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Abstract 
 
The rise of Bluetooth Low Energy (BLE) technology has opened new possibilities for indoor localization systems. However, 
extracting fingerprint features from the Received Signal Strength Indicator (RSSI) of BLE signals often encounters challenges 
due to significant errors and fluctuations. This research proposes an approach that integrates signal filtering and deep learning 
techniques to improve accuracy and stability. A Kalman filter is employed to smooth the RSSI values, while Autoencoder and 
Convolutional Autoencoder models are utilized to extract distinctive fingerprint features. The system compares random test 
points with a reference database using normalized cross-correlation. Performance is assessed based on metrics such as the 
number of reference points with the highest cross-correlation (𝑘𝑘), average localization error, and other statistical indicators. 
Experimental results show that the combination of the Kalman filter with the Convolutional Autoencoder model achieves an 
average error of 0.98 meters with 𝑘𝑘 = 4. These findings indicate that this approach effectively reduces signal noise and 
enhances localization accuracy in indoor environments. 
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1. Introduction 

Indoor localization has long been a crucial issue in various 
large-scale applications today, such as inventory 
management, equipment tracking, and product monitoring. 
Currently, there are numerous technologies for indoor 
positioning, including Wi-Fi, Ultra-Wideband, Bluetooth, 
optical technology, and infrared. In [1], the authors 
highlighted the advantages of using Wi-Fi, UWB, and other 
technologies in the context of indoor positioning systems. 
Wi-Fi leverages existing infrastructure, reducing investment 
costs while enabling enhancements in accuracy, particularly 
with recent developments like Wi-Fi 6, which can achieve 
centimeter-level precision. Additionally, Wi-Fi operates 
effectively in densely populated environments due to its 
higher frequency, which minimizes interference from human 
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energy absorption. In contrast, UWB offers positioning 
accuracy below 10 cm and excels in handling multipath 
conditions, remaining largely unaffected by obstacles such as  
 
walls. The high data transmission rate and temporal 
resolution of UWB further improve its effectiveness in 
applications that demand high precision.  
 

However, these technologies also present some 
drawbacks compared to Bluetooth Low Energy (BLE). Wi-Fi 
consumes significantly more power (216.71 𝑚𝑚𝑚𝑚 compared 
to BLE's 0.367 𝑚𝑚𝑚𝑚), potentially reducing the battery life of 
mobile devices. Additionally, Wi-Fi can suffer from 
interference in densely populated environments, leading to a 
decrease in positioning accuracy. On the other hand, UWB 
typically requires higher infrastructure investment due to the 
need for multiple nodes, and its high energy consumption 
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limits the viability of battery-powered devices. UWB may 
also struggle in non-line-of-sight (NLoS) conditions, with 
performance that is not necessarily better than Wi-Fi or BLE 
under these circumstances. BLE technology has been 
researched and developed to address these challenges. Its 
advantages include low production cost energy efficiency, 
and easy deployment. 

Numerous indoor positioning methods have been 
developed, each contributing unique advantages to indoor 
localization. According to Syazwani et al [2], triangulation 
and trilateration are characterized by low-cost 
implementation and high accuracy, particularly within room-
scale environments. However, both methods can be complex 
and require angle measurements, leading to reduced accuracy 
in larger areas and under variable environmental conditions. 
Proximity offers high accuracy but entails high 
implementation costs and complexity. Scene analysis 
demonstrates superior performance but is similarly expensive 
and complicated. Lastly, fingerprinting is advantageous as it 
does not necessitate infrastructure; however, its accuracy 
heavily depends on the resolution of the fingerprinting data, 
which can complicate data collection and processing. Despite 
these challenges, fingerprinting is recognized for its relatively 
high accuracy, making it a compelling choice for indoor 
positioning. Consequently, this research is centered on 
developing an indoor positioning method utilizing BLE 
fingerprinting. 

This approach places some Bluetooth beacons (BC) at 
Predetermined locations. After a predefined period of time, 
these BCs transmit data packets containing IDs and additional 
information. The device to be located will continuously 
collect information and transmit it to the server for 
processing. The device's location will be estimated based on 
BLE fingerprint characteristics. This method is divided into 
two main phases: offline and online. The offline phase 
collects Received Signal Strength Indicator (RSSI) values 
from BCs at each reference point (RP). These values are 
processed to cextract features and stored in a fingerprint map 

database. The online phase consists of collecting RSSI values 
from BC signal packets. These values are also used to extract 
fingerprint features, which are then compared with reference 
points. The reference points with the most similar fingerprint 
features are selected to calculate the coordinates of the target 
location.  

This paper proposes an indoor localization method based 
on BLE fingerprinting, specifically fingerprint feature 
extraction. It involves deploying six BCs around a room, with 
the RSSI values of each reference point stored in the 
fingerprint database. RSSI measurements are susceptible to 
noise, so the Kalman filter and deep learning models like 
Autoencoders and Convolutional Autoencoders are employed 
to reduce noise and data dimensionality. The Minkowski 
distance is calculated between the measured fingerprint and 
reference fingerprint to identify the k nearest reference points 
with the measured fingerprint. This information is used to 
calculate coordinates and assess accuracy.   

This paper is organized as follow: Section 2 presents 
related research on indoor positioning. Section 3 provides an 
overview of the dataset construction, and the algorithms used. 
Experimental results are presented and compared with 
previous research findings in Section 4. Conclusions and 
future directions are discussed in Section 5. 

2. Related work

Before introducing our proposed method, we examine 
various indoor positioning technologies. There is extensive 
global research on indoor positioning technology, with 
methods and technologies outlined in [7]. Some non-object-
based positioning technologies are mentioned, such as using 
cameras for detection and location. Object-based positioning 
technologies include Bluetooth, Wi-Fi, RFID, Ultra-
Wideband, or wireless sensor network technologies. Several 
articles on indoor positioning methods are summarized in 
Table 1. 

Table 1. Summary of some indoor localization methods. 

Studies Method Technique Accuracy 

Shuang Li et al., 
2021 Camera Use the image and feed it into the detection algorithm 

58% ≤ 0.5𝑚𝑚, 77%
≤ 1𝑚𝑚 

95% ≤ 2𝑚𝑚, 
0.61𝑚𝑚 ~ 9.7𝑚𝑚 × 7.8𝑚𝑚 

Liang Ma et al., 
2019 RFID tags Use phase and RSSI signals to feed into POS algorithm 

0.12𝑚𝑚 × 1.14𝑚𝑚 
~ 11𝑚𝑚 × 9.3𝑚𝑚 × 3𝑚𝑚 

Weipeng et al., 
2018 

Wireless Local Area 
Network Use existing WLAN infrastructure (APs) ~ 1 − 3 𝑚𝑚 
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Samaneh et al., 
2017 Wifi Fingerprint KNN algorthm 0.83𝑚𝑚 ~ 8𝑚𝑚 × 5,25 𝑚𝑚 

Ashry et al., 
2019 Wifi Trilateration and fingerprinting methods 2.8 𝑚𝑚 ~ 2.5𝑚𝑚 × 85 𝑚𝑚 

 Mai et al., 2020 Bluetooth Fingerprint Pedestrian Dead Reckoning + Fingerprinting + Particle filter 1.18𝑚𝑚 ~ 35.25 𝑚𝑚2 

Alvin Riady et 
al., 2022 Bluetooth Fingerprint ANN 1.1178𝑚𝑚 ~ 19𝑚𝑚 × 12𝑚𝑚 

Several BLE fingerprinting methods have been 
proposed. Zou and colleagues [3] applied graph 
optimization to achieve a best-case accuracy of 1.27 
meters. Martin and colleagues [4] employed Gaussian 
kernel-based fingerprinting with an accuracy below 1.5 
meters in 90% of cases. Subedi and colleagues [5] utilized 
a two-step fingerprint-based approach with an accuracy of 
1.05 meters. Li and colleagues [6] utilized an eight-
neighborhood template-matching mechanism with a 1-
meter accuracy. 

The study [7] has identified the most suitable 
technologies for Indoor Positioning Systems (IPS) and 
their principles, methods, and algorithms. The algorithm 
that uses the phone camera to take images and produce 
algorithmic findings has been mentioned by Shuang Li et 
al [8]. However, the results showed a 95% margin of error 
greater than 2 meters, with an average positioning error of 
0.61 meters.  

Other algorithms utilize RFID tags, as demonstrated in 
[8]. Liang Ma et al [8] employed phase and RSSI signals in 
their Positioning (POS) algorithm for location calculations. 
Most non-invasive positioning technologies rely on 
infrastructure, such as wireless sensor networks. These 
sensors detect changes when people or objects move within 
the area. For instance, in [9], the authors used a wireless 
local area network to model their positioning system. 

Nonetheless, non-invasive positioning technologies 
relying on infrastructure can significantly increase system 
construction costs and may need to be more versatile across 
different environments. On the other hand, technologies 
such as Wi-Fi, Bluetooth, and Ultra-Wideband enable user 
positioning through the devices they carry. Indoor wireless 
positioning systems use RSSI signals to determine 
coordinates, as discussed in [10] and [11]. Samaneh et al. 
[10] employed Wi-Fi RSSI signals to create fingerprints,
which were then utilized for training and testing. Various
algorithms, such as neural networks, KNN, and SVM, can
employ fingerprints. Typically, they compute the
correlation between RSSI signals during positioning and
pre-existing fingerprint datasets to provide the closest
location. In [11], the trilateration method and Wi-Fi RSSI
fingerprint were used for positioning. [12] combined
fingerprint and Pedestrian Dead Reckoning with the

Particle Filter method to infer coordinates from signal 
transmission distances. Alvin et al. [13] also employed 
fingerprints using the ANN method. Models using physical 
objects for positioning offer higher accuracy but increase 
computational complexity and processing time. 
Fingerprinting has gained traction recently with the use of 
neural networks, KNN, SVM, and Euclidean distance. 
However, these studies have yet to address cost and energy 
efficiency concerns effectively. Therefore, this research 
proposes a low-energy Bluetooth fingerprinting method to 
address these issues while maintaining the highest possible 
accuracy. 

The paper is organized as follows. Section 3 describes 
in detail the algorithms used in this paper. The experiment 
results are shown in section 4. The conclusion is given in 
section 5. 

3. Method

The critical steps of indoor positioning using fingerprint 
features are illustrated in Figure 1. Firstly, specific 
Reference Points (RPs) are determined in the positioning 
area, and the RSSI values of BLE beacons are measured at 
each RP. These RSSI values are then stored in the 
fingerprint database. Subsequently, the RSSI values are 
passed through a Kalman filter to eliminate noise while 
preserving stability in the RSSI values at each reference 
point. Afterward, Autoencoders (AE) or Convolutional 
Autoencoders (CAE) models extract fingerprint features at 
each reference point. Finally, a normalized cross-
correlation method compares the correlation between the 
point to be located and all the reference points in the 
database. The coordinates of the points to be determined 
are calculated as the average of the k points with the highest 
correlation. Each step in our proposed method is presented 
in detail below. 
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Figure 1. The main steps in the proposed method 

3.1. Data collection 

Let’s assume that there are 𝑁𝑁 reference points within the 
coverage area. At each reference point, RSSI values are 
measured over a period and organized into the following 
matrix: 

𝑅𝑅 =  �

𝑟𝑟1(1) 𝑟𝑟1(2) ⋯ 𝑟𝑟1(𝐵𝐵)
𝑟𝑟2(1) 𝑟𝑟2(2) ⋯ 𝑟𝑟1(𝐵𝐵)
⋮ ⋮ ⋱ ⋮

𝑟𝑟𝑁𝑁(1) 𝑟𝑟𝑁𝑁(2) … 𝑟𝑟𝑁𝑁(𝐵𝐵)

� (1) 

In matrix (1), 𝑟𝑟𝑛𝑛(𝑏𝑏) represents the RSSI value at 
reference point 𝑛𝑛 obtained from beacon 𝑏𝑏. Here, 𝑛𝑛 =
1, 2, 3, …𝑁𝑁, representing the sequential number of 
reference points, and 𝑏𝑏 = 1, 2, 3, …𝐵𝐵, the number of 
beacons used within a defined range. 

3.2. Kalman Filter 

The Kalman filter, introduced by Rudolf E. Kalman and 
published in 1960 [14] is a widely used tool in control 
systems. It is employed to estimate the state of a process in 
the presence of noise in measurements. This method works 
by determining the estimated state of the process based on 
actual measurements and the ideal state, to minimize the 
mean square error between them. The Kalman filter 
consists of two primary steps: Prediction and Measurement 
Update [15], [16]. The visualization of the Kalman filter 
process is depicted in Figure 2. 

Figure 2. Implementation of the Kalman filter. 

Prediction 
The current state 𝑥𝑥𝑡𝑡 and error covariance matrix 𝑃𝑃𝑡𝑡 of 

the process are estimated in a general form as: 
𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑡𝑡𝑢𝑢𝑡𝑡 (2) 
𝑃𝑃𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑃𝑃𝑡𝑡−1𝐴𝐴𝑡𝑡𝑇𝑇 + 𝑄𝑄 (3) 

Where: 

𝐴𝐴𝑡𝑡: State transition model matrix 
𝐵𝐵𝑡𝑡: Control input model matrix 
𝑢𝑢𝑡𝑡: Control vector 
𝑄𝑄𝑡𝑡: Process noise covariance matrix 

Measurement Update 
The initial task in the update process is to compute the 

Kalman Gain, as shown in Eq.4: 
𝐾𝐾 = 𝑃𝑃𝑡𝑡𝐻𝐻𝑡𝑡𝑇𝑇(𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡𝐻𝐻𝑡𝑡𝑇𝑇 + 𝑅𝑅𝑡𝑡)−1 (4) 

Next, the expected state and covariance matrix are 
updated as per Eq.5 and Eq.6: 

𝑥𝑥𝑡𝑡′ = 𝑥𝑥𝑡𝑡 + 𝐾𝐾(𝑧𝑧𝑡𝑡 − 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡) (5) 
𝑃𝑃𝑡𝑡′ = (1 − 𝐾𝐾𝑡𝑡𝐻𝐻𝑡𝑡)𝑃𝑃𝑡𝑡  (6) 

where, 𝐻𝐻𝑡𝑡  is the matrix relating to state 𝑥𝑥𝑡𝑡 through the 
measurement 𝑧𝑧𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑡𝑡, where 𝑅𝑅𝑡𝑡 is a random 
variable representing the measurement noise covariance. 
The Kalman filter operates recursively: the Prediction 
process estimates the current provisional state based on the 
previous state, and then the Measurement Update process 
adjusts the estimate with an actual measurement. These 
steps are repeated with previous posterior estimates used to 
predict new prior estimates [16]. 

With our collected RSSI data, each vector 𝑟𝑟𝑛𝑛(𝑘𝑘) =
{𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖2, … , 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑅𝑅} is passed through the Kalman 
filter, with the first value as the average of R samples in 
each vector: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖0 =
1
𝑅𝑅
�𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖

𝑅𝑅

𝑖𝑖=1

 (7) 

The Kalman filter enhances the stability of our dataset, 
thereby improving the fingerprint features for each 
reference point and enhancing training performance. 

3.3. Fingerprint Features Extraction 

3.3.1. Autoencoder 
Autoencoder (AE) is a neural network model in machine 
learning and computer vision designed for unsupervised 
data encoding. It aims to learn a lower-dimensional 
representation (encoding) for higher-dimensional data, 
reducing complexity and saving computational resources. 
AE is often used for dimensionality reduction and feature 
extraction tasks. Figure 3 provides a visual representation 
of AE architecture, consisting of Encoder, Code, and 
Decoder. 

Encoder: Receives input data and transforms it into a 
lower – dimensional compressed form. The encoder 
typically consists of a sequence of neuron layers, learning 
to extract essential information from the data and represent 
it as a compressed vector. The neuron layers in the encoder 
often employ activation functions like ReLU, sigmoid, or 
hyperbolic tangent. 

Code: Contains the compressed data, also known as the 
output of the encoder. It is a crucial part of the network 
because it holds the features of the input data. 
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Decoder: Receives the compressed data from the 
encoder and attempts to reconstruct the original data. The 
decoder also consists of a sequence of neuron layers, 
transforming the compressed data into the original data 
while minimizing the reconstruction error. 

The training process of an Autoencoder aims to 
minimize the error between the original data and the 
reconstructed data by adjusting the encoder and decoder 
weights and parameters. Loss functions commonly include 
Mean Squared Error (MSE) and Binary Cross-Entropy 
(BCE). 

Figure 3. Proposed Autoencoder model structure 

Each reference point in our database has data vectors of 
size 200 × 6, which are flattened into 1200 × 1 vectors to 
match the input size of the AE model. After passing 
through the encoder, the data is compressed into a 12 × 1 
code, which is then decoded to produce an output of 
1200 × 1. In this study, the Autoencoder model uses the 
hyperbolic tangent (tanh) activation function, employs the 
Adam optimization algorithm, and uses Mean Squared 
Error (MSE) as the loss function. 

3.3.2. Convolutional Autoencoder 
The Convolutional Autoencoder (CAE) combines 
convolutional neural network principles with an 
autoencoder. It is often used for unsupervised learning 
tasks. Like an autoencoder, the CAE architecture consists 
of an Encoder, Code, and Decoder [17]. The proposed CAE 
architecture in this study is illustrated in Figure 4. 

Figure 4. Proposed Convolutional Autoencoder 
model structure. 

The encoding part processes the input as a matrix using 
convolutional layers to produce lower-dimensional output 

than the input matrix. The decoding part takes the lower-
dimensional representation from the encoding part and 
transforms it back to the original matrix size using 
decoding layers. The training process of the Convolutional 
Autoencoder is similar to that of the Autoencoder, with the 
aim of minimizing the difference using Mean Squared 
Error (MSE) as the loss function. 

Because the input of the CAE model is a matrix, each 
1200 × 1 data vector is transformed into a 36 × 36 matrix 
with zero-padding elements. 

Figure 5. The data vector is converted to 
matrix form for input to the Convolutional 

Autoencoder. 

3.4. Coordinate Prediction 

3.4.1. Correlation 
Signal correlation is a crucial aspect in signal research and 
analysis. In this study, a correlation system is used to 
compute and compare the input signal with an available 
fingerprint dataset. For two discrete signals 𝑥𝑥[𝑛𝑛] and 𝑦𝑦[𝑛𝑛], 
the calculation of their correlation, denoted as 𝐶𝐶(𝑥𝑥,𝑦𝑦), is 
performed using the following formula: 

𝐶𝐶(𝑥𝑥, 𝑦𝑦) = �𝑥𝑥[𝑛𝑛]𝑦𝑦[𝑛𝑛]
𝑛𝑛2

𝑛𝑛1

 (8) 

Where 𝑛𝑛1 and 𝑛𝑛2 represent specific time intervals for 
calculating the correlation between the two signals [19]. In 
a special case where the two signals are identical, it can be 
observed that in this case, the main correlation is the 
signal’s energy: 

𝐶𝐶(𝑥𝑥, 𝑥𝑥) = 𝐸𝐸(𝑥𝑥) (9) 

3.4.2. Normalized Cross – Correlation 
Normalized Cross-Correlation (NCC) is used in signal 
processing to measure the degree of similarity or 
correlation between two signals. NCC is typically 
employed to search for a specific signal pattern within a 
larger signal. 

This research proposes using the NCC coefficient to 
compare the input signal with a pre-existing fingerprint 
database to determine the most accurate coordinates. NCC 
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between two signals 𝑥𝑥[𝑛𝑛] and 𝑦𝑦[𝑛𝑛] is determined by the 
following formula (10):  

𝑁𝑁𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) =
∑ 𝑥𝑥[𝑛𝑛]𝑦𝑦[𝑛𝑛]𝑛𝑛2
𝑛𝑛1
𝐸𝐸(𝑥𝑥)𝐸𝐸(𝑦𝑦)

(10) 

This formula normalizes the aggregate correlation by 
dividing the numerator by the product of the energy of two 
signals, 𝑥𝑥[𝑛𝑛] and 𝑦𝑦[𝑛𝑛]. The result falls within the range of 
−1 to 1, indicating the level of similarity between the two
signals. A value of 1 typically represents complete
correlation, while −1 indicates complete inverse
correlation. A value close to 0 generally indicates low or
no correlation between the two signals.

Utilizing this approach involves the identification of 𝑘𝑘 
reference points exhibiting the closest distance. Eventually, 
the point coordinates to be determined are predicted as the 
centroid of these 𝑘𝑘 reference points. Different values of 𝑘𝑘 
result in different predicted coordinates, calculated using 
formula (11): 

(𝑥𝑥, 𝑦𝑦) =
1
𝑘𝑘
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 (11) 

4. Experiments and Results

4.1. Data collection 

The experiment was conducted on the 6th floor of the Ta 
Quang Buu Library at Hanoi University of Science and 
Technology, Vietnam. Six BLE beacons were placed at 
coordinates (0,0), (0,4), (0,8), (8,0), (8,4), and (8,0) 
within an 8𝑚𝑚 ×  8𝑚𝑚 area, as described in Figures 6 and 7. 
The beacons and Bluetooth signal strength receiving 
devices were on the same floor of the plane. 

There is a total of 75 reference points on the map. At 
each reference point, 200 RSSI value samples were 
gathered for a specific beacon. Additionally, 20 random 

Figure 6. The experimental environment. 

Figure 9 presents a specific example of RSSI data from 
200 samples recorded at two reference points (𝑅𝑅𝑃𝑃1 and 
𝑅𝑅𝑃𝑃2) fo r a sp ecific be acon. Co nversely, Fi gure 10  
illustrates RSSI data from 200 samples obtained from two 
different beacons (𝐵𝐵𝐶𝐶1 and 𝐵𝐵𝐶𝐶2) at a reference point. These 
data illustrate the uneven signal variations. This 
inconsistency may be due to the influence of the 
surrounding environment and factors causing random 
errors during the experimental process. This issue poses a 
significant challenge for indoor localization methods 
relying on BLE signals. 

Figure 7. Arrange the experiment to collect RSSI 
values from beacons at each reference point. 

test points were collected to assess the performance of the 
fingerprint feature extraction model, as depicted in Figure 
7 and Figure 8.  
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Figure 9. The RSSI values of the same beacon is obtained at different reference point. 

Figure 10. The RSSI values obtained from two different beacons at the same reference point. 

An Efficient Method for BLE Indoor Localization Using Singnal Fingerprint 

Figure 8. Test points are collected randomly. 
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Figure 11. The raw RSSI values and after passing it through the Kalman Filter. 
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4.2. Utilizing Kalman Filter 

As explained in the previous section, noise factors can 
significantly affect the process of fingerprint feature 
extraction and BLE signal-based localization. Consequently, 
the collected database underwent Kalman filtering to 
partially reduce the noise in the aforementioned values. 
Moreover, it enhances the feature characteristics of RSSI 
values at each reference point. Figure 11 below illustrates the 
difference before and after employing Kalman filtering. It is 
evident that, after passing through the Kalman filter, the 
RSSI data eliminates noisy values, resulting in new, more 
stable data. 

4.3. Experimental results 

Table 2 displays the results using two methods, one 
incorporating the Kalman filter and the other without the 
filter, with different values of 𝑘𝑘 (𝑘𝑘 = 3,4,5,6,7). Parameters 
in the table include the mean, median, maximum, and 
minimum error values. Initially, a comparison is made 
between two methods, AE and CAE, revealing that the 
average error values for different k values are notably smaller 
with the CAE method than with the AE method. The AE 
method provides the smallest average error of 2.60𝑚𝑚 with 
𝑘𝑘 = 4, while the CAE method yields the smallest average 
error of 1.07𝑚𝑚 with the same k value. When combined with 
the Kalman filter, it can be observed that the accuracy of the 
localization task improves. Specifically, with 𝑘𝑘 = 4, the AE-
Kalman method achieves the smallest average error of 
1.16𝑚𝑚, which is an improvement compared to AE (2.6𝑚𝑚), 
and the CAE-Kalman method delivers the smallest average 
error of 0.98𝑚𝑚 compared to CAE's 1.07𝑚𝑚. Of the four 
experimented methods, CAE-Kalman demonstrated the 
highest stability, showcasing a localization error ranging 
from 0.12𝑚𝑚 (𝑘𝑘 = 4) to 2.39𝑚𝑚 (𝑘𝑘 = 6). In contrast, the AE 
method shows a maximum localization error of 5.49𝑚𝑚 at 
𝑘𝑘 = 3. 

Figures 12 illustrate cumulative distribution function 
(CDF) curves for the following methods: CAE-Kalman, 
CAE, AE-Kalman, and AE. It can be observed that CAE-
Kalman and CAE have similar CDF curves, while AE-
Kalman and AE exhibit similar curves. When the Kalman 
filter is applied, CAE-Kalman outperforms CAE, and AE-
Kalman outperforms AE. CAE-Kalman and CAE have a 
lower error range of less than 2𝑚𝑚, whereas AE-Kalman and 
AE have an error range of less than 4𝑚𝑚. Using Kalman 
filtering improves the performance of fingerprint-based 
localization and reduces the error range. 

Figure 13 illustrates the localization error box and 
whisker plots for the four methods employed in this study, 
specifically at a value of 𝑘𝑘 = 4. It is evident that the CAE 
method generally outperforms the AE method, and the 
comparison between applying and not applying the Kalman 
filter in data processing shows a clear difference in 
efficiency. 

The CAE method combined with the Kalman filter (𝑘𝑘 =
4) is compared to studies using native BLE fingerprint-based
localization in Table 3. The comparison is made on various
aspects such as the number of beacons, used, the area size,
and the minimum, average, and maximum, location errors.
As explained in section 2, Mai et al [12] used fingerprinting
combined with Pedestrian Dead Reckoning and Particle filter
to achieve a minimum average error of 1.18𝑚𝑚. Alvin Riady
et al [13], with a larger localization scale and a greater
number of beacons than our method, achieved minimum
average and maximum errors of 1.1178𝑚𝑚 and 3.3601𝑚𝑚,
respectively. Li et al [6] used the ENTM method, developed
by the KNN and WKNN methods, and achieved an average
error of 1m. Table 4 compares the CAE method combined
with the Kalman filter and other methods. The comparison
table shows that the proposed CAE method combined with
the Kalman filter achieved an average error of 0.98𝑚𝑚,
significantly outperforming the compared methods.

Table 2. Statistical parameters of the proposed methods with different k values (unit: m). 

Methods Statistics k = 3 k = 4 k = 5 k = 6 k = 7 

CAE-Kalman 

Mean 1.19 0.98 1.24 1.37 1.41 

Min 0.33 0.12 0.20 0.37 0.52 

Max 2.33 1.60 2.24 2.39 2.33 

Median 1.05 1.02 1.22 1.20 1.42 

Var 0.31 0.21 0.28 0.26 0.26 

Std 0.55 0.46 0.53 0.51 0.51 

CAE Mean 1.12 1.07 1.21 1.18 1.37 
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Methods Statistics k = 3 k = 4 k = 5 k = 6 k = 7 

Min 0.23 0.2 0.27 0.33 0.40 

Max 2.57 2.15 2.41 2.27 2.59 

Median 1.05 1.02 1.22 1.12 1.25 

Var 0.41 0.28 0.32 0.28 0.46 

Std 0.64 0.53 0.56 0.53 0.68 

AE-Kalman 

Mean 1.25 1.16 1.21 1.37 1.46 

Min 0.33 0.25 0.28 0.47 0.87 

Max 3.07 2.85 2.61 2.69 3.03 

Median 1.05 1.09 1.09 1.31 1.38 

Var 0.44 0.29 0.25 0.24 0.26 

Std 0.66 0.54 0.50 0.49 0.51 

AE 

Mean 2.82 2.60 2.76 2.69 2.72 

Min 0.94 0.25 0.28 0.17 0.77 

Max 5.49 4.75 5.07 4.78 4.90 

Median 2.96 2.65 2.66 2.71 2.71 

Var 1.94 1.51 1.95 1.70 1.64 

Std 1.39 1.23 1.40 1.31 1.28 

Table 3. Comparison of CAE incorporating Kalman filter with other fingerprint-based methods 

Studies Methods 
Number of 

Becons 
Area size 
(m x m) 

Minimum Error 
(m) 

Average Error 
(m) 

Maximum Error 
(m) 

Mai et al [12] 

Pedestrian Dead 
Reckoning + 

Fingerprinting + 
Particle filter 

8 35,25 --- 1.18 --- 

Alvin Riady et 
al [13] 

ANN 23 19 × 12 0.1055 1.1178 3.3601 

Mingfeng Li et 
al [6] 

ENTM 4 8 × 8 --- 1 --- 

This study 
CAE + Kalmam 

filter 
6 8 × 8 0.10 0.98 1.77 
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Figure 12. Comparison of the localization error 
CDF curves of four methods, where k =  4 Figure 13. The localization error CDF curves box-

whisper plots, where k =  4 

5. Conclusion

In this research, we employed four distinct methods to assess 
the performance of indoor localization: CAE_Kalman, CAE, 
AE_Kalman, and AE. Our study results reveal that the CAE 
model outperforms the AE model, highlighting the 
superiority of the CAE model in fingerprint feature 
extraction for indoor localization. Additionally, we 
examined the impact of applying the Kalman filter to both 
models. The results demonstrate that using the Kalman filter 
significantly enhances the performance of both models 
compared to not using the filter. This underscores the 
effectiveness of improving the stability and accuracy of RSSI 
values obtained from BLE beacon signal transmitters. In 
summary, this research has elucidated the excellence of the 
CAE model and the positive effects of the Kalman filter in 
enhancing the performance of fingerprint feature extraction 
for indoor localization. 
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