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Abstract

The exponential increment of commodity exchange has raised the need for maritime border security in
recent years. One of the most critical tasks for naval border security is ship detection inside and outside the
territorial sea. Conventionally, the task requires a substantial human workload. Fortunately, with the rapid
growth of the digital camera and deep-learning technique, computer programs can handle object detection
tasks well enough to replace human labor. Therefore, this paper studies how to apply recent state-of-the-art
deep-learning networks to the ship detection task. We found that with a suitable number of object queries,
the Deformable-DETR method will improve the performance compared to the state-of-the-art ship detector.
Moreover, comprehensive experiments on different scale datasets prove that the technique can significantly
improve the results when the training sample is limited. Last but not least, feature maps given by the method
will focus well on key objects in the image.
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1. Introduction
The global commodity exchange has surged in recent
years, leading to an increase in waterway transport
services. While this growth benefits the economy,
it also presents significant challenges in protecting
national water borders. As a result, ship detection has
become a crucial aspect of national security. Accurately
detecting ships approaching the shore and thoroughly
verifying their legality are essential tasks. Typically,
data from coastal surveillance cameras is used to
monitor passing ships, and human inspectors review
the images. However, this manual process requires
considerable human effort and is prone to errors
due to various distractions. Therefore, developing an
automated ship detection system can reduce costs
and improve monitoring efficiency, particularly for
developing countries. Nevertheless, there are still
practical challenges that the ship detection model must
overcome to achieve optimal performance, such as
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data imbalance, lighting conditions, occlusion, missing
object parts, and size diversity, as shown in Figure 1.

Ship detection and classification from images are
well-known applications in computer vision, tradition-
ally addressed by object detection techniques. While
earlier deep learning models like Region-based Convo-
lutional Neural Network (R-CNN) [1] and FastRCNN
[2] surpassed hand-crafted methods, their sluggish per-
formance hindered real-world applications. One-stage
detectors such as Single Shot Setector (SSD) [3] and
You Only Look Once [4], though faster, rely on cumber-
some anchor boxes and post-processing steps. Recent
advancements like feature pyramid networks (FPN) [5]
and decoupled heads [6] have partially mitigated these
issues, but not all. To improve the performance of
ship detectors, many researchers try to customize these
detectors, such as network architecture [7–11], feature
fusion [12, 13], or feature selection loss [14].

While many promising results have been reported,
training a good detector is still an open question. Sev-
eral hyper-parameters, such as anchor-box generation
or non-maximum suppression procedure, should be
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Figure 1. Challenges of ship detection.

carefully designed to ensure the success of training
processes. Motivated by the observation, DETR [15, 16]
provides end-to-end object detection with transform-
ers. This method forces unique predictions via bipartite
matching; hence a fixed small set of learned object
queries may directly output the final set of predictions
in parallel. Yani_2022 [17] had try to applied DETR to
ship detection via distillation learning. Here, a teacher
provides a prediction to train a student model. How-
ever, the performance is not comparable to CNN-based
methods [12, 13] in the student model.

In our work, we revisit how to use DETR to train
a ship-detector. As shown in Figure 2, each learnable
query will provide one object detection result on the
input image. Hence, too many queries will provide false
detection, especially when the number of objects is
sparse, like ships. Hence, a suitable number of object
queries may directly affect the detection result.

We prove this viewpoint by comprehensive experi-
ments on a well-known large-scale ship dataset [18].
First, we follow guidance from [12–14, 18] to prepare
training and testing datasets and train our model. The
experiment aims to compare our method with state-of-
the-art methods. Second, we re-used the testing set but

reduced the training set as in [14, 17, 19]. This experi-
ment helps to evaluate the performance of our method
when the training samples are limited. In addition, an
ablation study is applied to evaluate the effect of the
number of object queries. Last but not least, feature
visualization explains why our method can work more
robustly than CNN-based methods. In summary, our
contributions are as bellowed:

(i) Our detector demonstrates performance that is on
par with state-of-the-art (SoTA) methods on well-
known benchmarks. It has shown comparable
accuracy, precision, and robustness through rig-
orous testing and evaluation, effectively matching
the results of leading models in the field.

(ii) When the number of training samples is lim-
ited, our method demonstrates a significant per-
formance improvement. By leveraging advanced
techniques and efficient learning algorithms,
our approach maximizes the utility of available
data, ensuring robust and accurate results even
with constrained training sets. This capability
highlights the strength and adaptability of our
method, making it particularly valuable in sce-
narios where data acquisition is challenging or
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costly. Consequently, our method is reliable for
achieving high performance in data-scarce envi-
ronments.

(iii) Feature analysis provides insights into why
our method operates robustly compared to
traditional CNN-based approaches. By examining
the features extracted by our model, we can
see how it effectively captures and utilizes
relevant patterns in the data, leading to improved
performance.

2. Releated Work
2.1. Object Detection
Recently, deep learning has been considered an
advantageous solution for computer vision tasks. Deep
learning-based object detection can be categorized
into two branches: region proposal-based methods
and regression/classification-based methods. Region
proposal-based methods usually have two steps. The
first step is finding areas where an object is likely to
exist. The second step is to perform the classification
for that object. Therefore, this method is called the
two-stage object detection method. Some well-known
methods included R-CNN [1], Fast R-CNN [20], Faster
R-CNN [21], FPN [5], etc.

On the other hand, regression/classification-based
object detection will predict an object’s location through
regression and the object’s label through classification.
Instead of splitting the object detection into two steps,
this technique uses a convolutional neural network to
predict location information (regression results) and
label information (classification results). Since only one
CNN network is used, these are considered single-
stage methods. Well-known methods of this approach
are YOLO [4], SSD [3], etc. The single-stage methods
have a much faster processing speed than the two-stage
methods. For example, Fast R-CNN [20] can handle 0.5
frames per second, whereas the first version of YOLO
can handle 45 frames per second, or SSD can handle 58
frames per second. Therefore, single-stage methods are
often used in practice.

There is a trade-off between accuracy and inference
time in object detection. While Fast R-CNN [20]
achieved an accuracy of 0.7 mAP, it can process very
slowly. The first version of YOLO called YOLOv1 [4],
only achieved an accuracy of 0.63 mAP, but it is
much faster than FastRCNN. For this reason, many
researchers are trying to increase the accuracy of the
YOLO structure. Recently, later versions of the YOLO
have been discussed to overcome the disadvantages of
the original YOLO model. For example, in YOLOv1,
each cell can only predict one object at most. For cases
where many objects are in the same cell, YOLOv1 may
not have a good result. Moreover, YOLOv1 predicts

the position of objects as a bounding box directly, and
the objective functions of YOLOv1 [4] do not have
a separate evaluation between the error caused by
bounding box widths and heights.

Instead of predicting the absolute bounding box,
YOLOv2 [22] considers anchor boxes of the main
component to predict each relative bounding box. In
detail, instead of indicating the position of a box on an
image, the CNN network predicts the offset between the
bounding box and predefined anchor boxes. Predicting
the offset is much easier than predicting the box
coordinates. If more or more anchor contours surround
the object, it is possible to define the anchor contours
that overlap with the labeled object contour.

One of the key challenges in object detection is
handling the scale issue. Objects appear smaller when
they are far from the camera and larger when they
are close. The Feature Pyramid Network (FPN) [5]
addresses this scale challenge by introducing pyramid
features, where the model extracts features at different
scales, similar to the layers of a pyramid. This
approach allows the detection of objects at varying
distances. However, FPN’s drawbacks include high
memory consumption, reduced detection speed, and
increased model complexity. To extract multi-scale
features without these burdens, the YOLOF model [23]
was developed. Instead of employing the multi-input,
multi-output architecture of FPN, YOLOF utilizes a
single-input, single-output encoding architecture based
on Dilated CNN [24]. This design enables YOLOF
to consume less memory while maintaining accuracy
comparable to FPN.

One of the challenges in object detection is
determining the number and size of anchor boxes,
especially due to varying distances between the object
and the camera. Anchor boxes are usually determined
using the k-means clustering algorithm, but this
process still requires human intervention and is not
fully automated for end-to-end training. YOLOX, a
notable model, has made modifications to eliminate
the anchor box selection process. It does this by
replacing the coupled head with a decoupled head
and predicting only one feature box for each location
on the feature map. This effectively removes the need
for anchors. Additionally, by separating the regression
and classification tasks into two distinct branches, the
model can converge more effectively.

Inspired by the success of transformers in natural
language processing (NLP), researchers have begun
applying transformer concepts to object detection.
Transformers represent a significant departure from
convolutional neural networks (CNNs). Although their
use in vision tasks is still in its early stages, trans-
formers have shown promising potential to replace
convolutions. State-of-the-art transformer-based detec-
tors have achieved impressive results on various object
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detection datasets, though they typically require more
parameters than convolutional models. Recently, sev-
eral transformer-based methods have been developed
for object detection, including Vision-Transformer-
Detection (ViTDET) [25], DETR [15, 16, 26], and
Shift-Window-Transformer (Swin) [27]. Among these,
DETR [15] stands out as one of the early transformer-
based methods to provide competitive results compared
to CNN-based detectors. Additionally, DETR operates
more closely as an end-to-end training method than
other CNN-based approaches.

2.2. Ship Detection
In the field of ship detection, various customizations
have been made to popular detection frameworks like
SSD (Single Shot Multibox Detector) [3] and YOLO (You
Only Look Once) [4] to improve their performance. For
example, Liu et al. [7] enhanced the SSD framework
by adding a VGG backbone, which improved the
detection of small objects. They also introduced a local
attention network and a merge module to integrate
features from different scales, leading to a significant
improvement in accuracy. On the other hand, the
"Cross-level Attention and Ratio Consistency Network"
(CARC) [19] uses YOLO with a ResNet-34 backbone and
incorporates cross-level attention modules to extract
multi-scale features for enhanced detection capabilities.
However, traditional frameworks may struggle with
effectively handling scale variations, which can impact
the accuracy across different object sizes.

A better backbone can significantly enhance accu-
racy. Consequently, researchers such as Cui [9], Liu
[12], and Li [8] have based their ship detection models
on YOLOv3. Their modifications focus on model cus-
tomization, incorporating attention modules to detect
targets at different scales. Despite these advancements,
challenges persist in accurately localizing and classify-
ing small or occluded objects.

Recent advancements continue to refine ship detec-
tion capabilities, incorporating models such as YOLOv4
(Zhang_2021 [10], Han_2021 [28]) and YOLOv5
(SDNet_2022 [11]) with simplified networks and atten-
tion mechanisms. Subsequently, Zhang_2022 [13] and
VIB_2023 [14] have refined YOLOX [29], a lightweight
method for feature fusion to address inconsistencies in
feature map scales. While methods like those proposed
by Zhang_2021 [10], Han_2021 [28], SDNet_2022 [11],
and Zhang_2022 [13] focusing on feature fusion mod-
ules to enhance feature learning, VIB_2023 [14] intro-
duces a feature selection loss to enforce the model to
learn sparse and discriminative features, helping the
feature map focus more on the detected objects.

Not only CNN-based frameworks but also DETR can
be used to detect ships. Yani et al. [17] utilize DETR
[15] with distillation learning for ship detection. First, a

teacher model is trained using the DETR method. Then,
distillation loss and Hungarian loss are applied to train
a lightweight DETR student model. Unlike Han_2021
[28] or SDNet_2022 [11], which use a default setting on
a large-scale dataset [30] to train a detector, Yani [17]
defined a new setting where 50% of the data is used
for testing. In this scenario, DETR outperforms CNN-
based detectors. However, the distilled model does not
maintain the same high accuracy as the original DETR
model.

3. Methodology
3.1. DETR Architecture
Model Description. The DETR model comprises a
feature extractor, an encoder, and a decoder, as depicted
in Figure 2. The feature extractor is a CNN backbone
that extracts high-level information from an image; a
2D sinusoidal positional encoding also helps encode
position information for each pixel. Image features
and positional features are concatenated and fed into
the transformer-based encoder. The encoder consists
of multiple stacked multi-head self-attention layers.
Features from the encoder are then passed to the
transformer-based decoder. The decoder also takes
several learnable object queries as input. These queries
serve as a latent of suitable positions on the image.
Given one query, the decoder will use a feature from the
encoder to predict if there is any object at the positional
query.

In the feature extractor, given an input image with
a H0 ×W0 × 3 tensor, the CNN backbone generates a
feature map of size H ×W × C. According to [15], C =
2048, H = H0/32, and W = W0/32. A 1x1 convolution
layer reduces the feature channels from C to d (d < C),
creating a new feature map of size H ×W × d. Because
The transformer-based encoder requires a 2D input, the
feature map is resized to a d ×HW matrix. Rows of
the matrix are named tokens, each token being a d-
dimensional vector.

The encoder includes many stacked multi-head self-
attention layers. Each multi-head self-attention block
consists of several self-attention modules. In a multi-
head self-attention module, features extracted from
self-attention modules are concatenated and projected
to the output via a linear projection. Three individual
linear projections extract a tuple (key, value, query) in a
self-attention module. The similarities between key and
query serve as attention factors among value, fusing
value into self-attention features.

The decoder takes new features from the encoder
and learnable object queries. Features from the
encoder represent image information at every position,
while queries serve as learnable positional encodings,
questioning whether there is an object at a specific
location. The decoder uses the image information
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Figure 2. DETR Architecture

to determine if the encoded location contains any
class. These queries are learnable from the dataset.
The architecture of the encoder and decoder modules
is shown in Figure 2. The outputs of the decoder
module are fed into a feedforward neural network to
predict the object’s position and category. These outputs
correspond to each object query learned in the decoder
block. If an object query encodes no object at a position,
the classification head result is “No Object”.

Loss Function. The network returns a set of N detection
results corresponding to N object queries. Each result
is a tuple that includes (class, box) and represents one
and only one object without duplication. Therefore, a
matching process is needed to map one prediction to
one ground truth. Because the number of ground truth
objects in an image is smaller than the number of object
query N , a set ∅ of patches cropped randomly from the
background is used as extra ground truth. Therefore,
"background" objects with an arbitrary position and
the label “No Object” help to balance the numbers of
actual labeled locations and predictions. Denote σ is
a matching solution; the optimal matching σ̂ is the
solution of an optimization process as in Equation 1.
Where yi is a ground truth of a box that includes
class label and bounding box label (ci , bi); and ŷi is
a prediction result. This optimal assignment is solved
by the Hungarian algorithm [31]. Note that this cost
is not calculated on each object but as a collective
combination of N objects generated for each image.

σ̂ = argmin
σ∈ΞN

N∑
i

Lmatch

(
yi , ŷσ (i)

)
(1)

A good model can accurately predict objects and
bounding boxes with higher overlapping contours.
Therefore, the objective function Lm

(
yi , ŷσ (i)

)
should

include these criterions as Equation 2.

Lm
(
yi , ŷσ (i)

)
= −1{ci,∅} log p̂σ (i) (ci) + 1{ci,∅}Lbox

(
bi , b̂σ (i)

)
(2)

The first term of Equation 2 guides the model to
predict the object’s category accurately. The second
term helps to predict better bounding boxes. Here
ci , ∅ refers to detecting objects that are not dummy
objects. Because each ground truth object is detected
once, the equation 2 is applied to all ground truth
objects in the image.

The optimal matching σ̂ is estimated on a matching
that includes ground truth objects and dumpy objects
(defined by ∅). Because the boxes of dumpy objects
are meaningless, the box loss is only valid if the box is
not in the ∅ set. In contrast, the dumpy objects should
be predicted as "No Object" correctly. Therefore, the
classification loss should include the ∅ set. Motivated
by the observation, the Hungary loss (LH ) [31] in
Equation 3 is used to train the model.

LH (y, ŷ) =
N∑
i=1

[
− log p̂σ (i) (ci) + 1{ci,∅}Lbox

(
bi , b̂σ (i)

)]
.

(3)
According to the literature reviews, influence scaling

is critical in bounding box estimation. For example, a
bounding box of a large object would have a width
of 0.2, while a bounding box of a small object would
have a width of 0.02. If the conventional Euler distance
is used to measure the bounding box loss, the model
may be too biased towards large objects and ignore
small objects. Therefore, the Generalized Intersection
over Union (GIOU) [32] loss function is introduced to
calculate the bounding box loss together with the L1-
norm [33] loss function. Denote λiou , λL1 ∈ R are hyper-
parameters that control a learning process for GIOU
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loss and L1-norm loss; the formula of the boundary loss
is in Equation 4.

Lbox

(
bi , b̂σ (i)

)
= λiouLiou

(
bi , b̂σ (i)

)
+ λL1

∥∥∥bi − b̂σ (i)

∥∥∥
1
(4)

3.2. Deformable DETR
Deformable Attention block. In the DETR model, the
attention block transmits almost uniform attention
weights to all pixels in the feature map. Thus,
training requires a longer time. Using a deformable
mechanism, the custom attention block only samples
a small set of crucial points around a reference
point, regardless of the feature map size in the
spatial domain. This design allows for a reduction in
training time. Besides, the computational complexity
and needed memory are reduced. Figure 3 illustrates
how deformable convolution is integrated into a multi-
head self-attention layer, and the equation 5 is the
model representation of the layer.

DeformAttn
(
zq, pq, x

)
=

M∑
m=1

Wm

 K∑
k=1

Amqk .W
′
mx

(
pq + ∆pmqk

) (5)

where,

• x ∈ RC×H×W is an input feature map.

• M is the sum of interactions, where m ∈ [1,M].

• K is the total number of standard keys sampled (K
< HW), index k ∈ [1, K].

• W ′mx is a linear projection of the input feature
map. W ′m extract value of a self-attention layer.

• ∆pmqk represents the sampling deviation of the kth

sampling point in the mth attention head. Given a
query zq, a linear projection extracts a 2 × (M ∗ K)
to represent K offset vectors for M attention head.

• Amqk is the attention map of the kth sampling
point in the mth attention output. Given a query
zq, a linear projection extracts a M × K tensor as
an attention map Amqk . The softmax function is
applied on every head to ensure

∑K
k=1 Amqk = 1.

• The term
[∑K

k=1 Amqk .W
′
mx

(
pq + ∆pmqk

)]
repre-

sents the interaction among sampling values to
encode a new feature. The new feature is the
output of a self-attention layer. Concatenating
several self-attention features and then projecting
the feature to output, we have a multi-head self-
attention.

Multi-scale Deformable Attention Module. The multi-scale
technique is commonly used to detect objects of
different sizes. Feature maps at different scale levels
detect objects from different distances. Multi-scaling
techniques are integrated into a Deformable Attention
block as Equation 6.

MSDeformAttn
(
zq, p̂q,

{
xl
}L
l=1

)
=

M∑
m=1

Wm

 L∑
l=1

K∑
k=1

Amlqk ·W ′mxl
(
∅l

(
p̂q
)

+ ∆pmlqk

) (6)

where,

• L is the input feature level, index l ∈ [1, L]

• {xl}Ll=1 is the feature map at different scales; with
xl ∈ R(C×Hl×Wl )

• ∆pmlqk represents the sampling deviation of the
kth sampling point at the lth feature level and the
mth attention head.

• p̂q ∈ [0; 1]2 is the normalized coordinates. The
upper left point is (0;0); and the lower right point
is (1;1).

• The function ∅l(p̂q) will re-scale the normalized
coordinates p̂q to the input feature map of level l.

4. Experiment
4.1. Dataset Description
In order to demonstrate the effectiveness of the
Deformable DETR framework for ship detection, we
utilize a widely recognized large-scale dataset refer-
enced in the work of [18]. This dataset originates
from a comprehensive video monitoring system situ-
ated around Hengqin Island in Zhuhai City, China.
It comprises a diverse range of ship images captured
under different sea conditions, collected from 6:00 am
to 8:00 pm daily.

For a fair comparison, we follow the setup outlined
in [18] for preparing the training and testing sets. This
approach is widely used in various research works such
as Liu (2020) [12], Liu (2022) [7], Han (2021) [28],
SDNet (2022) [11], and VIB (2023) [14], and has become
a well-known benchmark. Under this setup, 80% of the
dataset is used for training, and the remaining 20% is
used for testing. The training and testing datasets are
denoted as DT rain

1 and DT est
1 respectively.

Some works (Biaohua_2022 [19] and Yani_2022 [17])
prepare a challenging scenario where 50% dataset is
used for training and 50% dataset is used for testing.
In this scenario, the training and testing datasets are
denoted as DT rain

2 and DT est
2 in our paper. Furthermore,
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Figure 3. Illustration of the Deformable Attention module [16]. (a) The concept of deformable convolution. (b) Deformable convolution
in multi-head attention.

Table 1. Performance comparisons of Deformable DETR with the number of queries. The best results are marked in bold.

Deformable DETR

Class
300 query 200 query 100 query 50 query

dets recall AP dets recall AP dets recall AP dets recall AP

fishing boat 204449 0,913 0,798 208817 0,985 0,970 119774 0,986 0,969 96577 0,972 0,949
container ship 6300 0,989 0,894 11460 0,995 0,995 31083 0,995 0,989 18949 0,998 0,997

ore carrier 53520 0,987 0,923 49362 0,997 0,992 62122 0,996 0,989 18949 0,993 0,987
bulk cargo carrier 45541 0,985 0,912 47754 0,996 0,992 46490 0,997 0,986 76230 0,996 0,989

passenger ship 22498 0,968 0,610 16199 0,970 0,957 14866 0,968 0,936 20043 0,972 0,926
general cargo ship 17692 0,987 0,930 16408 0,995 0,992 75665 0,995 0,991 98537 0,996 0,990

mAP 0.844 0.982 0.977 0.973

to evaluate the performance on limited datasets,
VIB_2023 [14] introduced S1, S2, and S3 subsets which
are randomly selected from DT rain

2 . These datasets
contain 30%, 70%, and 100% of DT rain

2 , respectively.
These subsets enable thorough investigation into the
scalability and adaptability of proposed methods across
varying dataset sizes and training conditions.

Our experiment uses AdamW optimizer, learning
rate = 0.0001, weight decay = 0.0001, n_epoch=200,
batch_size=8, λiou = 2.0, and λL1 = 5.0. We use the
reduce-mean operator on batch data and the reduce-
sum operator on prediction output. The mAP is
used to select the best model. These experiments are
implemented based on the mmdetection library [34].

4.2. Hyper-parameter selection
As discussed in Section 3, the number of queries
can affect the number of outputs of a DETR-based
detector. Therefore, this section tries to select the
most suitable parameter to control the model. We

compare the performance when nqueries receives a vault
in the [300, 200, 100, 50] list. The DT rain

2 and DT est
2 are

selected as the training and testing dataset to ensure a
challenging setting. It means 50% of the dataset is used
for testing.

The findings are presented in Table 1. In mmde-
tection, the default value for the number of queries
(nqueries) is 300. It is observed that using the default set-
ting leads to an increased number of detections (dets).
For example, the number of detections for fishing boats
is 204449. This tendency results in a decrease in average
precision (AP) to 0.798, while the recall increases to
0.913. Additionally, the higher number of detections
for fishing boats can be attributed to the higher fre-
quency of the corresponding label in the dataset. By
reducing nqueries, the bias in detections is mitigated.
Specifically, when nqueries are set to 200, 100, and 50, the
detections for fishing boats decrease to 208817, 119774,
and 96577 respectively. Furthermore, this reduction in
queries minimizes the bias in detections across different
ship categories. With nqueries = 300, the lowest number
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Table 2. Performance comparisons of Deformable DETR given by various learning rates. The best results are marked in bold.

Lr=10−3 Lr=10−4 Lr=10−5

Dets recall AP Dets recall AP Dets recall AP
fishing boat 75600 0.122 0.001 24874 0.971 0.912 15869 0.986 0.877
container ship 12600 0.223 0.007 9193 0.993 0.986 17028 0.988 0.968
ore carrier 12600 0.254 0.005 33544 0.994 0.965 24892 0.988 0.919
bulk cargo carrier 12600 0.401 0.016 35317 0.995 0.949 21334 0.997 0.906
passenger ship 14000 0.211 0.001 14543 0.952 0.861 42789 0.982 0.760
general cargo ship 12600 0.361 0.009 22529 0.960 0.969 18088 0.994 0.916
mAP 0.006 0.941 0.891

of detections is for container ships (6300). However,
when nqueries = 50, the lowest number of detections is
around 18949, and the detections for container ships,
ore carriers, and passenger ships are quite similar.

Besides the nqueries, the learning rate (Lr) is another
important factor that affects the system’s performance.
Default, Lr is set as 10e-4. In the revised version, we
have modified the Lr to 10e-5 and 10e-3. The small set (
S1 dataset) is used for training, and the DT est

2 dataset is
used for testing.

The results presented in Table 2 provide a quantita-
tive evaluation of different learning rates. When a high
learning rate (Lr=10e-3) is used, the model exhibits
poor generalization, reflected in low recall and AP
values. This is likely due to excessively large parameter
updates during training, leading to instability or failure
to properly converge. On the other hand, with a low
learning rate (Lr=10e-5), while the model maintains
high recall, the slight decrease in AP indicates that
the learning rate may be too low, resulting in slower
convergence and insufficient fine-tuning of parameters.
The optimal learning rate is found to be (Lr=10e-4),
where the model achieves the best balance between
parameter updates and stability. At this rate, the model
attains high precision and recall across all ship classes,
making it the most effective choice in this scenario.

4.3. Compare with SoTA
This section compares our proposed method with
SoTA on the mAP metric. For each method, we
use a corresponding training and testing dataset. For
instance, we use DT rain

1 and DT est
1 to train our model

and compare with Zhang_2022 [13], and Zhang_2021
[10], Liu_2020 [12], Liu_2022 [7], Han_2021 [28], and
SDNet_2022 [11], and VIB_2023 [14]. Also, we use
DT rain

2 and DT est
2 to train another model and compare to

Biaohua_2022 [19], Yani_2022 [17], and VIB_2023 [14].
Because the mAP is maximum when nqueries = 200 for

our method, as shown in Table 1, we select the setting
in this experiment. The comparison among SoTA is
reported in Table 3, and some conclusions can be drawn
as below:

• Baseline framework is the key factor to have
a better result. Cui_2019 [7] and Liu_2020
[12] base on YoloV3. Therefore, its performance
is not as good as Liu_2022 [7], which is
based on the SSD framework. Han_2021 [28]
is based on YoloV4, and its performance does
not show an improvement compared to Liu_2020
[12] base on YoloV3. Using the advantage
YoloV5, SDNet_2022 [11] significantly improved
compared with Liu_2020. The YoloV5 framework
helps mAP increases up to 8% compared
to the YoloV3 framework. VIB_2023 [14] is
based on YoLoX, and our method is based on
the DETR backbone. These frameworks have
recently been advantageous methods for object
detection. Hence, the results are better than
others. It is worth noting that ship detection
research typically leverages an object detection
framework as its foundation, often with some
custom modifications. Therefore, inheriting the
capabilities of such a novel and powerful
framework naturally leads to improved results.

• When the number of samples in the training
set is reduced, DETR-based methods tend to
work better than CNN-based methods. In the
table, Biaohua_2022 [19] is a CNN-based detector,
and Yani_2022 [17] is a DETR-based detector.
The mAP given by Yani_2022 and Biaohua_2022
are 0.965 and 0.9963, respectively. However, the
performance could be improved if we select a
suitable hyperparameter. In our work, by setting
nqueries = 200 the mAP could improve to 0.981.

• Our method is comparable to the best CNN-based
method for ship detection. If the training dataset
has more samples than the testing dataset, our
method is comparable to the Yolo-based method
like VIB_2023 [14]. In detail, when DT rain

1 and
DT est

1 are used for training and testing, both mAPs
for our method and VIB_2023 [14] are similar.
However, when the number of samples in the
training set is equal to that in the testing set,
our method is slightly better than the VIB_2023
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Table 3. Performance comparisons of various methods. The best results are marked in bold.

Method Train+Val /
Test (in %)

fishing
boat

container
ship

ore
carrier

bulk
cargo

carrier

passenger
ship

general
cargo
ship

mAP

Zhang_2022 [13] 90/10 0.824 0.940 0.859 0.915 0.787 0.914 0.873
Zhang_2021 [10] 90/10 - - - - - - 0.946
Cui_2019 [9] 80/20 0.900 0.940 0.90 0.910 0.910 0.900 0.910
Liu_2020 [12] 80/20 - - - - - - 0.908
Han_2021[28] 80/20 - - - - - - 0.906
Liu_2022 [7] 80/20 - - - - - - 0.964
SDNet_2022 [11] 80/20 0.986 0.995 0.989 0.990 0.982 0.989 0.988
VIB_2023 [14] 80/20 0.979 1 0.987 0.994 0.994 0.993 0.991
Ours (nquery = 200) 80/20 0.982 1 0.989 0.991 0.995 0.990 0.991

Yani_2022 (ESDT)
[17]

50/50 - - - - - - 0.593

Yani_2022 (DETR)
[17]

50/50 - - - - - - 0.965

Biaohua_2022 [19] 50/50 0.940 0.987 0.966 0.978 0.937 0.972 0.963
VIB_2023 [14] 50/50 0.970 0.986 0.984 0.991 0.964 0.989 0.98
Ours (nquery = 200) 50/50 0.970 0.995 0.992 0.992 0.957 0.992 0.982

[14]. In detail, when DT rain
2 and DT est

2 are used for
training and testing, our method is slightly better
than the SoTA in VIB_2023 [14].

In Table 3, the results indicate that the DETR method
generally outperforms the YoLoX-based method [14]
when the number of training samples is reduced.
Therefore, we designed an experiment using DT est

2 as
the testing set and a subset of DT rain

2 as the training set.
These subsets are categorized into Small, Medium, and
Large levels, corresponding to S1, S2, and S3 subsets.
The results in Figure 4 compare our method with the
state-of-the-art (SOTA) method proposed in VIB_2023
[14].

If the training dataset is S1, the mAP given by our
method improves 17.5% compared to VIB_2023 [14].
When the number of training samples is increased, the
improvement is reduced. The enhancement on mAP
is 3.3% if S2 subset is used for training and if the
training dataset is S3, the mAPs from both settings
are pretty equivalent. The observation clearly points
out that the DETR-based method could help if the
number of training samples is limited. Table 4 reports
the detailed detection result for each ship category.

While DETR-based detectors can achieve higher
accuracy on smaller datasets, it is important to also
assess their computational complexity compared to
CNN-based detectors. Table 5 presents a comparison
of the computational performance between two object
detection models: VIB_2023 [14] and Deformable
DETR. Three key metrics are compared: Frames
Per Second (FPS), GFlops, and the number of

Figure 4. Performances when the number of training samples is
limited. "Small" means 30% training samples, "Medium" means 70%
training samples, and "Large" means 100% training samples from
DT rain

2 .

parameters (in millions). Both models show similar
FPS, with DETR slightly outperforming VIB_2023
[14] at 12.6 FPS versus 12.39 FPS on a TiTanRTX
GPU. However, DETR exhibits higher computational
complexity, requiring 11.01 GFlops, compared to the
more efficient 9.92 GFlops of VIB_2023 [14]. Despite
its higher computational demands, DETR uses fewer
parameters, with 39.82 million compared to VIB_2023’s
55.33 million. This suggests that DETR maintains
competitive speed with fewer parameters but at the cost
of increased computational complexity.
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Table 4. Performance on small datasets. S1 means 30% training samples, S2 means 70% training samples, S3 means 100% training
samples from DT rain

2 .

Scenario Metrics fishing
boat

container
ship

ore
carrier

bulk
cargo

carrier

passenger
ship

general
cargo
ship

mAP

S1 by VIB
recall 0.878 0.941 0.924 0.913 0.657 0.946
AP 0.796 0.884 0.831 0.765 0.524 0.794 0.766

S1 by DETR
recall 0.971 0.993 0.994 0.995 0.952 0.96
AP 0.912 0.986 0.965 0.949 0.861 0.969 0.941

S2 by VIB
recall 0.940 0.984 0.962 0.971 0.891 0.964
AP 0.922 0.980 0.935 0.953 0.873 0.946 0.935

S2 by DETR
recall 0.977 1 0.992 0.995 0.968 0.997
AP 0.958 0.995 0.967 0.978 0.922 0.986 0.968

S3 by VIB
recall 0.978 0.986 0.990 0.995 0.972 0.993
AP 0.970 0.986 0.984 0.991 0.964 0.989 0.98

S3 by DETR
recall 0.985 0.995 0.999 0.998 0.980 0.997
AP 0.970 0.995 0.992 0.992 0.957 0.992 0.982

Table 5. Complexity comparison between VIB-detector and
DETR-detector.

VIB_2023 [14] DETR
FPS 12.39 12.6

GFlops 9.92 11.01
#parameters (M) 55.33 39.82

4.4. Ablation study of loss functions.
This section discuss an ablation study on training losses.
Deformable DETR employs multiple loss functions
for training, including focal loss, GIoU loss, and L1
loss, each serving a distinct purpose: focal loss for
classification, GIoU for bounding box regression, and
L1 for object detection. The combination of these losses
ensures the success of the training process. While all
loss functions are crucial, their contributions can be
adjusted. By default, the weights are set at 2.0 for focal
loss, 2.0 for GIoU loss, and 5.0 for L1 loss. To evaluate
the impact of each, we reduced the weight of these
losses by a factor of ten, one at a time, and compared

Table 6. mAP comparisons of Deformable DETR when reducing
training losses.

LGIoU L1 Lcls
fishing boat 0.899 0.899 0.227
container ship 0.976 0.985 0.246
ore carrier 0.953 0.947 0.212
bulk cargo carrier 0.951 0.966 0.151
passenger ship 0.845 0.849 0.0173
general cargo ship 0.964 0.969 0.160
mAP 0.931 0.936 0.178

the results to the default setting. The results in Table
6 demonstrate that Lcls (classification loss) is the most
significant; reducing its weight leads to a significant
performance drop. Conversely, reducing the object loss
has less impact, with performance remaining close to
the original setting. Localization is slightly affected by
GIoU loss, as mAP decreases to 0.931 compared to 0.941
in the original setting.

4.5. Feature analysis
Experimental results in Section 4.3 point out that the
DETR method is better than the CNN methods if
the number of samples in the training set is limited.
However, it is worth explaining why the DETR method
can have a better result in the special scenario. The
major difference between the two methods is the
attention module in the DETR encoder. This module
allows non-local interaction to learn a better feature.
Therefore, we visualize the features given by both
methods after a model’s backbone, neck, and head.
Given one input image, feature maps are extracted
after one module. The sum of one feature map
represents whether this feature map is important or not.
Therefore, we selected 20 important feature maps for
each backbone, neck, and head to create a heat map.
The map is averaged from all important feature maps
and represents key points on an image.

Figure 5 illustrates examples of heat maps generated
from an input image. The first row displays feature
maps from DETR, the second row shows heat maps
from the VIB_2023 [14] method, which employs a
feature selection loss for learning features, and the
third row presents heat maps from YOLOX [29], which
relies purely on CNN networks. The results indicate
that DETR, with its attention mechanism, can better
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Figure 5. Feature maps on the classifier head, the neck and the backbone. (Text on original image had been removed.)

focus on non-background objects. For instance, after
the head, the feature map highlights the text with
a score on the survival system, and the ship is also
highlighted, though not as prominently as the text. As
the features are processed through the neck, higher
semantic features are learned, causing the ship to
become more prominent while the focus on the text
diminishes. Key points are concentrated on the ship at
the head, with reduced attention on the text.

In contrast, VIB_2023 [14] produces sparse heat maps
where many pixels at the image’s edge do not respond.
However, these maps do not precisely focus on the
object. This occurs because VIB_2023 [14] uses a feature
selection loss to identify important features, leading to
sparse and highly discriminated feature maps that do
not exactly center on the object. The map distributions
are quite similar overall, with slight improvements
from the backbone to the head. Without the feature
selection loss, the distribution of heat maps would
likely be more uniform as shown in the third row.

5. Conclusion
This paper discusses a simple but efficient method
for ship detection. By adjusting the number of object
queries in the DETR model, we can have a comparable
detector for ship detection on a large-scale dataset. In
addition, the method shows a significant improvement
if we do not have enough data in a training set.

Heat map visualization explains why our method could
be better than CNN-based methods. The features are
learned to focus on non-background information, and
the discriminated level of the feature map is better.
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