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Abstract

This study addresses significant l imitations of previous works based on the Brixia and COVIDGR datasets, 
which primarily provided qualitative lung injury scores and focused mainly on detecting mild and moderate 
cases. To bridge these critical gaps, we developed a unified a nd c omprehensive a nalytical f ramework that 
accurately assesses COVID-19-induced lung injuries across four levels: Normal, Mild, Moderate, and Severe. 
This approach’s core is a meticulously curated, balanced dataset comprising 9,294 high-quality chest X-
ray images. Notably, this dataset has been made widely available to the research community, fostering 
collaborative efforts a nd e nhancing t he p recision o f l ung i njury c lassification at  al l se verity le vels. To 
validate the framework’s effectiveness, we conducted an in-depth evaluation using advanced deep learning 
models, including VGG16, RegNet, DenseNet, MobileNet, EfficientNet, and Vision Transformer (ViT), on this 
dataset. The top-performing model was further enhanced by optimizing additional fully connected layers 
and adjusting weights, achieving an outstanding sensitivity of 94.38%. These results affirm the accuracy and 
reliability of the proposed solution and demonstrate its potential for broad application in clinical practice. Our 
study represents a significant s tep f orward i n d eveloping A I-powered d iagnostic t ools, c ontributing t o the 
timely and precise diagnosis of COVID-19 cases. Furthermore, our dataset and methodological framework 
hold the potential to serve as a foundation for future research, paving the way for advancements in the 
detection and classification of respiratory diseases with higher accuracy and efficiency.
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1. Introduction
COVID-19 is an infectious disease caused by the
novel coronavirus strain known as SARS-CoV-2. The
first human cases of COVID-19 were first reported
in December 2019 [1]. Since then, it has erupted
and spread at an astonishing rate worldwide. This
pandemic not only poses a threat to human lives but
also exerts immense pressure on healthcare systems,
impacting every facet of daily life, the economy, and
society at large. The rapid transmission of the virus has
made controlling and containing its spread extremely

∗Corresponding author. Email: thienntb@uit.edu.vn

challenging. In 2020, the exponential spread of COVID-
19 compelled the World Health Organization (WHO) to
declare it a global pandemic. This marked a significant
shift in healthcare management procedures, requiring
nations to implement new regulations to address the
situation, including the deployment of infection control
systems [2],[3]. COVID-19 has caused millions of
confirmed cases and hundreds of thousands of deaths
across the globe. The latest data from WHO [4] as
of September 2023 reveals approximately 760 million
confirmed cases of COVID-19 worldwide, with over
6.8 million fatalities. In the face of a pandemic that
threatens both humanity and society, we all must
come together and support one another. The efforts of
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Figure 1. AI-Assisted Workflow for Diagnosing COVID-19-Induced Lung Damage.

healthcare professionals and medical experts, coupled
with the use of technology and science to combat the
disease, play a pivotal role in controlling and ultimately
defeating COVID-19.

Most COVID-19 symptoms can manifest in various
forms, ranging from fever, dry cough, and shortness
of breath to loss of smell and taste. However, the
most common and critical symptom of this virus is
lung infection. In the field of COVID-19 diagnosis and
monitoring, chest X-rays and CT scans are the most
widely examined imaging methods [5]. To determine
the status of a COVID-19 infection, doctors often
must manually interpret these images. They must
identify specific image patterns to confirm pneumonia
caused by COVID-19. Manual interpretation can be
time-consuming and labor-intensive, especially when
dealing with a large volume of images. This presents
a challenge in promptly and effectively tracking the
patients’ conditions. Furthermore, the diagnostic and
treatment costs for COVID-19 are steadily increasing,
placing a significant economic and financial burden on
nations.

A survey conducted by X-ray doctors in Australia has
revealed that mobile X-ray services, general X-ray scans,
and CT scans are experiencing increased demand,
adding to the strain on healthcare professionals
and imaging diagnosticians [6]. This overload poses
difficulties in patient care, prognosis, and disease
control. In the context of limited healthcare facilities
such as specialized care units and the shortage
of mechanical ventilators for COVID-19 treatment,
patient classification based on the severity of the
disease becomes exceedingly crucial. The classification
of COVID-19 patients into four severity levels: Normal,
Mild, Moderate, and Severe, using X-ray images plays
an essential and irreplaceable role in diagnosis and

treatment. This not only helps identify the seriousness
of the patient’s condition but also determines whether
they should be treated in the hospital or can isolate
themselves at home. This plays a vital role in preventing
the spread of the virus and ensuring that the healthcare
system does not become overwhelmed.

In the healthcare field, Machine Learning (ML) is
widely used because of the computer’s ability to assist
experts in performing specific tasks [7], [8], [9]. For
most ML models, collecting X-ray or chest CT data
from patients is essential since this data is the primary
input for training and building models. Furthermore,
establishing a large and diverse database is imperative
to ensure an adequate amount of data during the
training of high-performing machine learning models.
This becomes particularly critical when we aim to
develop models that can generalize across various
situations and disease severity levels. Thus, these
models provide robust decision support tools for the
medical and healthcare sectors.

This study provides key advancements in the auto-
mated diagnosis and severity assessment of COVID-19-
induced lung damage using chest X-ray images. The
workflow illustrated in Figure 1 demonstrates the inte-
gration of AI-driven analysis in diagnosing COVID-19-
induced lung damage, highlighting the sequential steps
from patient chest X-ray imaging to AI-based severity
classification and medical decision-making for hospi-
talization or home treatment. Our main contributions
are as follows:

• Development of a Novel and Balanced Dataset:
We constructed a comprehensive dataset of 9,294
high-quality chest X-ray images categorized
into four severity levels: Normal, Mild,
Moderate, and Severe. This dataset addresses
limitations in existing datasets and is publicly
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available (https://github.com/trinhttv/
predicting-covid-19) to facilitate further 
research on COVID-19 diagnosis and severity 
classification.

• Evaluation of Multiple Deep Learning Models:
We benchmarked the performance of six state-of-
the-art deep learning architectures (VGG16, Reg-
Net, DenseNet, MobileNet, EfficientNet, and ViT)
on the newly developed dataset. This systematic
comparison identified the most effective model for
severity classification, demonstrating its applica-
bility in real-world scenarios.

• Proposal of an Enhanced Classification Model:
Building on the best-performing architecture, we
proposed an optimized model with additional
fully connected layers and weight adjustments.
This enhanced model achieved high sensitivity
(94.43%) and demonstrated its potential as
a reliable decision-support tool in healthcare
applications.

• Comprehensive Validation and Reliability
Assessment: To ensure the generalizability of
our approach, we conducted extensive cross-
validation experiments. These evaluations
provide solid evidence of the consistency of the
proposed model and its ability to accurately
classify the severity of COVID-19 lung damage.

• Facilitation of Resource-Limited Healthcare Set-
tings: By introducing an automated framework
for severity assessment, this study addresses the
challenges posed by limited healthcare resources,
particularly in managing COVID-19 cases. The
proposed solution enables faster, cost-effective
diagnosis and efficient patient management, alle-
viating the burden on overstrained medical facili-
ties.

The rest of the paper is organized as follows:
Section 2 will evaluate related works on the topic.
Section 3 introduces the datasets and scoring systems
for evaluating lung damage levels. The detailed
methodology will be presented in Section 4. Section 5
presents experimental results and discusses the study.
The conclusion and feature work of the paper will be
presented in Section 6.

2. Related works
While there have been numerous studies on using
deep learning for detecting and diagnosing COVID-19,
most of them have focused on disease detection rather
than assessing severity [10], [11],[12],[13],[14],[15],[16].
These studies have demonstrated the potential of
employing CNN models for diagnosing COVID-19 from

X-ray and CT chest images to identify cases of COVID-
19 early or to prioritize COVID-19 testing when testing
resources are limited [16].

Deep learning methods for COVID-19 detection
have garnered significant attention; however, given
the current state of disease control, evaluating the
extent of lung damage caused by COVID-19 is crucial
for devising appropriate treatment plans, monitoring
the patient’s condition, and assessing the risk of
other diseases for the patient. Currently, the number
of studies related to this topic is still limited and
insufficient to draw accurate and comprehensive
conclusions regarding the reliability and practical
applicability of these methods in healthcare practice.
In deep learning-based studies of COVID-19, some
research has classified the severity of the disease into
two groups: severe and non-severe.

Kelei He and colleagues proposed an automated
method to classify COVID-19 patients into severe and
non-severe groups with an accuracy of 98.5% [17].
Signoroni [18] developed the BS-Net model to predict
the extent of lung damage in X-ray images, achieving
higher accuracy and consistency compared to other
methods. Jocelyn Zhu [19] utilized deep convolutional
neural networks to classify the severity of COVID-
19 lung disease from chest X-ray images. The results
indicated that the MobileNet model achieved high
accuracy in classifying chest X-ray images of COVID-19
patients into different severity groups.

Zhenyu Tangand and colleagues [20] employed chest
CT images to assess severity and COVID-19-related
characteristics. They developed a model based on 63
quantitative features from CT images, achieving an
accuracy of 87.%. Another study [21], the authors
developed a method to support COVID-19 diagnosis
based on CT images, with an overall accuracy of
82%. Both methods can be valuable in assisting with
the diagnosis and treatment of COVID-19 patients.
In a study [22], Emrah Irmak presented a machine
learning model to classify COVID-19 patients into
four different severity levels based on X-ray images.
The model achieved an average accuracy of 95.52%
on a dataset of 3260 X-ray images evaluated by two
radiologists. However, this dataset is not publicly
available and needs validation on other datasets. This
study proposes a useful approach to support the
diagnosis and treatment of COVID-19 patients.

Recently, Zaid Albataineh and colleagues [23]
introduced a severity classification system for COVID-
19 into three stages: mild, moderate, and severe,
based on CT images. This system utilizes segmentation
methods and feature extraction from CT images for
classification. The results show that the proposed
model achieves high accuracy, ranging from 98.24% to
99.9%, depending on the stage of COVID-19 infection.
Physician scoring is the standard approach for assessing
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the severity of COVID-19 lung disease. However,
studies have pointed out the limitations of this method,
as it relies on either prognostic scoring of lung damage
from CT or X-ray images of COVID-19 patients to
predict the severity. This leads to time-consuming
annotation for injuries, making the severity scoring
method less efficient.

Efficiently, our study classifies lung damage into four
stages: no damage, mild damage, moderate damage,
and severe damage using advanced machine learning
models. This method saves time and assists clinical
physicians in dealing with severe cases of COVID-
19 lung disease quickly and effectively. Furthermore,
we used chest X-ray images as a common, relatively
inexpensive, rapid, and accessible diagnostic method in
our study. Although it has lower sensitivity compared
to CT scans, chest X-ray images are still considered a
primary imaging option for assessing the severity of
COVID-19 and monitoring patients in many healthcare
facilities. This will help improve access and diagnostic
efficiency for COVID-19 patients while supporting cost
and resource optimization in healthcare.

3. Dataset and scores
During the process of searching for appropriate
datasets for classifying the severity of COVID-19 lung
damage using CXR images, collecting, and utilizing
suitable data sources may encounter difficulties due
to variations in their availability and accessibility. In
our study, we used Brixia [24] and COVIDGR [25]
as two main datasets for classifying the severity of
COVID-19 lung damage into different levels using CXR
images. The Brixia dataset provides Brixia scores along
with corresponding images, while COVIDGR includes
severity labels based on the modified RALE index for
quantifying COVID-19.

The scoring system used to evaluate the degree of
lung damage is an important tool in diagnosing and
monitoring respiratory diseases, including COVID-19.
The Brixia and RALE scores are used to assess the
extent of lung damage in hospitalized patients with
COVID-19. In the early months of the pandemic,
studies utilized pre-existing scoring systems such as
the Radiographic Assessment of Lung Edema (RALE)
to assess the severity of CXR. Therefore, the use of
Brixia and RALE scores is an effective way to evaluate
the extent of lung damage in hospitalized COVID-19
patients [26], [27], [28].

3.1. The Brixia dataset and Brixia score
The dataset was collected from two hospitals in the
city of Brescia, Northern Italy, including 4,695 CXR
images of COVID-19 patients. The data was collected
using both CR and DX methods, with either AP or
PA projection used. All the images in this dataset are

Figure 2. Samples in the Brixia dataset.

provided in the form of anonymized DICOM files and 
annotated with Brixia scores for the severity of lung 
injury and relevant metadata in CSV files. T he u se of 
two different h ospitals i n t he d ata c ollection process 
increases the diversity of the dataset and improves 
the accuracy of the classification r esults. F igure 2 
illustrates the distribution of samples in the Brixia 
dataset.

The Brixia dataset utilizes the Brixia scoring system 
to assess the extent of lung damage in COVID-19 
patients using CXR images. This system was developed 
by researchers in Brescia, Italy. Scores are assigned to 
each imaging parameter, including white spot density, 
lung edema, airway cavities, pleural density, and 
pleural density. The total score of these parameters is 
calculated to evaluate the severity of COVID-19 lung 
disease. The Brixia severity scoring system [29] divides 
the lungs into 6 zones, 3 zones for each lung when 
observed in anteroposterior (AP) or posteroanterior 
(PA) view as shown in Figure 3(a). Specifically:

• Upper zones (A and D): located above the inferior
border of the aortic arch.

• Middle zones (B and E): located below the inferior
border of the aortic arch and above the inferior
border of the right lower pulmonary vein (i.e.,
right hemidiaphragm).

• Lower zones (C and F): located below the inferior
border of the right lower pulmonary vein (i.e.,
lung bases).

When anatomical landmarks cannot be accurately
identified for technical reasons (such as X-rays taken at
the bedside of critically ill patients), each lung can be
divided into three equal zones.

In assessing the health status of COVID-19 patients,
using a consistent scoring system to evaluate the
characteristics and extent of lung abnormalities is
crucial. Accordingly, six scores are used to assess the
characteristics and extent of lung abnormalities, with
scores ranging from 0 to 3 assigned to each zone,
including:
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Figure 3. Classification method of lungs based on 
the Brixia scoring system: (a) definition of zones 
for each lung; (b-d) examples of scoring for each 
lung zone.

• 0 points: no lung abnormality

• 1 point: interstitial infiltrate

• 2 points: interstitial infiltrate and alveolar consol-
idation (predominantly interstitial)

• 3 points: interstitial infiltrate and alveolar consol-
idation (predominantly alveolar)

Other lung injuries, such as pleural effusion or
abdominal aortic aneurysm, are not included in the
scoring system.

From these six scores, a global score can be
synthesized to fall within the range of [0,18]. The global
score provides information about the patient’s health
status, helping healthcare experts make more effective
diagnostic and treatment decisions. Examples of scores
assigned to different cases are presented in Figure 3(b-
d). Specifically, Figure 2b illustrates a case with a
global score of 3, indicating primarily peripheral lung
involvement. Figure 2c depicts a case with a global score
of 10, indicating dispersed and evenly distributed lung
abnormalities, with a concentration in the lower region,
scoring 2 and 3. Finally, Figure 2d describes a case with
a global score of 15, indicating evenly distributed lung
abnormalities between scores 2 and 3.

3.2. The COVIDGR dataset and RALE score
COVIDGR is an X-ray image dataset developed by X-
ray experts in Spain to support the diagnosis of COVID-
19. This dataset includes X-ray images that are positive
for COVID-19 corresponding to patients with positive
RT-PCR test results and an error margin of less than
24 compared to the X-ray. In addition, the dataset

Figure 4. Samples in the COVIDGR dataset.

also includes images that do not show symptoms but 
are positive according to the RT-PCR test, represented 
as the severity level of normal PCR+, along with 
other severity levels, including mild, moderate, and 
severe. The close collaboration of X-ray experts in the 
construction of this dataset ensures the reliability of 
classification results.

The dataset consists of a total of 852 CXR images, 
divided into two parts: 426 positive X-ray images 
and 426 negative X-ray images. Among the positive 
cases include all severity levels assessed by the RALE 
score, including 76 images of Normal severity of 
PCR+, 100 images of Mild severity, 171 images of 
Moderate severity, and 79 images of Severe severity. 
Figure 4 shows the distribution of sample counts in the 
COVIDGR dataset.

The RALE score is a tool used to assess the severity of 
abnormalities in the lungs on CXR. It’s also a scoring 
system used to evaluate the extent of lung injury 
for COVID-19 patients in the COVIDGR dataset. The 
RALE score has been shown to be highly accurate in 
diagnosing acute respiratory distress syndrome (ARDS)
[30], and initial changes in the RALE score can indicate 
the prognosis of patients on mechanical ventilation. 
This system is based on the density of white spots on the 
X-ray image to assess the severity of lung congestion. As 
the RALE score increases, it may indicate the presence 
of respiratory mechanical issues and the concentration 
of abnormal biological substances in the lungs.

This method divides the lungs into 4 regions by 
drawing a horizontal line starting from the first branch 
of the left lung and a vertical line through the center 
of the vertebrae. Then, each region is assigned a 
concentration score ranging from 0 to 4, based on the 
degree of lung opacity (0: none, 1: minimal <25%, 2: 
mild 25-50%, 3: moderate 50-75%, 4: severe >75%), and 
a thickness score of lung opacity (1: hazy, 2: moderate, 
3: dense). The RALE score for each lung region is 
calculated by multiplying the concentration score and 
the thickness score, and then assigning a score to that 
region (from 0 to 12). The total RALE score for the 
entire lungs is calculated by summing the scores of
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Figure 5. The calculation of the Radiographic 
Assessment of Lung Edema (RALE) score in CXR.

Figure 6. An example of how to calculate the 
severity score on a CXR in patients with COVID-19 is 
presented as follows (right lung score + left lung 
score = total score used): (A) 1 + 0 = 1; (B) 2 + 1 = 
3; (C) 1 + 3 = 4; (D) 4 + 3 = 7.

all regions (from 0 to 48). Figure 5 illustrates the 
calculation of scores for each region and the final total 
lung score.

To assess the severity of lung involvement in patients 
with COVID-19, a study [31] has proposed using the 
RALE score and adjusting it accordingly. The new score 
is calculated by assigning values from 0-4 to each lung 
based on the degree of imaging characteristics such 
as consolidation and ground-glass opacities in four 
quadrants of each lung. The cumulative scores of all 
lungs will generate a final severity score. Based on this 
score, experts can determine the severity of infection in 
four different stages: normal (0), mild (1-2), moderate 
(3-5), and severe (6-8). An example of how to calculate 
the severity score on a CXR in COVID-19 patients is 
illustrated in Figure 6.

Figure 7. Schematic diagram of a basic 
convolutional neural network (CNN) architecture.

4. Proposed methods

4.1. System architecture

Classification i s o ne o f t he i mportant applications 
of Convolutional Neural Networks (CNNs) in the 
field o f d eep l earning. W ith t he a dvancement of 
technology, image classification h as b ecome more 
accurate through the use of deep learning algorithms 
such as CNNs. This makes image classification easier 
for researchers and experts in various fields, including 
healthcare, technology, science, and the arts. CNN is 
a popular convolutional neural network architecture 
used for image and sound analysis. It operates 
by combining convolutional layers, pooling layers, 
and fully connected layers to create an accurate 
classification model. F igure 7 details some of the basic 
components of the CNN architecture.

When it comes to applying new technologies for 
analyzing large-scale data, deep learning demonstrates 
its power by requiring less effort i n d ata cleaning 
and less human intervention. Therefore, systematically 
analyzing problems and applying appropriate CNN 
models to improve performance is a good approach, 
especially for classifying the severity of lung damage 
caused by COVID-19.

Figure 8 details our approach to applying deep 
learning to the classification p roblem. T o achieve 
this, we employed an efficient co mbination of  neural 
networks. Additionally, we demonstrate an end-to-
end approach to ensure accurate and comprehensive 
results. After inputting the images into the network, 
we perform normalization and use data augmentation 
techniques to increase the size of the two datasets. 
We preprocess the images through five neural network 
models efficiently to  le verage th e kn owledge learned 
from large data and rapidly build and refine models 
for specific t asks. T his s tep a llows t he n etworks to 
extract data features and minimize loss functions 
automatically. Finally, each input image is classified 
into one of four classes: NORMAL-PCR+, MILD, 
MODERATE, and SEVERE.
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Figure 8. Overall Architecture of Chest X-Ray Classification Method.

4.2. Our proposed dataset
The process of training the model using Convolutional
Neural Network (CNN) techniques requires many
labeled images to be used as data for the necessary
stages. In addition, the input images must have
an appropriate resolution for the development of
deep learning architectures. Furthermore, the accuracy
of the model also depends on ensuring that all
attributes of the image are consistent with each other,
including brightness, contrast, resolution, and frame
rate. Ensuring the homogeneity of these attributes can
help improve the accuracy of the classification model.

In addition to CNN, Vision Transformer (ViT) is
a cutting-edge neural network model widely used in
computer vision tasks, particularly image classification.
A key advantage of ViT is its reduced reliance on
factors like input image resolution, enabling the model
to maintain high performance even when processing
images of varying resolutions.

The Brixia scoring system is a good method for
stratifying the risk of COVID-19 patients based on the
severity of their cases. However, this system requires
expertise and experience to interpret CXR, while
the RALE scoring system can predict the need for
supplemental oxygen and ICU admission to support
mechanical ventilation but lacks detailed and more
complex indices in evaluating chest X-ray images for
the diagnosis of COVID-19 pneumonia. According to
the study by Roberto Maroldi [28], RALES and Brixia
scores have a significant and reliable correlation in the
diagnosis of COVID-19 pneumonia.

Based on the similarity between the two systems
for assessing the severity of lung damage caused by
COVID-19 introduced above, we conducted an analysis
and comparison of two different datasets regarding
the degree of lung injury severity. Subsequently, we
adjusted and merged them to create a new data
set with more comprehensive information. This new
dataset encompasses four levels of lung injury severity,
summarized as follows:

• No damage: X-ray images of lungs show no signs
of damage or only minor signs that do not affect
the patient’s respiratory function.

• Mild damage: X-ray images of lungs show signs
such as mild haziness, patchiness, or some signs of
inflammation. These mild damages do not affect
the patient’s respiratory function and can be self-
treated or closely monitored.

• Moderate damage: X-ray images of lungs show
signs such as increased haziness, more signs
of inflammation, or some fibrosis. These mod-
erate damages can affect the patient’s respira-
tory function and require treatment with anti-
inflammatory drugs and respiratory support.

• Severe damage: X-ray images of lungs show severe
signs such as increased haziness, extensive signs
of inflammation, significant fibrosis, lung con-
solidation, or lung edema. These severe dam-
ages seriously affect the patient’s respiratory func-
tion and require immediate hospital treatment,
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Figure 9. The combined dataset from the Brixia and 
COVIDGR datasets.

including the use of ventilators and specific treat-
ment drugs.

To ensure that the Brixia dataset is compatible with
the training model and consistent with the COVIDGR
dataset, we have performed several pre-processing
steps. Firstly, we converted all DICOM format images
to JPEG format to standardize the image format in
the dataset. Then, we manually labeled the images in
the dataset into 4 groups: normal, mild, moderate, and
severe, based on the corresponding Brixia scores for
each image in the CSV description file of the dataset.

Figure 9 illustrates the number of samples in the
new dataset after merging the two datasets, which totals
5,121 samples. This has resulted in a new data set with
a larger and more diverse set of data samples.

It can be observed that the dataset has a significant
class imbalance, with a noticeable difference in the size
of the minority and majority classes. Any dataset with
uneven distribution between majority and minority
classes can be considered as having class imbalance.
Class imbalance can cause several issues in the model-
building process, including poor training effectiveness,
low accuracy, and reduced generalization ability of the
model. Therefore, to enhance the effectiveness of the
model, addressing the issue of class imbalance is crucial
in classification tasks and can be achieved by using
data balancing techniques or utilizing classification
algorithms designed specifically to handle imbalanced
data [32].

Data pre-processing is an extremely important
step for any machine learning system or algo-
rithm. In the process of processing image data
for training, validation, and testing, we use the
image_dataset_from_directory method to sequentially
read the image data. To speed up the processing, we
divide the input images into smaller batches with a
batch_size of 128. By sequential training on each batch
and computing the final values, we ensure the accu-
racy and reliability of the model. With the use of this
method, we ensure that each data set mentioned above
is processed accurately and efficiently.

Figure 10. Samples in our proposed dataset.

4.3. Data Augmentation
To improve the compatibility with the model, we have 
enhanced the size of the images in the dataset to 
a resolution of 224x224 and used RGB color mode 
for the images. However, due to the imbalance and 
significant d ifference in  th e nu mber of  im ages among 
different l abels i n t he d atasets, we h ave c ombined the 
two datasets and applied typical data augmentation 
techniques. We chose to augment the minority labels 
with the same number of samples as the majority label 
in the dataset. This approach helps to improve the 
classification p erformance o f t he m odel o n minority 
samples, thereby enhancing the accuracy and reliability 
of the model [33]. These augmentation techniques 
include image flipping, z ooming, a nd r esizing to 
enhance the model’s training capability, as follows:

• Rotate the image at a random angle from -5 to 5
degrees.

• Scale the image up or down by a random factor
from 1.1 to 1.5 times.

• Flip the image horizontally (swap the positions of
pixels from left to right and vice versa).

• Flip the image vertically (swap the positions of
pixels from top to bottom and vice versa).

• Perform random transformations on the image,
including stretching, squeezing, and skewing.

With the use of this method, we have ensured that
the model is trained on a diverse and sufficiently
large dataset to optimize its accuracy and reliability.
The result after applying these techniques is an
expanded dataset with a total of 9,294 images. Data
augmentation helps to supplement the original dataset
with additional data, thereby increasing the accuracy
and generalization ability of the model. Balancing the
labels also plays an important role in ensuring the
reliability of the classification results in our study.
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Table 1. Details about the separation of COVID-19 
lung x-ray data

Normal-PCR+ Mild Moderate Severe

Train 1,628 1,628 1,628 1,628
Validate 350 350 350 350
Test 349 349 349 349
Total 2,327 2,327 2,327 2,327

The new dataset consists of a total of 9,294 X-
ray images, including 2,327 images for each data
sample (Normal-PCR+, Mild, Moderate, Severe). Figure
10 shows the distribution of sample counts in our
proposed dataset. The dataset has been divided into
different sets for the training, validation, and testing
stages of the model, as shown in Table 1.

• The training set consists of 6,498 X-ray images
belonging to 4 different classes, including
Normal-PCR+, Mild, Moderate, and Severe. This
dataset is used to train the model and learn the
features of different classes.

• The validation set includes 1,400 X-ray images
belonging to the same 4 classes as the training set.
This dataset is used to evaluate the performance
of the model on new data and assess its
generalization ability.

• Finally, the test set consists of 1,396 X-ray images
belonging to the 4 classes of Normal-PCR+, Mild,
Moderate, and Severe. This dataset is used to
evaluate the final performance of the model and
assess the model’s accuracy in classifying new
data.

The division of the dataset into training, validation,
and test sets helps to evaluate the performance
of the model on different data and ensures the
generalization of the classification results. Table 2
presents the training results of the EfficientNetB7
model on the original data (the synthesized dataset
before data augmentation and label balancing) and
on the augmented and balanced dataset. Noticeable
differences in accuracy can be observed when applying
data augmentation to the training dataset.

4.4. Model training
Evaluating the extent of lung damage caused by
COVID-19 is a crucial task in ensuring effective
diagnosis and treatment for patients. To accomplish
this task, we chose to use models such as VGG16,
RegNet, Densenet, MobileNet, EfficientNet, and ViT for
the classification and quantification of lung damage.
These models have been trained on large datasets

and have demonstrated excellent feature extraction
capabilities from images. This is essential in detecting
the manifestations and characteristics of lung injuries.
Moreover, these models have been trained on various
large datasets, including medical images. Utilizing pre-
trained models can enhance the overall capability and
performance of the lung damage assessment system.
In particular, ViT excels at learning global features
from images, enhancing lung lesion detection accuracy.
Additionally, models like MobileNet and EfficientNet
are specifically designed to perform well on devices
with limited computational resources, making them
especially valuable for scenarios where rapid and
efficient lung lesion assessment is required.

The VGG16 model. The VGG16 model [34] is a
significant model in the field of deep learning that has
achieved success in image classification tasks. It has
a simple architecture, using convolutional layers and
fully connected layers to learn features from images.
This model exhibits high performance but requires
significant computational resources. We chose VGG16
as the baseline model in this study because it is one
of the fundamental models in computer vision. While
VGG16 may not be the latest model available, it still
delivers relatively good performance in classifying lung
damage severity on our proposed dataset.

The RegNet model. RegNet is a unique deep learning
architecture designed for high-performance image clas-
sification. One notable feature of RegNet is its cre-
ation of multiple parallel paths with varying depths
and widths, improving accuracy without significantly
increasing computational complexity [35]. RegNet has
demonstrated performance improvements over tradi-
tional architectures and meets the requirements of
various image datasets. In this study, we utilized the
RegNet0Y40 model, integrated into TensorFlow, to eval-
uate the newly constructed dataset for the purpose of
classifying COVID-19 lung damage. Employing Reg-
Net0Y40 is a crucial step in assessing the performance
of models on this new dataset, ensuring the objectivity
and reliability of research results.

The DenseNet121 model. DenseNet121 is a popular
deep learning architecture within the DenseNet family
of networks [36]. This architecture tightly connects
layers, efficiently reusing features and achieving higher
performance in image recognition. DenseNet121 has
been trained on large datasets and can be applied
in various applications, including image classification,
and identifying pathology in medical images. We
employed this model to classify the severity of COVID-
19 lung damage based on X-ray images. Alongside other
models, DenseNet121 contributes to this research by
providing a foundation for the development of effective
prediction and classification methods.
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Table 2. Training results of EfficientNetB7 model on the dataset before data augmentation and after 
performing data augmentation and label balancing

Without Augmentation With Augmentation

Training Loss 0.935 0.264
Validation Loss 1.114 0.732

Training Accuracy 0.471 0.922
Validation Accuracy 0.455 0.738

The MobileNetV3 model. MobileNetV3 [37] is a deep
learning architecture designed to optimize performance
and integration for mobile and embedded devices. This
model utilizes depth wise separable convolution layers
to improve feature reuse and minimize information
loss. A study [38] has employed MobileNetV3 for
classifying patients with pulmonary tuberculosis based
on X-ray image datasets. The results demonstrated that
MobileNetV3 achieved the highest accuracy compared
to other models, indicating its suitability for classifying
patients with pulmonary tuberculosis based on X-
ray image datasets. We leveraged this excellence and
fine-tuned the MobileNetV3 model to fit the task of
classifying the severity of COVID-19 lung damage. The
application of MobileNetV3 in this research provides
benefits in terms of computational resource efficiency
and accelerated classification processes, which is crucial
in situations requiring rapid and efficient lung damage
assessment.

The EfficientNetB7 model. EfficientNetB7 is a specific
variant of the EfficientNet [39] model, an advanced
deep learning architecture designed to achieve higher
accuracy and efficiency than other models. Efficient-
NetB7 is characterized by its large size, with high num-
bers of layers and parameters. It uses a combination of
scaling methods, including depth, width, and resolu-
tion, to create a network that is both computationally
efficient and highly accurate. EfficientNetB7 has been
widely used in various applications, including image
classification, object detection, and medical imaging. It
has shown outstanding performance in tasks related to
COVID-19 detection, especially in processing CT and
X-ray images of patients’ lungs. The model has been
extensively evaluated and has demonstrated superior
results in accuracy and efficiency compared to other
deep learning models [40]. To address the problem
of classifying the severity of lung damage caused by
COVID-19, we employed the EfficientNetB7 neural net-
work architecture to implement the feature extraction
process. This architecture is designed with a total of
7 main blocks to optimize lung damage classification
and detection. These blocks are configured to detect
various features of lung damage, thereby enabling a
more accurate assessment of lung damage severity. The

detailed architecture of the EfficientNetB7 neural net-
work is described in Figure 11.

EfficientNetB7 is a very powerful model with
numerous parameters, which can make it prone to
overfitting, especially when dealing with limited data.
To address this issue, we attempted to fine-tune the
model to fit our proposed dataset better. By introducing
Dropout, we aim to reduce the model’s tendency to
"over remember" the training data and help it generalize
better. In our case, Dropout values ranging from 0.2 to
0.5 are considered suitable for our task. EfficientNetB7
models typically end with several convolutional layers,
and the entire image is represented as a 4D tensor. To
use Dense layers (or fully connected layers) afterward,
we employed a Flatten layer to transform this 4D
tensor into a 1D vector. A Dense (128) layer is used
with 128 neurons because it aligns with the number
of output classes required for the classification task.
In the case of classifying into four severity levels
(Normal, Mild, Moderate, and Severe), we need an
output layer with the same number of neurons as
the input classes, which is 4. We utilize the SoftMax
Activation function to convert the output values into
probabilities, making it easier to interpret and use the
classification results. Additionally, using Dense (128)
does not heavily increase computational resources or
significantly complicate the model’s complexity.

Vision Transformer model. The Vision Transformer (ViT)
is a neural network model that leverages the Trans-
former architecture for computer vision tasks, unlike
traditional CNN models that rely on convolution. ViT
breaks the input image into small patches, typically
16x16 pixels, and maps them into feature vectors.
These vectors and positional encoding are then passed
through multiple self-attention layers to learn global
spatial relationships between the patches. This allows
ViT to process and synthesize information from the
entire image efficiently. ViT performs exceptionally well
when trained on large datasets like ImageNet, surpass-
ing CNNs thanks to its ability to capture global features
and independence from input image resolution. How-
ever, ViT requires substantial data and computational
resources to be trained effectively. According to research
by Dosovitskiy et al. [41], ViT has shown its capability
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Figure 11. Proposed fine tuning method using EfficientNetB7 Neural Network.

to compete with state-of-the-art CNN models across
various image classification tasks.

5. Experimental results
5.1. Performance
To evaluate the quality of predicted classes compared
to ground truth classes, we used two commonly used
metrics: accuracy and F1 score. These metrics are
derived from four types of values in the confusion
matrix: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). From these
values, we can calculate evaluation indices to assess the
accuracy and effectiveness of the model in classifying
lung images as either pathological or non-pathological.
In multi-class classification, the values of TP, TN, FP,
and FN can be calculated in a similar way as in binary
classification as follows:

• TP (True Positive): The number of images
predicted as abnormal and are abnormal.

• TN (True Negative): The number of images
predicted as normal and are normal.

• FP (False Positive): The number of images
predicted as abnormal but are normal.

• FN (False Negative): The number of images
predicted as normal but are abnormal.

The authors in the study [42] have pointed out that
based on the values of TP, TN, FP, and FN, we can
calculate the performance evaluation indices of the
model. In multi-class classification, we need to calculate
accuracy, precision, and sensitivity for each class. To
calculate the performance evaluation values of the

model in multi-class classification, Table 3 describes
the criteria used to evaluate COVID-19 classification
models.

Evaluating a model’s performance using these
metrics is very useful in selecting the most suitable
model for lung injury prediction. During the training
and testing process on 6,498 images, we assessed
the performance of several networks and found that
EfficientNetB7 is one of the top-performing networks
with an accuracy of 75% and a specificity of 92% for
classifying 4 levels of injury severity. In addition, Vision
Transformer (ViT) demonstrated higher specificity,
reaching 94%, highlighting its ability to classify lesion
levels accurately. Figure 12 is used to illustrate the
confusion matrix of correct and incorrect predictions
for the models on our augmented dataset. Throughout
the model evaluation process, EfficientNetB7 (10e)
has demonstrated superior predictive capabilities
compared to other models, especially in classifying
images with mild and moderate injury levels. In total,
1,396 images were tested, of which 250 images were
accurately labeled as non-injured, 288 images were
accurately labeled as a minor injury, 310 images were
accurately labeled as moderate injury, and 269 images
were accurately labeled as severe injury.

Figure 13 provides a summary of various metrics
used to assess the models, including Accuracy, Preci-
sion, Sensitivity, F1-score, and Specificity displayed for
each model. These metrics are crucial in evaluating the
performance of the models, and help determine which
model should be prioritized for specific applications. In
the future, researching and developing machine learn-
ing models for COVID-19 lung injury assessment will
continue to bring significant value to the medical field.
The variation in classification capabilities among the
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Table 3. The criteria used to evaluate the quality of predicted classes in the study

Metric Formula Description

Accuracy 1
m

m∑
i=1

T P+TN
T P+TN+FP+FN This is the average accuracy of the model in

classifying m classes

Precision 1
m

m∑
i=1

T P
T P+FP The macro average precision of m classes

Sensitivity 1
m

m∑
i=1

T P
T P+FN The macro average recall of m classes

F1-score 1
m

m∑
i=1

2P ∗R
P+R The macro average F1-score of the model in

classifying m classes, in which: P (Precision) and R
(Sensitivity)

Specificity 1
m

m∑
i=1

TN
T P+FN The macro average specificity of the model in

classifying m classes

Figure 12. Confusion matrices for the models applied to our proposed dataset.
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models will help meet the specific needs of patients and
provide essential information to support physicians in
making effective diagnostic and treatment decisions.

Figure 14 shows that the ViT(13f) model excels at
classifying the severity of lung injury, especially in
correctly classifying severe (SEVERE) lesions. Its ability
to learn global features within images allowed it to
perform exceptionally well in recognizing SEVERE
labels. Similarly, the EfficientNetB7 (13e) model proved
highly effective, especially in classifying mild to
moderate (MID) lesions. Other models, such as VGG16
(13a), RegNet (13b), MobileNet (13c), and DenseNet
(13d), were also evaluated. While each model has
its advantages, they often struggle with accurately
classifying mild lesions, with many errors resulting in
misclassification or confusion with other classes. The
differences in classification performance among these
models highlight the importance of selecting the most
suitable model for assessing and predicting COVID-
19 lung injuries. Specifically, choosing the appropriate
model is crucial for effectively detecting and managing
mild injuries that require close monitoring and severe
injuries that demand prompt treatment.

5.2. Cross-validation

When considering ensuring the accuracy and reliability
of a model, several factors can impact its performance,
including the size and diversity of the dataset,
model architecture, hyperparameters, and optimization
methods. To address these issues, we employed cross-
validation as a method to assess the performance
of our model across multiple runs. This approach
allows us to obtain more accurate and reliable results.
Furthermore, we researched and selected this cross-
validation method to ensure its suitability for our
research purposes. Cross-validation is a common
method for assessing the performance of a model on
a specific dataset. It involves dividing the dataset into
several parts, or "folds," and training the model on each
fold while evaluating its performance on the remaining
folds. This process is repeated multiple times, with
each iteration using a different fold for evaluation. As
a result, we can obtain a more accurate estimate of the
model’s performance on previously unseen data.

Our dataset was split into 5 and 10 folds for
the purpose of training and testing the classification
dataset. To measure classification performance, we used
a confusion matrix to calculate the average accuracy
across all the folds used, and the corresponding results
are displayed in Table 5 and Table 4. The result is the
average accuracy of the model across all the folds used.
Through cross-validation techniques, it can be observed
that the model achieves a specificity of 92.89% and an
accuracy of 75.09%. This is a noteworthy and promising

result regarding the model’s capability to detect and
classify medical conditions.

The specificity of 92.89% indicates the model’s ability
to identify negative cases accurately and reliably. This
is particularly important in the medical field, showing
the model’s capacity to minimize errors by excluding
unnecessary or inappropriate cases. The accuracy of
75.09% demonstrates that the model is performing
consistently and exhibits good overall classification
performance. Although this figure may be lower than
the specificity, it can be explained by the trade-off
between detecting positive cases and handling many
negative cases.

5.3. Run Time
The run time graph in Figure 15 illustrates the
variations in prediction time and training time for the
models. Prediction time is measured from when the
model receives input data to when it returns prediction
results, while training time is the time the model spends
learning from training data.

From the graph, it is evident that the RegNetY040m
model offers shorter training and prediction times
compared to the other models. However, it’s important
to note that execution time can vary based on
computing resources and input data size. Thus,
performance and runtime must be considered to ensure
the model performs effectively on large datasets. Figure
16 illustrates the variations in runtime among the
evaluated models. We recorded the execution time for
a single run of each model on a test dataset comprising
1,369 images. Additionally, Figure 17 shows the
detailed average values from 8 runs and the average
accuracy across 4 data labels. While ViT has a longer
training time, it excels in managing large datasets
and operates independently of input image resolution,
making it advantageous for handling complex data
scenarios. Conversely, EfficientNetB7 is better suited
for situations requiring fast results or deployment on
resource-constrained devices due to its optimal balance
between performance and resource usage.

The accuracy and loss plots offer valuable insights
into the performance of each model during training and
testing. The accuracy plot tracks the model’s predictive
performance across epochs, highlighting improvements
or declines in accuracy as training progresses. In
parallel, the loss plot represents the reduction in the
loss function over each epoch-a consistent downward
trend on the loss plot signals effective learning and
optimization. For instance, Figure 18 shows that the
EfficientNetB7 model maintains a steadily decreasing
loss curve, indicating robust optimization and efficient
learning, particularly in classifying mild to moderate
lesions. Comparing these plots across models helps
to pinpoint which ones perform best. While specific
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Figure 13. The performance metrics for the evaluated ML models on our proposed dataset.

Table 4. Performance Evaluation and Accuracy Metrics for 5 Folds for the EfficientNetB7 Model Average 

Classification

Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Accuracy(%) 72.9 73.8 74.2 73.0 73.3 73.46
Precision(%) 72.9 74.4 74.3 73.6 73.6 73.79
F1-score(%) 72.4 73.2 73.8 72.5 72.9 72.98
Sensitivity(%) 73.1 73.5 74.1 73.2 73.2 73.44
Specificity(%) 90.9 91.2 91.4 91.1 91.1 91.15

Table 5. Average Classification Performance Evaluation and Accuracy Metrics for 10 Folds for the EfficientNetB7 Model

Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6

Accuracy(%) 75.4 73.7 74.5 75.9 77.8 73.8
Precision(%) 75.7 73.6 74.8 75.7 77.8 74.2
F1-score(%) 75.9 73.1 74.1 75.2 77.2 73.3
Sensitivity(%) 75.5 73.5 74.3 75.0 77.8 74.0
Specificity(%) 95.1 91.2 91.5 93.3 95.9 91.3

Metrics Fold-7 Fold-8 Fold-9 Fold-10 Average

Accuracy(%) 73.4 76.7 73.0 76.3 75.09
Precision(%) 74.8 76.8 73.3 76.6 75.37
F1-score(%) 73.1 76.1 72.6 76.9 74.78
Sensitivity(%) 73.4 76.8 73.0 76.2 74.99
Specificity(%) 91.1 94.2 91.0 94.1 92.89

models might achieve higher accuracy, an uneven
reduction in loss may suggest challenges in optimizing
and learning the data’s underlying features. Overall, the
accuracy and loss plots provide essential insights for
evaluating and selecting the most suitable model for
classifying COVID-19-related lung lesions.

5.4. Discussion

In the battle against the COVID-19 pandemic, classify-
ing the extent of lung damage plays a crucial role. It
allows for a clear determination of the severity of the
disease, ranging from mild cases that can be managed
with home isolation to severe lung damage that requires
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Figure 14. An example of the classification performance of the EfficientNetB7 model compared to the other 
models for the MILD class on the augmented dataset.

Figure 15. Training and Prediction Times of the 
Models.

hospital treatment. This classification also helps doc-
tors monitor disease progression, predict outcomes, and 
adjust treatment methods promptly. Notably, the use of 
chest X-ray images is a common method for performing

Figure 16. Run time Variations in 8 Runs.
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Figure 17. Average Run Time of 8 Runs and 
Accuracy of Models on the Test Dataset.

this classification. While not as sensitive as CT images, 
X-ray images are still considered a reasonable choice 
for assessing the extent of lung damage and monitoring 
the progress of COVID-19 in many healthcare facilities. 
Additionally, machine learning models have the poten-
tial to create powerful tools for doctors and healthcare 
researchers, improving the diagnostic and treatment 
processes for patients. By utilizing machine learning 
technology, doctors can rely on automated diagnostic 
information to assess risks and make initial treatment 
decisions. However, this process still requires interven-
tion and careful consideration from the doctor to ensure 
that the final d ecisions a re b ased o n t heir extensive 
medical knowledge and the specific c ircumstances of 
the patient.

In this study, we utilized two publicly available 
datasets that were labeled to correspond to different 
levels of lung damage, including no damage, mild dam-
age, moderate damage, and severe damage. However, 
due to the early stages of the pandemic, the availability 
of labeled data was limited, resulting in a significant 
imbalance in the number of images for each category. 
Furthermore, overfitting t o t he t raining m odels could 
potentially occur, impacting the accuracy of our mod-
els. Our data augmentation approach has proven effec-
tive in improving the accuracy of the models. However, 
it is essential to collect more data for lung damage 
assessment. This would enable us to access a larger and 
more diverse data set, ultimately enhancing the results 
of our research.

6. Conclusions and Future Works
Compared to other studies evaluating COVID-19 based 
on deep learning methods, our research focuses on 
classifying the severity of lung damage. As part of 
the study, we also contribute to the public dataset by 
constructing a new dataset that can support the assess-
ment of COVID-19-induced lung damage. The pro-
posed COVID-19 dataset contains 9,294 images (2,327 
NORMAL-PCR+, 2,327 MILD, 2,327 MODERATE, and 
2,327 SEVERE). After evaluating five models in the task

of classifying COVID-19-induced lung damage on the
proposed dataset, the EfficientNetB7 model achieved
a specificity of 92.89% and an accuracy of 75.09%.
This demonstrates the potential of the EfficientNetB7
model in developing predictive methods for assessing
the severity of COVID-19-induced lung damage. In
particular, ViT model excels with a specificity of up to
94%, showcasing its capability to classify severe lesions
accurately. While ViT requires more training time, it
is exceptionally adept at handling large datasets and
operates independently of the input image resolution.
With the second-highest accuracy among the evaluated
models, ViT’s robust data processing and high classi-
fication precision underscore its potential in assessing
lung lesions caused by COVID-19. Nonetheless, select-
ing the most suitable model should be based on specific
needs, whether for in-depth analysis of severe lesions or
deployment on resource-constrained systems.

In the future, to improve the accuracy in assisting
doctors in diagnosing the four levels of lung damage
caused by COVID, we may explore and implement
several additional solutions. First, we will collect
more lung damage data based on the RALE/Brixia
scoring system to enrich the training dataset for our
models. Leveraging the ideas from the research by
Viacheslav V Danilov et al. [43], we will carry out a
preprocessing step with segmentation to separate the
two lungs from the surrounding organs, eliminating
irrelevant information and enabling deep learning
models to focus more on specific lung regions or the
entire lungs in future lung-related studies. We will
also apply self-supervised learning techniques such as
MAE, MoCo, and SimMIM to enhance classification
accuracy. Furthermore, in the medical field, extensive
experimentation and validation are crucial before
applying any approach in real-life scenarios. Our study
represents an initial step in assessing the effectiveness
of our proposed methods. We recognize the need
for further experiments and validations to ensure
robustness and reliability in practical applications.
Future work will focus on additional testing and
collaboration with medical professionals to refine and
validate our approach.
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Figure 18. Accuracy and Loss Across Epochs
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