hardly able
to recover the image that Alice wants to send to Bob.
The evaluation by using SSIM techniques is also get
the similar results. However, in high range SNR, SCR is
outperform to SDT and SDT. In Figure 4, we compare
the effects of the Rayleigh fading channel and the
AWGN channel, as explored in [12]. The performance
of the SDT, SRT, and SCR protocols is similar over
both channels in the small and large SNR regions. This
is because, in the small SNR region, the noise is too
high for Bob to recover the image, while in the large
SNR region, the influence of fading noise is minimal.
However, in the middle SNR region, the performance
of the SDT, SRT, and SCR protocols over the AWGN
channel is better than over the Rayleigh fading channel.

The Figure 5 shows simulation results where Alice
and Relay use different reference images which are 17
and 15, respectively. Others parameters are the same as
in Figure 4 (simulation parameters in Table 1). In this
case the differences are only in SRT and SCR protocol
where combining receiver techniques is used (in case
of Relay use the same reference image as Alice) or not
used (in case of Relay use the different reference image
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(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 4. PSNR and SSIM of secure image communication pro-
tocols.

as Alice). It shows that the performance of SCR and
SRT which use diversity receiving are better then those
protocol without using diversity receiving.

5.2. Effectiveness of diversity receiving for SCR

In this evaluation, we use the same simulation
parameters as used in Figure 4 with different diversity
receiving techniques such as MRC, EGC and SC. In
Figure 6, it is show that, according to SNR value the
performance of using MRC scheme is better from 0.2 to
0.4dB then those of using EGC and SC schemes in PSNR
evaluation. In SSIM evaluation, the MRC technique is
quite better than EGC and SC about 25% especially in
high range SNR.

(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 5. PSNR and SSIM of Relay use the same and different
reference image from Alice.

5.3. Impact of Scaling Factor

This section delves into the effects of varying the scale
factor. Displayed in Figure 7 are the PSNR and SSIM
metrics of the proposed SCR method in relation to the
SNR with MRC receiving, considering different scaling
factors, specifically τ = 2, 4, 6, 8, 10. The simulation
parameters remain consistent with those in Figure 4.
At lower SNR levels, the PSNR and SSIM values across
various scaling factors show minimal variance, largely
due to the predominant influence of channel noise.
Conversely, at higher SNR levels where channel noise
diminishes, both PSNR and SSIM experience a decline,
with PSNR dropping from 19dB to 17dB and SSIM
from 0.74 to 0.63 as the scale factor increases from 2
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(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 6. PSNR and SSIM of SCR with Diversity Receiving.

to 10. Eve’s ability to intercept the transmission is not
markedly impacted by reducing the scale factor, since
successful image decoding on Eve’s part necessitates
access to the RLNC coefficient matrices and the original
images used by Alice and Relay for encoding, which are
independent of the scale factor.

5.4. Impact of Reference and Estimation Image
Taking into account the impact of reference images,
Figure 8 presents the PSNR and SSIM values against
the SNR for various reference images utilized at Alice
and Relay. Other simulation parameters are the same
those used in Figure 4. Due to the different dimensions
and structures of them, they impact too much to the
proposed SCR protocol. The Figure 8 shows that in the

(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 7. PSNR and SSIM of SCR with Different Scales.

low range SNR the impact of different reference images
to SCR protocol are not too much for PSNR evaluation.
However, they can differ too much in high range SNR
i.e., PSNR of SCR with reference image number 17
can have around 4-4.3dB better performance then SCR
with reference image number 15. The effect of reference
images on PSNR and SSIM are not the same for example
the PSNR’s performance when working with image no
12 is better than its performance when working with
image no 15, but SSIM’s performance is in the opposite.

Figure 9 illustrates the effects of the wrong estimated
images at Eve by plotting the PSNR and SSIM
against SNR of the fading channel. The SCR protocol’s
performance is assessed with the same simulation
conditions as those shown in Figure 4. When Eve
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(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 8. PSNR and SSIM of SCR with Different Reference
Images.

decodes the overheard images from Alice and Relay for
the first and second time slots, respectively, utilizing
a variety of wrong estimated photos, including the
13rd , 15th, 16th, 18th, 19th and 20th images (see Figure
3). Eve’s performance is significantly harmed by the
wrong estimated image, as shown in Figure 9. For
example, Eve’s best PSNR over fading channels using
the 16th estimated image is about 7.5dB less than Bob’s,
and Eve’s performance is considerably worse when
more incorrect estimated images are used for decoding.
Different estimated images at Eve has different effect on
Eve’s performance. In general, wrong estimated image
has poor recovering overheard image. Another fact that
Eve is unaware of the RLNC coefficient matrices at
Alice and Relay contributes to her poor performance

(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 9. PSNR and SSIM of SCR at Eve with Different
Estimated Images.

as well. This demonstrates once more how successful
the suggested SCR methodology is for safe picture
transmission in WRNs.

5.5. The effect of Relay location
In order to evaluate the impact of Relay locations, we
use the same simulation parameters as in Figure 4 and
two more locations of Relay are taken into account such
as (1, 1) and (2.2, 1). The Figure 10 shows that when
changing locations of Relay the fading channel will
effect to the A −R and R −D links only, Therefore, the
performance of SDT are almost the same for all cases.
The intersection of SRT and SDT divide fading channel
into two ranges: low SNR range where SRT is dominant

12 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

 | Volume 11 No. 4 | 2024



(a) PSNR vs SNR.

(b) SSIM vs SNR.

Figure 10. PSNR and SSIM of SCR at Bob with Different Relay
Locations.

to SDT and high SNR range where SDT has better
performance then SRT. In the low SNR range, the SCR
is a little big better then SRT and SDT and the SCR of
the Relay located near Bob has worse performance then
those located near Alice and vice versa the SCR in case
of the Relay located near Bob (i.e., Relay has location
(2.2, 1)) has worse performance then those located near
Alice (i.e., Relay has location (1, 1)).

6. Conclusion
For secure image communications in Rayleigh fading
WRNs, where Alice wants to safely send SR photos to
Bob via two hops with Relay’s help, we have developed
an SCR protocol in this study. At Alice and Relay, RLNC

has been used to hide the original image from Eve.
Additionally, VSDR ISR was used to recover the SR
photos at Bob from their PR equivalents, which Alice
had down-scaled before sending them to Bob and Relay.
Research has demonstrated that, in comparison to
Eve, the suggested SCR approach yields a significantly
higher PSNR and SSIM at Bob of up to 7-7.5dB and 0.6-
0.65 then those at Eve, respectively. The SCR protocol
beats the SRT and SDT protocols by using direct and
relaying links; in the low SNR range, SCR is slightly
better than SRT and considerably better than SDT,
whereas in the high SNR range, SCR is slightly better
than SDT and much better than SRT. The positions
of the relay determine the low and high SNR ranges.
In addition to relying on relay locations, the proposed
SCR protocol also depends on the reference image
used. To increase SCR performance over the fading
channel WRN, we can exploit the diversity receiver
via relay and direct links such as MRC, EGC and SC
receivers. Prior to being sent to Bob and Relay, the
SCR protocol permits the original HR photos to be
down-scaled to PR images up to 10 times in order to
conserve transmission capacity. However, this results
in a negligible reduction in image quality of less than
1 dB in the noisy environment (low SNR range) and
around 2dB in high SNR range. Eve is specifically
unable to decode the original SR photos due to her
lack of knowledge of the RLNC coefficient matrices
utilized at Alice and Relay as well as reference images
in the common image datastore. Consequently, this
validates and verifies the effectiveness of the suggested
SCR technique in protecting the original SR image
transmission in the Rayleigh fading WRNs with a
constrained transmission bandwidth.
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