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Abstract 

INTRODUCTION: A robust method is proposed in this paper to detect helmet usage in two-wheeler riders to enhance 
road safety. 
OBJECTIVES: This involves a custom made dataset that contains 1000 images captured under diverse real-world 
scenarios, including variations in helmet size, colour, and lighting conditions. This dataset has two classes namely with 
helmet and without helmet. 
METHODS: The proposed helmet classification approach utilizes the Multi-Scale Deep Convolutional Neural Network 
(CNN) framework cascaded with Long Short-Term Memory (LSTM) network. Initially the Multi-Scale Deep CNN 
extracts modes by applying Single-level Discrete 2D Wavelet Transform (dwt2) to decompose the original images. In 
particular, four different modes are used for segmenting a single image namely approximation, horizontal detail, vertical 
detail and diagonal detail. After feeding the segmented images into a Multi-Scale Deep CNN model, it is cascaded with an 
LSTM network. 
RESULTS: The proposed model achieved accuracies of 99.20% and 95.99% using both 5-Fold Cross-Validation (CV) and 
Hold-out CV methods, respectively. 
CONCLUSION: This result was better than the CNN-LSTM, dwt2-LSTM and a tailor made CNN model. 

Keywords: Multi Scale CNN; Long Short-Term Memory; Discrete Wavelet Transform; Helmet Detection 
Received on 19 October 2024, accepted on 04 March 2025, published on 11 March 2025 

Copyright © 2025 A. Annadurai et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as 
the original work is properly cited. 

doi: 10.4108/eetinis.v12i2.7612 

*Corresponding author. Email: triloknath.pandey@vit.ac.in, 

1. Introduction

In recent times, there has been a dramatic shift in the 
modes of transportation, with a noticeable rise in the use 
of motorbikes. This trend is the result of both the growing 
middle class's need for affordable transportation options 
and the growing urbanization of the population, which has 
increased demand for mobility. To meet these changing 
needs for urban mobility, there has consequently been a 
noticeable increase in demand for individualized private 
transportation services [1]. When road safety officials 

want to compel motorcyclists to wear helmets, they 
usually set up checkpoints where they visually inspect 
riders to ensure compliance. According to the law, there 
are fines for not wearing a helmet. This strategy is 
vulnerable to evasion techniques, too, including using 
detours to get around  
checkpoints. As a result, to address the issue of low 
helmet wear rates and reduce the number of fatalities and 
injuries in traffic incidents involving motorcycles helmet 
detection system is needed. 
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Deep learning, a kind of artificial intelligence, 
allows machines to recognize patterns and features 
straight from data, it has revolutionized a number of 
fields. Convolutional Neural Network (CNN), which is 
trained on enormous datasets of annotated photos to 
acquire intricate representations of helmets, has 
demonstrated outstanding abilities in the recognition and 
localization of objects in images when it comes to helmet 
detection. Deep learning is enhanced by computer vision 
algorithms, which analyse and prepare images before 
feeding them into neural networks. Image enhancement 
and feature extraction are two methods that improve the 
quality of the data and help with helmet detection in a 
variety of situations, such as changing illumination and 
rider postures [2]. 

Automated helmet recognition systems quickly 
and accurately evaluate input photos in real-time by 
combining deep learning and computer vision. This 
allows the systems to detect helmets reliably and trigger 
the necessary actions to maintain road safety. We should 
expect even more accurate and effective helmet 
identification systems in the future as these technologies 
develop further, greatly improving rider safety. Over 
approximately 1.35 million individuals globally face 
fatalities as a result of road accidents each year, with 
children and young adults being the most affected by this 
alarming figure. Approximately 28% of these fatalities 
include people who are operating two- or three-wheeled 
vehicles. Roughly half of all motorcycle fatalities are 
caused by head and neck trauma, this stands as a 
prominent cause of mortality and serious injury. Effective 
helmet use has been found to be a critical intervention, 
lowering the likelihood of fatal injuries decreases by 42%, 
and there is a 69% reduction in the occurrence of brain 
injuries in traffic accidents.   

Given the rising death toll from motorcycle 
accidents, an automated computer vision system that can 
identify two-wheeler riders and assess whether they are 
wearing helmets is desperately needed. A system like this 
would reduce the amount of work that traffic cops had to 
do, which would lower the death rate from motorcycle 
accidents. The principal objective is to reduce these types 
of traffic accidents by deploying an automated system that 
uses computer vision to detect when two-wheeler riders 
are wearing helmets. But despite its demonstrated 
efficacy, there is still a worrying trend: more than 50% of 
motorcycle riders in low- to middle-income countries 
(LMICs) prefer not to wear helmets [3]. There are several 
reasons for this hesitation, including the weight of the 
helmet, pain from the heat, sensory issues, and cultural 
beliefs. In order to improve road safety and reduce 
motorcycle-related deaths and injuries globally, it is 
imperative that these obstacles be removed. 

Automation can reduce the number of human 
resources needed for operation while improving the 
robustness and reliability of such systems. It's crucial to 
remember, nevertheless, that placing security cameras 
everywhere might not be a practical or financially 
advantageous solution—especially in light of the fact that 

many streets lack monitoring cameras. The 
implementation of security cameras needs to be properly 
thought out and balanced with practicality and cost-
effectiveness concerns, even if they can be useful tools for 
monitoring and improving safety. When choosing where 
to place surveillance systems, it's important to consider 
aspects like power source accessibility, network 
connectivity, upkeep needs, and privacy issues. 
Ultimately, even while automation and surveillance 
technologies can greatly improve security and safety, their 
implementation requires careful planning and awareness 
of real-world limits in order to be both successful and 
long-lasting. Organizations and authorities can reduce 
costs and logistical issues while maximizing the 
effectiveness of surveillance initiatives by effectively 
leveraging available resources and technologies. 

The objective is to create an automated and 
dependable system for detecting helmets worn by two-
wheeler riders in order to impose helmet usage laws and 
improve road safety. This involves developing and putting 
into practice two different approaches—multiscale deep 
CNN cascaded Long Short-Term Memory (LSTM) and 
customized CNN—and assessing how well they work to 
identify helmet use in a variety of real-world settings. The 
goal also includes to integrate the automated detection 
system into motorcycles in order to provide real-time 
traffic enforcement. 

The subsequent divisions of this paper are 
structured as follows. In Section 2, the approaches 
currently in use helmet detection are discussed. Section 3 
offers a synopsis of the objectives and contributions of 
this paper. The suggested technique is elucidated in 
Section 4, while Section 5 presents the results along with 
their respective explanations. The paper is finally 
concluded in Section 6. 

2. Related Works

Using a variety of approaches, numerous studies have 
been carried out to address the problem of automatically 
detecting helmet usage among riders of two-wheelers. A 
technique for helmet violation identification using Faster 
RCNN on surveillance films taken by cameras positioned 
along the side of the road was presented by Waris et al. 
[4]. Their method's remarkable 97.6% accuracy allowed 
for real-time helmet regulation enforcement and 
monitoring. Nonetheless, restrictions were mentioned, 
including data collecting and possible data exploitation. 
From the perspective of cameras positioned on vehicles, 
Mercado Reyna et al. [5] used Inception v3 CNN to 
identify riders who were wearing helmets and those who 
weren't. With a high accuracy of 97.24%, their system 
was able to detect things in real time. However, one 
possible disadvantage was the requirement for interaction 
with databases of motorbike registrations. With a single 
CNN network, Narong et al. [6] were able to recognize 
motorcycles and riders with an accuracy of 85.19%. Even 
while it made processing easier, the low accuracy required 
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work. Dasgupta et al. [7] achieved a 96.23% accuracy rate 
in helmet recognition using CNN and YOLOv3. Although 
it fared better than other CNN architectures, one 
drawback was that it required two stages of processing for 
detection. 

For helmet detection, Singh et al. [8] investigated 
a number of machine learning techniques, such as CNNs 
and k-nearest neighbour. Their method not only detected 
helmets but also included number plate detection for legal 
cases, with an astounding accuracy of 99.2%. But the use 
of surveillance to ensure helmet compliance has drawn 
criticism. In order to identify helmet usage, Shine et al. 
[9] used a modified CNN to analyse traffic footage.
Limitations were observed in the continuous monitoring
throughout the driver's trip, even with a high accuracy of
96.98%. With an accuracy of 80.6%, Lin et al. [10]
presented a CNN-based multi-task learning technique for
recognizing and tracking individual motorcycles. On the
other hand, it was determined that the current
methodology's practicality was only partially fulfilled.
Faster R-CNN was used by Afzal et al. [1] to detect
helmets with a 97.26% accuracy rate. Predictive analytics
and real-time data insights were provided; nonetheless,
issues with data collecting and possible misuse were
brought up. With pre-trained object detection algorithms,
Rohith et al. [11] achieved 94.70% accuracy for real-time
monitoring. Nonetheless, the accuracy attained was
constrained by available resources.

With an accuracy of 80.9%, Cheng et al. [12] 
presented SAS-YOLOv3-tiny for helmet detection. The 
system was found to be less accurate than heavyweight 
models, although having a higher processing speed. 
YOLOv5 was used by Jia et al. to identify motorcycles 
and helmets, with recall and precision rates of 97.2% and 
98.0%, respectively. However, it was noted that the multi-
stage operation presented issues in obtaining real-time 
speed.  YOLOv4-Darknet and YOLOv5s were used by 
Kanakaraj et al. [13] to detect license plates and helmets 
from traffic surveillance cameras. Although mAP of 
67.67% and precision of 51.06% were attained, one 
constraint identified was the use of distinct procedures for 
license plate and helmet detection.  

Yogameena et al. achieved a moderate accuracy 
of 79% by using GMM for ground labelling and Faster-
RCNN for detection. It was understood that obtaining 
high accuracy presents challenges. Achieving an accuracy 
of 94.23%, Shuai et al. [14] used UAV aerial photography 
with LMNet and RT3DsAM. Although it is inexpensive 
and provides mobility, questions have been raised about 
the resilience and accuracy of helmet detection. With a 
deep learning model based on ResNet50, papers [14-15] 
successfully detected helmets. But the poor precision 
highlighted the areas that needed work. 

The aforementioned results highlight the 
continuous endeavours to improve automated helmet 
identification systems and tackle obstacles related to 
practical implementation. 

3. Motivation and Contributions

The paper provides a novel helmet identification method 
based on the use of a specially curated dataset that covers 
a wide range of real-world scenarios. Our methodology 
places a strong emphasis on creating a comprehensive 
dataset specifically designed for helmet identification 
tasks, in contrast to traditional approaches that rely on 
general datasets. This bespoke dataset of 1000 images 
covers a broad range of circumstances, such as differences 
in the size, colour, illumination, and ambient settings of 
helmets that are used on highways. We hope to increase 
detection performance, strengthen model generalization, 
and guarantee the practicality of our helmet detection 
system by utilizing this unique dataset. The development 
of this dataset also benefits the larger research community 
by offering an invaluable tool for evaluating, contrasting, 
and improving helmet detection techniques and 
algorithms. 

The paper provides a novel multiscale feature 
extraction strategy that uses the Single-level Discrete 2D 
Wavelet Transform (dwt2) to break down images into 
various analytical scales, thus offering a comprehensive 
way to analyze images. By applying the dwt2, images can 
be broken down into a hierarchy of spatial frequencies, 
which allows for the capture of both fine and coarse 
features found in the original image. Our model can 
identify and evaluate patterns at various granularities 
thanks to this multiscale decomposition, which efficiently 
captures intricate visual information that might not be 
seen at a single scale. In particular, four different modes 
exist for segmenting a single image: approximation, 
horizontal detail, vertical detail and diagonal detail after 
feeding the segmented images into a multiscale deep 
CNN model, it is cascaded with an LSTM network for 
further processing in the image segmentation process. Our 
approach is well-suited for a variety of computer vision 
applications because it achieves higher performance in 
tasks like object identification, classification, and 
segmentation by integrating multiscale representation into 
our model. 

Our customized CNN architecture is designed 
with helmet identification in mind, adding domain-
specific improvements and heuristics to standard CNN 
architectures. We enhance the model's capability to 
precisely identify helmets in a variety of settings and 
circumstances by tailoring the architecture to the 
particular difficulties related to helmet recognition in 
practical contexts. With the help of this customized 
strategy, the model's discriminative ability is improved, 
allowing it to reliably and precisely discern helmets from 
other objects and background features. 

Furthermore, the architecture is designed to 
manage the intricacies involved in helmet identification 
duties, including changes in the appearance, position, and 
occlusion of the helmet. We improve the model's 
resilience and performance in demanding real-world 
scenarios by customizing the CNN architecture to meet 
these unique needs. This eventually increases the model's 
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efficacy in guaranteeing rider safety through precise 
helmet recognition. 

In the field of camera-captured picture helmet 
detection, this work presents two unique methods. 
Important findings from this study include:  

The creation of a novel cascaded CNN-LSTM 
model with mode extraction that makes use of dwt2 and is 
intended to identify helmets in a variety of situations. 
Extracting channels or sub-bands from camera-captured 
pictures using a fixed boundary-based Single-level dwt2 
filter bank to enable effective processing. By utilizing 
dwt2's multiscale decomposition capabilities, our 
approach successfully manages partial occlusion. The 
method allows for the capture of fine-grained features by 
dividing images into approximation, horizontal, vertical, 
and diagonal detail sub-bands. This makes it possible for 
our system to identify helmets even when certain 
elements of them are obscured by the surrounding. On the 
other hand, earlier techniques usually depend on whole-
image processing, which often overlooks critical features 
under occlusion. 

Helmets come in a wide range of sizes, colours, 
shapes, and designs, further complicated by varying 
lighting conditions and rider postures. The multiscale 
analysis provided by dwt2 enhances the model’s ability to 
capture subtle variations in texture and structure, making 
it more robust across diverse real-world scenarios. This 
attention to fine-scale variations helps the model better 
adapt to the complexity of different helmet types and 
conditions that other methods might miss.  

Implementation of a custom CNN architecture 
that has been created to accommodate the complexities of 
helmet recognition in camera-captured images. By pre-
processing images through hierarchical spatial 
frequencies, dwt2 enriches the feature extraction process 
of the CNN, providing more detailed and robust input. 
When coupled with the temporal context from LSTM, the 
model effectively captures both spatial and temporal 
variations, improving performance for dynamic and static 
helmet-use detection scenarios. Previous methods may 
have combined CNN and LSTM architectures, but 
without the multiscale decomposition offered by dwt2, 
they are less equipped to address the intricate variability 
seen in real-world datasets. Using CNN and LSTM 
architectures at different scales in concert to recognize 
helmets in a variety of camera-captured settings.  

4. Dataset

A thorough data gathering and pre-processing approach 
was used for the helmet detection model. The self-curated 
dataset featured two main categories: pictures of people 
with helmets and pictures of people without them. Using 
cameras to take pictures and record videos, the data was 
collected. The videos were then divided into individual 
frames to create the dataset. In the instance of the 
customized CNN model, a total of 1000 images were used 
for training and assessment. To guarantee thorough 

coverage, a range of scenarios and conditions were 
included in these photographs. Similarly, a dataset of 
1000 images was used for the cascaded deep-scale CNN-
LSTM network. The dataset was carefully pre-processed 
to improve its quality and guarantee consistency between 
samples. 

Our methodology places a strong emphasis on 
creating a comprehensive dataset specifically designed for 
helmet identification tasks, in contrast to traditional 
approaches that rely on general datasets. This bespoke 
dataset of 1000 images for Tailor-made CNN and 1000 
images for Multiscale Deep CNN cascaded LSTM covers 
a broad range of circumstances, such as differences in the 
size, colour, illumination, and ambient settings of helmets 
that are used on highways. We have used this dataset to 
increase detection performance, strengthen model 
generalization, and guarantee the practicality of our 
helmet detection system by utilizing this unique dataset. 
The development of this dataset also benefits the larger 
research community by offering an invaluable tool for 
evaluating, contrasting, and improving helmet detection 
techniques and algorithms. This stable dataset makes sure 
that the various classes are distributed uniformly, which is 
easier to train and test the developed model for helmet 
identification. The sample images from the dataset is 
showed in Fig. 1. 

(a) (b) (c) (d)

Figure 1. Images from the curated dataset 
containing people with or without helmet: (a) Without 

Helmet, (b) Without Helmet, (c) With Helmet, (d) 
With Helmet 

5. Proposed Approach

The proposed methodology’s experimentation process is 
described in Fig. 2 was applied to a dataset 1000 images 
that were taken in order to identify helmet wear among 
two-wheeler riders. The main goal of the implementation 
of this strategy was to increase road safety by enforcing 
laws pertaining to helmet wear. This dataset ensures 
thorough coverage of potential situations by incorporating 
a variety of real-world scenarios, such as differences in 
helmet size, colour, and lighting conditions. Two different 
approaches were put out to help with precise detection: 
one made use of a Multiscale Deep CNN cascaded LSTM 
framework, while the other made use of a custom CNN 
model. Using dwt2, the Multiscale Deep CNN 
architecture first extracts modes from the images, 
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breaking down the original images into four categories to 
decompose the original images: approximation, horizontal 
detail, vertical detail, and diagonal detail images. In 
particular, these four different modes exist for segmenting 
a single image after feeding the segmented images into a 
multiscale deep CNN model, it is cascaded with an LSTM 
network for further processing in the image segmentation 
process using 5-Fold Cross-Validation (CV).  

Overall, the customized CNN model and the 
cascaded deep-scale CNN-LSTM network were trained 
and evaluated using the helmet dataset that the author had 
carefully selected. The dataset made it possible to 
construct precise and dependable models for helmet 
detection in two-wheeler riders by combining a wide 
variety of images and scenarios, which improved road 
safety measures. 

Figure 2. Block diagram of the experimentation 

process 

5.1 Utilizing Discrete Wavelet Transform 
for Image Decomposition and Mode 
Generation 

The main elements and processes of the suggested helmet 
detection model is shown in Fig. 3. Using dwt2, the image 
is first broken down into four modes: approximation, 
diagonal, horizontal, and vertical. These modes are then 
carefully selected to serve as inputs for the multiscale 
deep CNN model, which is then combined with an LSTM 
network. This combination makes it easier to analyse and 
categorize helmet presence in a variety of real-world 
situations. 

Figure 3. Flow-diagram illustrating the proposed 

method for helmet detection. 

A flexible technique for image processing, the 
dwt2 can be used for feature extraction, denoising, and 
picture compression. With this transformation, an image 
is divided into various frequency components, each 
represented by a collection of sub-bands. The dwt2 
function is used to do the single-level 2-D wavelet 
decomposition is depicted in Fig. 4. Specifically designed 
wavelets or filters are used in this decomposition. The 
approximation coefficients matrix and the matrices 
for the horizontal , vertical  and 
diagonal features are obtained by applying wavelet 
decomposition to the input matrix X. The two-
dimensional wavelet decomposition is carried out using 
the function 
which yields the previously indicated matrices. The low-
pass filter (LPF) and high-pass filter (HPF) are used in 
this procedure, and their lengths must be comparable for 
optimal performance. During the decomposition process, 
these filters are essential in distinguishing the frequency 
components. We initiate the process with an input image 
of dimensions and execute wavelet decomposition 
by applying both a low-pass filter (LPF) and a high-pass 
filter (HPF) to the rows of the image. These filters serve 
to divide the input data is into two components: one 
component contains low-frequency information while the 
other encapsulates high-frequency information. 
Subsequently, we repeat the application of the LPF and 
HPF to the columns of the image, generating two 
additional columns. The resulting sub-bands are 
approximation, horizontal detail, vertical detail, and 
diagonal detail shown in Fig. 5. This decomposition 
effectively dissects the image into its constituent 
frequency components. 
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Figure 4. Representation of the Single-Level 2-D 

Wavelet Decomposition 

Without Helmet With Helmet 

(a) 

(b) 

(c) 

(d) 

Figure 5. Sample representation of various modes 

of the images produced by dwt2 include: (a) 

Approximation, (b) Horizontal Detail, (c) Vertical 

Detail and (d) Diagonal Detail. 

5.2 Multi-scale deep CNN cascaded 
LSTM  

In the field of helmet identification systems, several 
approaches have been investigated to reliably identify 
whether or not helmets are present in pictures. These 
methods frequently rely on advanced deep learning 
models designed specifically to handle and evaluate visual 
data. Here, a Multi-Scale Deep CNN cascaded with an 
LSTM network shown in Fig. 6 is used as the deep model 
for helmet identification. LSTM networks are known for 
their ability to extract complex characteristics from 
images and capture temporal relationships.  

The Convolutional layer, which is central to the 
CNN design, handles the majority of the processing 
required for the analysis of visual data. Through the 
utilization of this base layer, the model is able to 
recognize patterns and characteristics that indicate the 
presence or absence of a helmet. A unique classification 
system is developed utilizing a dataset of 1000 photos, 
each of which shows two-wheeler riders in a variety of 
real-world circumstances, in order to establish a strong 
helmet identification model. The collection of helmet 
sizes, colors, and lighting conditions that make up this 
dataset have been carefully chosen to reflect a wide range 
of possible roadside circumstances. The dataset is split 
using both 5-Fold Cross-Validation (CV) and Hold-out 
Validation, ensuring robust evaluation. During training, 
the model processes input images through 12 
convolutional layers, each applying ReLU activation and 
batch normalization to stabilize learning. Max-pooling 
layers reduce spatial dimensions while preserving 
essential features. Extracted features are then passed to 
LSTM layers to capture temporal dependencies. The fully 
connected layers refine the features before classification is 
performed using a Softmax output layer. The model is 
trained for 25 epochs using the Adam optimizer with a 
learning rate of 0.001, a batch size of 64, and Sparse 
Categorical Cross-Entropy as the loss function. 
Regularization techniques such as dropout (set at 0.2) help 
prevent overfitting. The optimization process involves 
computing classification errors, backpropagating 
gradients, and updating weights iteratively. Model 
performance is assessed using accuracy, precision, recall, 
F1-score, and a confusion matrix, while accuracy and loss 
curves are monitored throughout training to detect 
overfitting or underfitting. 

Every image in the suggested CNN-LSTM 
model is subjected to multiscale processing, with various 
convolution layers tasked with examining various facets 
of the input data. In particular, the CNN architecture 
consists of 12 layers, each of which is capable of handling 
the subtleties of the input images on its own. The model 
architecture is divided into several blocks, each of which 
consists of the following layers: dropout, max-pooling, 
batch normalization, input layer, and convolution layer. 
By applying these blocks to the input data in a sequential 
manner, it is possible to extract pertinent features at 
different processing stages. In order to capture temporal 
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dependencies in the data and enable the model to evaluate 
image sequences and find patterns across time, the LSTM 
network is integrated into the CNN architecture. The 
model's capacity to precisely identify helmet usage in 
two-wheeler riders across a variety of real-world settings 
is improved by this cascading architecture. The 
computation of the feature map for the ith convolutional 
layer is performed as follows. 

(1) 

The 2D kernel is convolved with the feature 
map from the previous layer to produce the output 
feature map of the ith convolutional layer. Batch 
normalization and ReLU activation are then applied to 
normalize inputs and speed up training. The output of Eq. 
(1) is transformed into the desired format by batch
normalization (BN) calculation, guaranteeing
standardized inputs and promoting effective training.

(2) 

Here, is the updated value of each 
individual component; is the average value across 
batch elements; and is the standard deviation of the 
batch, which reflects its variability. The dropout layer in 
the proposed multiscale deep CNN comes after batch 
normalization, with the goal of preserving behaviour 
variety and avoiding overfitting by decorrelation of 
weights and preventing neuron convergence. The pooling 
layer evaluates the feature map following the dropout 
layer. 

]       (3) 

The cyclic connections between units of the 
recurrent neural network (RNN) enable it to capture 
temporal dependencies well. A variation that improves 
memory retention is the LSTM, which has input, output, 
and forget gates. After extraction, features are processed 
using 16 units of LSTM, then reshaped and dropped out 
by 0.2. Reshaped data then passes through two thick 
layers activated by ReLU, an LSTM, and a Softmax 
output layer. With this architecture, helmets can be 
detected with great accuracy by efficiently analyzing 
temporal fluctuations. 

Figure 6. Proposed Multi-Scale Deep CNN 
cascaded LSTM architecture developed for the 

detection of helmet. 

To maximize efficacy and assess robustness, the 
suggested model is trained over a span of 25 epochs using 
5-Fold CV and Hold-out CV. Table 1 lists all of the deep
CNN model's hyper-parameters. Evaluation includes
confusion matrix-derived metrics such as accuracy,
precision, recall, and F1-score to ensure a comprehensive
comparison of model performances over 25 epochs using
both validation procedures. This thorough analysis
ensures a thorough evaluation of the model's
effectiveness.

In this work, we focused on helmet detection by 
performing binary classification tasks on an image 
dataset. Depending on the particular classes, this 
classification method has different benefits and 
drawbacks. Positive cases for helmet detection are those 
that are accurately classified as wearing a helmet, and 
negative cases are those that don't. True Positive (TP) and 
True Negative (TN) denote occasions where a helmet was 
correctly identified, and where one was not, respectively. 
On the other hand, False Positive (FP) and False Negative 
(FN) indicate cases where the helmet was incorrectly 
identified and those where it was not. Additionally, we 
assessed the binary classification into two groups: those 
wearing helmets and those not. In this instance, cases that 
are affirmative have helmets on, whereas examples that 
are negative don't. TP and TN denote precisely recognized 
instances of helmets and absence of helmets, respectively, 
whereas FP and FN indicate misidentified instances.  
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Table 1. The hyper-parameters utilized in the 
proposed architecture of the Multi-Scale Deep CNN 

cascaded with LSTM. 

Hyperparameters Values for dataset 
With Helmet 500 

Without Helmet 500 
Learning rate 0.001 
Batch size 64 
Epochs 25 
Optimizer Adam 
Loss function Sparse categorical cross-

entropy 

Tailor-made CNN Implementation 
The goal of implementing helmet detection with a 
customized CNN model is to create a CNN architecture 
that can reliably determine whether or not helmets are 
present in Fig. 7. The CNN model extracts hierarchical 
information from the input images by first using many 
convolutional layers, which are then followed by max-
pooling layers. Fully connected layers are then used to 
classify data according to the features that were extracted.  

Figure 7. Proposed Tailor-made CNN architecture 
developed for the detection of helmet 

One way to sum up the general architecture is as follows:  
Input Layer: The input shape (640, 640, 3) is an RGB 
picture with 640 × 640 pixel size.  

Convolution Layer: To provide non-linearity, three 
convolutional layers are used, each followed by an 
activation function that uses ReLUs. In order to capture 
more complicated characteristics, the number of filters in 
the convolutional layers continuously rises.  

Sizes of filters: The symbol (3, 3) denotes a 3 by 3 filter 
window.  

Maximum Pooling Layers: A max-pooling layer is 
employed to reduce the dimensionality of the feature 
maps through down sampling and lower dimensionality 
after each convolutional layer. The window size used for 
the max-pooling procedure is (2, 2). 

Layer Flattening: To feed into the fully connected layers, 
the output of the last convolutional layer is flattened.  
Completely Networked Layers: There are two dense 
(completely linked) layers used; the first layer has 512 
units and is activated by the ReLU function. A single 
neuron employing a sigmoid activation function within 
the ultimate output layer generates a binary signal that 
indicates whether or not a helmet is present.  

The convolution technique is essential to CNNs 
in order to extract features from the input data. In order to 
create feature maps, filters—also referred to as kernels—
are applied to the input data. The input volume, filters, 
bias terms, and output feature maps are the essential 
elements of the convolution process. 

Input Volume: Let's write for the input volume, 
where denotes the preceding layer. Activation maps, 
also known as feature maps, from the preceding layer 
make up this input volume. Each map represents a distinct 
feature or component of the input data. 

Filters: Feature maps are generated by convolving a set of 
learnable parameters with the input volume, denoted as 

. Different patterns or features found in the input data 
are captured by each filter. The height, width, and depth 
of filters are defined by these dimensions, which 
correspond to the depth of the input volume.  

Bias Terms: Each convolutional layer normally contains 
bias terms, shown by , in addition to filters. In order to 
help the model, learn the right output, these biases are 
scalar values applied to each element of the feature maps. 

Convolution Equation: For a given layer l, the 
convolution operation computes the output feature map 

. This has the following mathematical representation: 

    (4) 

Where, 

 is the activation at position (i,j) in the kth  feature 
map of layer l. 

 is the bias term corresponding to the kth  filter in layer 
l. 

 is the number of channels (depth) in the input 
volume. 

and are the height and width of the filters, 
respectively. 

 is the activation at position (i+r, j+s) in the cth 
channel of the input volume. 
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 is the weight parameter connecting the cth 
channel of the input volume to the kth filter at position 
(r,s). 

Table 2. The hyper-parameters utilized in the 
proposed Tailor-made CNN model 

Hyper-parameters Values for dataset 
With helmet instances 500 
Without helmet instances 500 
Learning rate 0.001 
Batch size 32 
Epochs 5 
Optimizer Adam 
Loss function Binary Cross-Entropy 

This CNN model is made to efficiently extract 
information from helmet photos and forecast whether or 
not a helmet will be present. The model strives for stable 
performance and high accuracy in real-world helmet 
recognition settings by fine-tuning its parameters and 
refining its architecture. Table 2 depicts the hyper 
parameters used for the proposed Tailor made CNN 
model. In our model, we have added a Multi-Scale Deep 
CNN cascaded with LSTM, which brings about 
significant computational demands, especially for training 
and real-time inference. Due to the deep CNN architecture 
that extracts multi-scale features, along with the 
sequential processing capability of LSTM, the model 
requires substantial GPU resources for training. This 
typically includes GPUs with at least 12GB of VRAM to 
accommodate the large number of parameters and 
intermediate activations. Training times can range from 
hours to days depending on the dataset size and the 
number of epochs. Additionally, the memory 
requirements for storing both CNN and LSTM 
components can be quite high. While TensorFlow Lite or 
model quantization can help optimize the model for real-
time deployment on edge devices, achieving real-time 
performance without compromising accuracy remains 
challenging due to the complexity of the architecture. 

In contrast, the simpler Tailor-made CNN model 
demands far fewer resources. Since it lacks the LSTM 
component and has a less complex architecture, the model 
requires less memory and can be trained more quickly, 
typically within a few hours on a standard GPU or even a 
powerful CPU. The real-time inference for this model is 
much more feasible, even on devices with limited 
computational capacity such as mobile phones or 
embedded systems. However, the trade-off comes in the 
form of reduced accuracy, as the model is less capable of 
handling complex patterns and environmental variations 
compared to the Multi-Scale Deep CNN + LSTM model. 
Thus, while the Tailor-made CNN model excels in speed 
and efficiency, it falls short in robustness and accuracy 
when compared to more sophisticated approaches like the 
one with LSTM. 

6. Result and Discussion

The outcomes of our suggested Multi-Scale Deep CNN 
model with LSTM which incorporates modes from the 
dwt2 image decomposition as well as the Tailor-made 
CNN model are shown in this section. The inclusion of 
dwt2 decomposition appears to have contributed to better 
extraction of meaningful features from the images, 
improving classification performance. The Multi-Scale 
Deep CNN, integrated with LSTM for temporal sequence 
learning, offers a significant advantage in learning 
complex spatiotemporal features, crucial for accurate 
helmet detection in real-world scenarios. Plots of 
accuracy and loss against epochs for the Multi-Scale Deep 
CNN cascaded with LSTM model and the Tailor-made 
CNN model, respectively, are shown in Figures 8 and 9. 
Remarkably, by utilizing several mode combinations, the 
Multi-Scale Deep CNN model in conjunction with LSTM 
was able to attain remarkable training accuracies of 
95.99% and 99.20%, respectively, while utilizing 5-Fold 
CV and Hold-out CV approaches. This demonstrates how 
reliable and efficient our technology is at correctly 
identifying helmet wear in a variety of settings. By 
comparison, the accuracy of the Tailor-made CNN 
approach, which used our curated collection of photos, 
was significantly lower. In particular, it obtained accuracy 
of 54.86% and 55.26% with 5-Fold CV and Hold-out CV 
techniques, in that order.  

Although this method served as the basis for our 
investigation, the notable difference in performance 
emphasizes the superiority of the Multi-Scale Deep CNN 
cascaded with LSTM model, especially with the addition 
of dwt2 image decomposition. The use of dwt2 
decomposition helps break down images into multiple 
frequency components, which is essential for capturing 
both low and high-frequency features. This is particularly 
useful for identifying helmets in diverse environmental 
conditions, where different frequency patterns (such as 
lighting changes or occlusions) might be present. The 
remarkable accuracy improvements suggest that the 
DWT2 method offers a way to extract relevant patterns 
that simpler CNN models fail to capture. This strengthens 
the Multi-Scale Deep CNN model's ability to generalize 
well across various image conditions. These findings 
highlight how well our suggested method works to 
improve the accuracy of helmet identification, which 
advances the development of road safety protocols for 
riders of two-wheelers.  
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(a) 

(b) 

(b) 

(c) 

(d) 

(d) 

Figure 8. (a) Accuracy versus epochs graph using 
the Deep Multi-Scale CNN cascaded LSTM network 

for training and validation data of the results 
obtained using 5-Fold CV. (b) Loss versus epochs 
graph using the Deep Multi-Scale CNN cascaded 

LSTM network for training and validation data of the 
results obtained using 5-Fold CV. (c) Accuracy 

versus epochs graph using the Deep Multi-Scale 
CNN cascaded LSTM network for training and 

validation data of the results obtained using Hold-out 
CV. (d) Accuracy versus epochs graph using the

Deep Multi-Scale CNN cascaded LSTM network for 
training and validation data of the results obtained 

using Hold-out CV. 

(a) (b) 

(c) (d) 

Figure 9. (a) Accuracy versus epochs graphs using 
the Tailor-made CNN model for training and 

validation data of the results obtained using 5-Fold 
CV. (b) Loss versus epoch graphs using the Tailor-
made CNN model for training and validation data of
the results obtained using 5-Fold CV. (c) Accuracy
versus epochs graphs using the Tailor-made CNN
model for training and validation data of the results
obtained using Hold-out CV. (d) Loss versus epoch

graphs using the Tailor-made CNN model for 
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training and validation data of the results obtained 
using Hold-out CV. 

The True Positive Rate and False Positive Rate 
pertaining to the suggested Multi-Scale Deep CNN 
cascaded model with LSTM and Tailor-made CNN model 
are shown on the Receiver Operating Characteristic 
(ROC) curve in Figure 10. Alternatively, Figure 11 
illustrates the confusion matrix plots, offering a visual 
depiction of the evaluation of the model's performance 
and guarantee originality devoid of plagiarism. 

The above accuracy rates demonstrate how well 
the model was able to classify the two classes, 
guaranteeing uniqueness. With a 5-Fold CV accuracy of 
0.992 for Multi-Scale Deep CNN cascaded LSTM and a 
custom CNN model of 0.5486. Performance metrics that 
offer a thorough understanding of the model's 
performance are displayed in Table 3 and include testing 
accuracy (ACC), precision (PRE), recall or sensitivity 
(REC), and the F1-score. Figure 12 shows the final results 
from this architecture. 

(a) (b) 

Figure 10. ROC curve for the proposed model for 
training and validation data of the results obtained: 
(a) deep multi-scale CNN cascaded LSTM network

(b) the Tailor-made CNN model

(a) (b) 

Figure 11. Confusion Matrix: (a) deep multi-scale 
CNN cascaded LSTM network (b) the Tailor-made 

CNN model 

(a) 

(b) 
Figure 12. Final output of the proposed model: (a) 

With Helmet (b) Without Helmet 

As shown in Table 3 the performance of the 
Multi-Scale Deep CNN cascaded LSTM exceeds Tailor-
made CNN model. Our goal is to improve road safety by 
creating a reliable model for identifying helmet use 
among two-wheeler riders. As explained, unique datasets 
were gathered designed especially for helmet detection. 
Because of this, the datasets used for the comparison 
analysis are specific to the suggested models and not 
found in other methods. A comparison summary of the 
suggested approach and earlier methods for helmet 
detection in two-wheeler riders may be seen in Table 4. 

The results clearly emphasize the Multi-Scale 
Deep CNN cascaded with LSTM model as the superior 
approach for helmet detection, with its higher accuracy, 
robustness to environmental changes, and generalization 
capabilities. The inclusion of DWT2 decomposition and 
multi-scale learning ensures the model can better 
understand complex patterns, which is essential for real-
world applications. This model significantly contributes to 
improving road safety for two-wheeler riders, 
demonstrating its potential in practical implementations 
for helmet detection. State-of-the-art helmet detection 
systems, such as those by [3] and [4], typically use CNN-
based approaches, which provide high accuracy due to 
their ability to capture complex visual patterns. However, 
CNNs can be computationally intensive, making real-time 
detection challenging unless optimized, for instance, by 
using TensorFlow Lite or model quantization. [9] show 
that while hand-crafted features can offer faster 
processing speeds, CNNs generally outperform them in 
accuracy and robustness to environmental changes, as 
they are more adaptable to varied lighting and occlusions. 
Meanwhile, [12] leverage YOLOv3-Tiny, which balances 
accuracy and speed, making it more suitable for real-time 
applications, although it might struggle in extreme 
conditions without further adaptations. On the other hand, 
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[14] integrate residual transformers and spatial attention
mechanisms, enhancing both accuracy and the system's
ability to handle challenging environments. However,
these methods are typically more computationally
expensive, impacting processing speed unless optimized.
[1] and [5] adopt deep learning methods with CNNs,
achieving strong accuracy but requiring optimizations for 
speed and robustness. In summary, while CNNs and 
advanced architectures like YOLO and transformers offer 
the best accuracy and robustness, trade-offs with 
processing speed exist. Models optimized for real-time 
performance, such as SAS-YOLOv3-Tiny, excel in 
processing speed but might need enhancements to handle 
extreme environmental factors effectively. The table 
highlights important findings and highlights the unique 
benefits and contributions provided by the model, as well 
as its originality about previous approaches. 

Table 3. Classification performance of proposed 
multiscale deep CNN cascaded LSTM along with 

other built models. 

Proposed 
Model 

5-fold CV Hold-out CV 

ACC PRE REC F1 ACC PRE REC F1 

Multi-
scale 
deep 

CNN-
LSTM 

0.992 0.926 0.920 0.962 1.00 1.00 1.00 1.00 

Tailor-
made 
CNN 

0.548 0.548 1.00 0.708 0.553 0.551 1.00 0.710 

CNN-
LSTM 

0.898 0.995 0.995 0.995 0.990 0.980 0.990 0.990 

dwt2-
CNN 

0.904 1.00 1.00 1.00 0.519 0.270 0.520 0.356 

Table 4. Comparative analysis of current approache

s for the automated detection of helmets 

Ref. no. Method Accuracy 

Proposed Multiscale deep  CNN-

LSTM 

99.20% 

[4] Faster RCNN 97.6% 

[5] Inception v3 CNN 97.24% 

CNN 96.98% 

[10] CNN 80.6% 

[12] SAS YOLOv3 80.9% 

[13] YOLOv4 Darknet 67.67% 

[15] ResNet50 72.8% 

[1] Faster R-CNN 97.26% 

[6] Simple CNN 85.19% 

The Multi-Scale Deep CNN-LSTM model, due 
to its more complex architecture with multi-scale feature 
extraction and sequential learning via LSTM, requires 
significant computational resources for both training and 
inference. Training this model would demand powerful 
GPUs with ample memory (e.g., 12GB VRAM) and 
considerable time, often spanning hours to days 
depending on dataset size and hardware. The inclusion of 
LSTM adds complexity, increasing memory usage due to 
maintaining sequence states, which makes real-time 
inference challenging unless the model is optimized 
through techniques like model quantization or using 
frameworks like TensorFlow Lite for edge devices. 
Despite these optimizations, achieving real-time 
performance could still be difficult without trading off 
some accuracy or processing speed. 

On the other hand, the Tailor-made CNN model 
is much simpler and thus less computationally 
demanding. It requires fewer parameters and lacks the 
sequential learning of LSTM, making it quicker to train 
and more suitable for real-time inference, even on less 
powerful devices. With reduced memory requirements, 
this model can run efficiently on systems with lower 
computational capabilities. However, the trade-off for 
faster processing is lower accuracy, as it does not capture 
the complex spatial and temporal features that the multi-
scale, LSTM-enhanced CNN model can extract. 
Therefore, while the Tailor-made CNN can deliver faster 
results, it may not perform as robustly across varied and 
complex real-world scenarios. 

7. Conclusion

In conclusion, the goal of our study was to create a 
reliable model for helmet identification in order to 
improve road safety, especially for riders of two wheels. 
We have successfully developed a deep learning-based 
model that can reliably recognize helmet usage in a 
variety of real-world settings, after conducting a thorough 
investigation and experimentation. The development of an 
extensive dataset especially designed for helmet detection 
was a significant success. This dataset allowed for 
efficient training and assessment of our model's 
performance in various environmental circumstances 
because it included a wide range of helmet sizes, colors, 
and lighting conditions. We achieved promising results 
with our technique, which combines a Multi-Scale Deep 
CNN architecture with an LSTM network. We obtained 
99.20% accuracy using 5-Fold Cross-Validation (CV) and 
95.99% accuracy using Hold-out CV. Furthermore, our 
first method with a customized CNN model achieved 
54.86% and 55.26% accuracy with 5-Fold CV and Hold-
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out CV, respectively. We contrasted our suggested model 
with other methods to confirm its superiority. In 
particular, utilizing 5-Fold CV and Hold-out CV, the 
CNN-LSTM model obtained 89.80% and 99.00% 
accuracy, respectively, while the dwt2-LSTM model 
obtained 90.40% and 51.90% accuracy, respectively. 
These findings demonstrate how well our approach works 
to increase the accuracy of helmet identification, which 
benefits motorcyclists' safety on the road. 

Furthermore, our research provided new 
perspectives on the difficulties and nuances involved in 
actual helmet detection situations. We also identified 
other possible uses for our approach than standalone 
detection, such incorporating it into electric cars to 
enforce helmet use laws for the safety of riders. There are 
numerous opportunities for more work and advancement 
in the future. First off, improving the model's 
functionality in difficult lighting and weather scenarios 
could make it more useful in real-world scenarios. 
Furthermore, a viable avenue for additional study and 
development is the integration of the helmet recognition 
system into electric vehicles to enforce automatic start-
stop functionality depending on helmet presence.  
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