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Abstract

This paper explores the use of the Firefly Algorithm (FA) and its binary variant (BFA) in optimizing analog
circuit component sizing, specifically as a case study for a two-stage operational amplifier (op-amp) designed
with a 65nm CMOS process. Recognizing the limitations of traditional optimization approaches in handling
complex analog design requirements, this study implements both FA and BFA to enhance convergence
speed and accuracy within multi-dimensional search spaces. The Python-Spectre framework in this paper
facilitates automatic, iterative simulation and data collection, driving the optimization process. Through
extensive benchmarking, the BFA outperformed traditional FA, balancing exploration and exploitation while
achieving superior design outcomes across key parameters such as voltage gain, phase margin, and unity-gain
bandwidth. Comparative analysis with existing optimization methods, including Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA), underscores the efficiency and accuracy of BFA in optimizing circuit
metrics, particularly in power-constrained environments. This study demonstrates the potential of swarm
intelligence in advancing automatic analog design and establishes a foundation for future enhancements in
analog circuit automation.
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1. Introduction
The rapid advancements in Very-Large-Scale
Integration (VLSI) technology have paved the way
for the full integration of analog, digital, and mixed-
signal circuits on a single chip. This high level of
integration has led to the development of numerous
Electronic Design Automation (EDA) tools designed to
optimize the use of these technologies and minimize
time-to-market. However, despite significant progress
in digital design automation, the automation of analog
design re-mains considerably challenging due to the
inherent complexity of analog circuits [1, 2]. The
automation of analog design is essential as it ensures
optimal solutions for critical design criteria such as
gain, power, bandwidth, and area. The analog design
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process typically involves three main optimization
directions: circuit structure selection, parameter sizing,
and layout optimization [2–4].
Analog circuit component sizing is a monotonous,
time-consuming, and iterative process. This complexity
is due to the large number of parameters and the often-
unpredictable interactions between them. For complex
circuits with extensive search spaces, finding optimal
parameter values is one of the most labor-intensive
tasks for designers, posing a significant challenge in
the design process. Efficient and accurate sizing of
analog circuit components is crucial for achieving
high-performance designs and is a cornerstone of
automatic optimization efforts. Automatic optimization
methods for analog circuit component sizing can
be broadly classified into two categories: equation-
based and simulation-based approaches [4]. The
equation-based approach involves deriving polynomial
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or monomial equations that represent performance
parameters. While this method offers faster execution
times and higher assurance of global optimization,
it is labor-intensive and requires substantial effort
from designers, especially for complex circuits [5].
Additionally, the simplifications and approximations
needed for these equations can lead to significant
deviations from actual values, thus com-promising
model accuracy [4, 6]. In contrast, the simulation-based
approach utilizes real-time simulation data to optimize
objective functions and design constraints, providing
a more accurate and general exploration of the search
space [4]. The application of optimization algorithms in
analog circuit design not only simplifies the component
sizing process but also ensures adherence to initial
design constraints. In general, many metaheuristic
optimization algorithms have been widely applied
to address successfully complex and multi-objective
optimization problems and a variety of engineering
problems. However, in the field of analog circuit design,
there has been limited research and published work on
optimization algorithms. The few algorithms that have
been explored in this domain include Particle Swarm
Optimization (PSO) [7–9], Genetic Algorithm (GA)
[10–12]. PSO, a swarm intelligence-based algorithm,
has demonstrated effective-ness in optimizing CMOS
circuit parameters, enhancing performance while
reducing design time [7–9]. Similarly, the Genetic
Algorithm (GA), which simulates natural selection
processes, has been successfully employed to explore
optimal configurations in analog circuit design,
particularly in problems that require balancing
conflicting objectives such as distortion and power
consumption [10, 11].
The key research question is whether, after the
development of new metaheuristic algorithms, there
remains a need to create even newer algorithms
specifically for analog circuit design or not. The no
free lunch (NFL) theorem [13] addresses this question
by stating that the success of an algorithm in solving
certain optimization problems does not guarantee
similar performance in other problems.
Motivated by this theorem, the author of this study aim
to develop a Firefly Algorithm (FA)-inspired automated
optimization framework, to develop FA’s modified
version in details, and to verify these versions’ efficacy
for analog circuit design.
Among existing optimization algorithms, the FA,
a notable swarm intelligence method, has shown
remarkable efficiency in balancing exploration
and exploitation in the solution space, making it
particularly effective for optimizing design variables.
The FA inspired by the flashing behavior of fireflies for
communication and attraction, has been successfully
applied to a variety of engineering and optimization
problems. In particular, FA has demonstrated its

efficacy in complex optimization tasks such as feature
selection, image processing, and wireless sensor
network optimization. However, in analog circuit
design, FA-inspired optimization method has not been
demonstrated its efficiency. This study specifically
focuses on applying the FA to optimize analog circuit
parameters using the figure of merit (FoM), with a case
study of a two-stage operational amplifier (op-amp)
circuit.
Since the traditional FA might have slow converging
speed, this research also aims to develop a strategy
to improve FA’s exploration as well as exploitation,
thereby enhancing its overall convergence. The
mentioned novel method em-ploys binary sequence
representation for FA’s population, called the Binary
FA (BFA), in order to manipulate the algorithm’s
population update mechanism at a higher level of
detail and complexity.
The structure of this paper is organized as follows.
Section 2 introduces the concept of the FA and its
implementation with two approaches of traditional FA
and BFA. Section 3 details the optimization process,
including the proposed Python-Spectre model for
optimization with FoM as the objective function and
the satisfaction of design constraints. Section 4 applies
the theory to a case study of a two-stage op-amp circuit.
Section 5 presents simulation results and discussions,
followed by the conclusions in Section 6.

2. Firefly algorithm
The FA, proposed by Xin-She Yang [14, 15], is a notable
swarm intelligence algorithm inspired by the bio-
luminescent behavior of fireflies. It is designed to solve
global optimization problems by simulating the way
fireflies attract each other through their light intensity.
The algorithm operates on three ideal assumptions [14]:

• Fireflies are attracted to each other regardless of
gender because they are a unisex species.

• Attraction is proportional to their brightness, with
dimmer fireflies being attracted to brighter ones.
However, attraction decreases as the distance
between two fireflies increases. The brightest
firefly moves randomly.

• The brightness of a firefly is influenced or
determined by the value of the objective function.

To implement the FA effectively, two critical aspects
must be considered, namely the variation in light
intensity and the formulation of attractiveness. These
factors allow for the customization of the algorithm to
suit specific problems. In the standard FA, a firefly’s
light intensity, which represents potential solutions, is
proportional to the fitness function value. We observe
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that fireflies communicate through attractiveness,
allowing them to explore the search space via the
objective function. This method is more efficient than
a random search using a Gaussian distribution because
each firefly in the swarm explores the search space by
considering the results obtained by others, while still
applying their own random movements.

2.1. Traditional FA (FA)
Since the light intensity at a certain distance r from
the light source follows the inverse square law, the
attractiveness of a firefly decreases with its distance
from another firefly. This means that the light intensity
I decreases as the distance r increases according
to I ∝ 1/r2. Additionally, the atmosphere to absorb
light becomes weaker as the distance increases. These
combined factors limit the visibility of most fireflies
to a restricted distance, which implies that effective
communication only occurs among individuals in
proximity, leading to strong interactions among them.
The brightness of a firefly is typically proportional to
the objective function of the problem fobj , which can be
expressed as [15]

Ii ∝ fobj (xi) (1)

where Ii , xi denote the brightness and the position
corresponding to the ith firefly of the population. The
light intensity I(r) varies according to the inverse square
law as

I(r) =
IS
r2 (2)

where IS is the light intensity at the source, and r is the
distance from the considered point to the light source.
In an environment with a fixed light absorption
coefficient γ , the light intensity I varies with distance
r according to the formula

I(r) = I0e
−γr (3)

To avoid the undefined singularity at r = 0 in
the expression Is/r

2, the light intensity can be
approximately calculated in the form of a Gaussian as
[15]

I(r) = I0e
−γr2

(4)

Additionally, the attractiveness of a firefly is perceived
by other fireflies. A firefly with lower brightness will
be attracted to the one with higher brightness, and
each firefly at different positions will have its own
unique attractiveness value β. Since this attractiveness
also varies depending on distance, light intensity I
and attractiveness β are somewhat synonymous. While
intensity I is considered an absolute measure of light
emitted by a firefly, attractiveness β is a relative
measure of light needing to be seen and is evaluated by
other fireflies. Therefore, the attractiveness of a firefly
is proportional to the light intensity emitted by it and is

defined as [14, 16]

β = β0e
−γr2

(5)

where β0 is the attractiveness of the firefly at r = 0. In
equation (5), the distance r between the ith firefly at
position Xi and the jth firefly at position Xj is calculated
as [16]

rij = ∥Xi − Xj∥ =

√√√
d∑

k=1

(xik − x
j
k)2 (6)

where ∥.∥ is the symbol for distance in Descartes
coordinate, d is the dimension of the search space, xik , x

j
k

are the respective coordinate of the kth dimension of the
ith, jth firefly.
The movement of the ith individual when attracted by a
brighter jth individual is defined as [14]

Xt+1
i = Xt+1

i + β0e
−γr2

ij (Xt
j − X

t
i ) + αϵti (7)

where X
(
i t + 1) is the position of the ith firefly after

updating its position, Xt
i , X

t
j are the initial position of

the ith, jth firefly, α represents the coefficient affecting
the random motion of fireflies, ϵti represents a random
number following a normal distribution.
The movement of a firefly in equation (7) consists of
three parts: the first part is the current position of the ith

firefly, the second part on the right-hand side represents
the attraction of another firefly that is more attractive,
and the last part represents the random movement with
the coefficient ϵti .
The algorithm compares the attractiveness of the new
firefly position with the old one. Firefly positions can be
sequentially updated by comparing and updating each
pair of fireflies after each iteration. If the new position
generated is more attractive, the firefly will move to the
new position; otherwise, it will remain at its current
position.
Local search algorithms often face the risk of getting
trapped at a local optimum while the global optimum
lies outside the search scope. To address this issue,
randomness is often introduced into an algorithm
to allow it to jump out of such positions. Random
components can take various forms, such as simple
randomization by sampling randomly within the search
space or by taking random jumps. The movement
expression of a firefly in equation (8) individual
reflects a random step biased towards brighter firefly
individuals. In the case where the firefly individual has
the highest brightness intensity (β0 = 0), the expression
simplifies to a random movement step as

Xt+1
i = Xt+1

i + αϵti . (8)

In FA, fireflies interact with each other through their
attractiveness, allowing them to explore the search
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space via the objective function. This method is
more effective than random search following a normal
distribution because each individual in the swarm
explores their space based on the results obtained
by other individuals, while still applying their own
random movement steps.
According to the theory of FA, a firefly tends to be
attracted to other fireflies with higher attractiveness.
Therefore, this algorithm has a noticeable advantage,
namely automatic congregation. Fireflies may divide
the population and automatically congregate into
smaller groups because the attraction of nearby
individuals is stronger than those at a distance; thus,
one can expect each group of individuals to concentrate
around a local optimum. This second advantage
makes it particularly suitable for multi-objective
global optimization problems. The combination of
individual movement and position updates based on
brightness helps the algorithm balance exploration and
exploitation.
The pseudocode for traditional FA used in this study is
given in Algorithm 1 as follows.

Algorithm 1: Firefly Algorithm (FA)

1 Initialize an n-individual population, each firefly
has the representation Xn(t) = (xn1 , x

n
2 , ..., x

n
d )

where n = 1, 2, . . . , N and d is the dimension or
number of variables of each individual, xnm are
decimal values (m = 1, 2, ..., d);

2 Define the light absorption coefficient γ , the
number of generations gmax;

3 Define the objective function fobj (X) and
calculate the fitness values fobj (Xn) of each
firefly;

4 t ← 0;
5 while (t < gmax) do
6 for i = 1 : N do
7 for j = 1 : N do
8 if fobj (Xi)is more optimal thanfobj (Xj )

then
9 Move Xj closer to Xi based on

equation (7);
10 Move the best firefly X∗ randomly

based on (8);
11 Calculate the new fitness values of

each firefly;

12 t ← t + 1

13 return X*;

2.2. Binary FA (BFA)
Since the traditional FA might not overcome the
obstacle related to slow converging speed, this study

aims to develop a strategy to improve FA’s exploration
as well as exploitation, thereby enhancing its overall
convergence. The mentioned novel method employs
binary sequence representation for FA’s population,
called the Binary FA (BFA), in order to manipulate the
algorithm’s population update mechanism at a higher
level of detail and complexity.

2.3. Representation
Similar to the traditional FA, the population consists of
N fireflies. However, individual fireflies Xn (solutions)
are represented by d design variables, each represented
by a p-bit binary string. Xn(t) = (xn1 , x

n
2 , . . . , x

n
d ) where

n = 1, 2, . . . , N . The bit string (x⃗nm) ∈ 0, 1p represents
a design variable with m = 1, 2, . . . , d. Each design
variable’s corresponding real value is decoded from the
binary bit string as follows:

value = LB +
decimal

2m × (UB − LB) (9)

where decimal is the unsigned integer decoded from
the binary bit string, UB and LB are the upper and
lower bounds of the corresponding real-valued design
variable.

2.4. Distance between two fireflies
The distance between any two fireflies i and j
is determined by the Hamming distance, which
is the number of differing elements between their
permutations. The attractiveness of firefly Xj to firefly
Xi is given by the formula

β(rij ) = β0e
−γr2

ij (10)

where rij is the Hamming distance between fireflies Xi
and Xj . The theoretical value of the light absorption
coefficient γ is γ ∈ [0,∞].

2.5. Movement range of fireflies
xi = (1 − β(rij ))xi + β(rij )xj (11)

xi = xi + α(ϵ − 0.5) (12)

Any firefly moves in the search space in two steps. In the
first step, β(rij ) determines the movement of firefly Xi
towards firefly Xj as given by equation (7). In the next
step, α determines the random movement of firefly Xi
as given by equation (8).
The first step is called the β-step. From the equation,
it is evident that xi will equal xj with a probability
given by β(rij ); and xi will remain unchanged with a
probability given by (1 − β(rij )). The β-step procedure is
illustrated in Algorithm 2. The next α-step represents
the change in bit value for a specific design binary
variable. When comparing two fireflies Xi and Xj , α
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represents the probability that a specific design variable
of Xi will change. The number of variables (nvar ) change
their bit values depending on the Hamming distance
(rij ). Since the objective here is to minimize the distance
between firefly Xi and Xj , given that Xj is brighter than
Xi , then Xi moves towards Xj . The coefficient nvar =
α × rij and α must be small; otherwise, the Hamming
distance will increase between Xi and Xj instead of
decreasing.
Once the number of variables (nvar ) that need to change
is determined, we randomly select the variables to
change from Dvar . We select the number of bit (nB)
that will change in bit value, which depends on the
Hamming distance between a pair of design variables
rkij , where k ∈ Dvar . Similarly, we have nB = α × rkij . The
α-step procedure is illustrated in Algorithm 3.

Algorithm 2: FA’s β-step

1 Evaluate the objective function of firefly Xi and
Xj , fobj (Xi) and fobj (Xj );

2 if fobj (Xj )is more optimal thanfobj (Xi) then
3 Calculate the Hamming’s distance

rij = d(Xi , Xj );
4 Calculate the attractiveness using equation

(3);
5 for k = 1 : length(Xi) do
6 if xik = xjk then
7 x(new)ik = xjk ;

8 else
9 Generate a random number r ∈ (0, 1);

10 if r < β(rij ) then
11 x(new)ik = xjk ;

12 else
13 x(new)ik = xik ;

14 Move the best firefly X∗ randomly based on
(8);

15 Calculate the new fitness values of each
firefly;

16 return Xi(new);

3. Python-Spectre framework
To implement an optimization process driven by real-
time circuit simulation, it is essential to establish an
environment that integrates the optimization algorithm
with circuit simulation seamlessly.
In this study, Python is selected for implementing
the optimization algorithm due to its extensive library
ecosystem. The analog circuit design parameters are
simulated using the Spectre simulator from the
Cadence Virtuoso tool. Spectre’s Ocean scripting
language, which supports SKILL programming syntax,

Algorithm 3: FA’s α-step

1 Evaluate the objective function of firefly Xi and
Xj , fobj (Xi) and fobj (Xj );

2 if fobj (Xj ) is more optimal than fobj (Xi) then
3 Calculate the Hamming’s distance

rij = d(Xi , Xj );
4 Calculate nvar = α × rij ;
5 Generate randomly nvar pairs in Dvar , where

Dvar is the set of different pairs of design
variables between Xi and Xj ;

6 for k in (nvar pairs) do
7 Calculate the Hamming’s distance

rkij = d(xki , x
k
j );

8 Calculate nB = α × rkij ;
9 Generate randomly nB bit-pairs in Dbit,

where Dbit is the set of difference bit-pairs
between bit-pairs k;

10 for h in (nB bit pairs) do
11 Flip bit of Xi ;

12 return Xi(new);

Figure 1. Python-Spectre framework.

organizes simulation results into a format compatible
with optimization algorithms.
The interaction between Spectre and Python is as
follows: Python generates values for design variables
and passes them to Spectre via Ocean scripts. These
scripts automate the circuit simulations using the
provided values, and the results are then returned
to Python for further processing by the optimization
algorithm. This iterative process continues until the
termination condition for the optimization is met. The
interaction between Python and Spectre is illustrated in
Figure 1.

4. General problem of analog IC sizing and case
study of two-stage op-amp
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Figure 2. Two-stage op-amp.

4.1. General problem
The general problem of analog circuit component sizing
is defined as follows

Optimize F(X), X = (x1, x2, . . . , xd)

Subject to : Pk ≤ Sk , k = 1, ..., k

LBm ≤ xm ≤ UBm, m = 1, ..., N

(13)

where F(X) is the objective function (or cost function) of
the problem, F(x⃗) represented as a vector of a objectives
f1(X), f2(X), ..., fa(X) to be minimized or maximized
depending on the problem. For m = 1 case, it is a single-
objective optimization problem, and for m > 1 case, it is
a multi-objective optimization problem. The constraint
set is established by the circuit’s technical specifications
S⃗ to delineate acceptable performance conditions.
Performance conditions here can include initial circuit
setup constraints, MOSFET operation in saturation
region, or performance parameter constraints such as
voltage gain, bandwidth, etc. X is a multi-dimensional
vector of optimization variables, each dimension
bounded within a value range between minimum LBn
and maximum UBn limits. A solution X is considered
acceptable when all problem constraints are satisfied.
This way, the optimization method’s response will be an
acceptable solution X that creates an optimal value for
the function f (X) with f (X) representing the solution’s
performance or quality.

4.2. Case study: Two-stage op-amp
As shown in Figure 2, the two-stage op-amp with
Miller compensation capacitor consists of two stages:
a differential amplifier (OTA) and a common-source
(CS) amplifier stage. In this figure, suppose the
current running through the OTA stage is IREF and
the current running through the CS stage is k ×
IREF . Then, k ×W5/L5 = W4/L4 = W7/L7(L5 = L4 = L7)
(where Wi , Li are the width and length of MOSFET Mi
and k is a constant). Moreover, to ensure the symmetry
of the OTA stage, W0/L0 = W1/L1,W2/L2 = W3/L3. To
ensure normal operation of the op-amp, all MOSFETs

must operate in saturation mode. Additionally, a 30mV
margin for VGS and VOV voltages must be ensured for
potential applications.
In the analog circuit sizing optimization problem, the
FoM is often used as a quantitative measure to evaluate
the system’s performance, functioning similarly to the
objective function. The FoM function for comparing the
performance of the op-amp is given by [17, 18]:

FoM =
UGB × CL

Itotal
, (14)

where UGB is the unity gain-bandwidth product, CL is
the load capacitance at the output node and Itotal is the
total current of the op-amp.
Although equation (14) evaluates the efficiency of the
op-amp based on its unity gain-bandwidth product as
well as drivability of the load capacitance per unit
current, the phase margin of the op-amp is overlooked.
An op-amp with larger value for the FoM of equation
(14) is considered with better quality; however, this
deteriorates the op-amp’s phase margin and hence
stability. In other words, considering equation (14), a
large FoM value is no longer meaningful if the phase
margin is too small [19], indicating the unsuitability of
the above-mentioned objective function.
Taking into account the role of the op-amp’s phase
margin, the enhanced version of the FoM, which is
applied in this research, is expressed as [19]

FoM =
UGB × CL

Itotal
× tan(PM)
tan(PMREF)

, (15)

where PMREF is the reference phase margin of the
op-amp and chosen with the standard value of 60◦ [20].
Regarding the two-stage Miller-compensated op-
amp, its design is executed in the TSMC 65nm
process. The op-amp’s setup condition includes
VDD = 1.2V , IREF = 20µA,CL = 1µF. The input
common-mode voltage for both Vinn, Vinp is
VinCM = 650mV .
In order to ensure the copying ratio of the current
mirror block, we need W5/L5 = k ×W4/L4 = k ×W7/L7
(where L5 = L4 = L7). Therefore, we declare three
optimization variables: W5,W47, L457. Moreover,
to verify the symmetry of the OTA stage, W0L0 =
W1L1,W2/L2 = W3/L3, indicating four additional
variables: W01, L01,W23, L23. Similarly, we also need
W6, L6, CC as our optimization variables. In total,
there are ten variables for our optimization process,
namely W01, L01,W23, L23,W5,W47, L457,W6, L6, CC .
The specifications for the op-amp are as follows. First
of all, every MOSFETs should operate in the saturation
region with their margin of 30mV ensured for both
the gate-source voltage VGS and the overdrive voltage.
For the sake of convenience, the mentioned condition
is labeled cond1. When cond1 satisfies, the standards
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for the op-amp’s performance metrics, or cond2, are
expressed as

AV > 50 dB,UGB > 50 MHz, PM > 60◦,

CMRR > 50 dB, P ower < 250 µW , SR > 50 V /µs.
(16)

It should be noticed that cond2 satisfies only when all
design specifications of the op-amp above are met.
As a higher value of the FoM is preferable and cond1
is prioritized over cond2, the FoM formula should be
added with the cases of cond1 and cond2, which can be
rewritten as:

FoM =


−1, if cond1 = 0
0, if cond1 = 1, cond2 = 0
UGB×CL
Itotal

× tan(PM)
tan(60◦) , otherwise

(17)
where the value of 0 and 1 is equivalent to that each
condition passes or fails. For the cases when both cond1
and cond2 are not satisfied, the values of -1 and 0 are
chosen for the FoM with the purpose of excluding the
equivalent potential solutions. Moreover, the order of -
1 and 0 corresponds to the priority of cond1 and cond2.
So as to ensure the saturation condition to the greatest
possible extent, based on experience, the bounds for
optimization variables declared above are given by

W01 ∈ [0.85µm, 4µm], L01 ∈ [0.23µm, 0.4µm],

W23 ∈ [0.7µm, 1µm], L23 ∈ [0.06µm, 0.4µm],

W47 ∈ [2µm, 2.8µm],W5 ∈ [18µm, 23µm],

L457 ∈ [0.1µm, 1µm],W6 ∈ [16µm, 22µm],

L6 ∈ [0.25µm, 0.5µm], CC ∈ [0.3pF, 1pF].

(18)

In conclusion, our optimization problem can be
summarized as

maximize FoM(W01, L01,W23, L23,W5,W47, L457,

W6, L6, CC)

subject to VDD = 1.2 V , VinCM = 650 mV ,

IREF = 20 µA, CL = 1 pF,

Equations (16), (18).

(19)

5. Results and discussion
This section demonstrates the effectiveness of the
algorithm through simulation data. Simulations were
performed on Cadence Virtuoso using a 65nm process
technology. Each data was collected after the algorithm
executed 100 iterations with specific parameters
summarized in Table 1 and Table 2. The optimization
program was executed with the initial population
randomly selected from the given constraint ranges as
per expression (16) for both versions of the FA. The
specific algorithm parameters γ and α0 were chosen
in pairs for each program run, with γ ∈ (0, 1) and

Table 1. Post-optimization technical specifications of the two
algorithm versions

Design parameters Requirement FA BFA
AV (dB) > 50 50.04 50.8

UGB (MHz) > 50 71.5 67.02
PM (◦) > 60 66.2 69.28

CMRR (dB) > 50 55.75 53.48
Power (µW ) < 250 183.2 204
SR (V /µs) > 50 62.5 59.98

PSRR(+) (dB) < 50 53.38 52.84
PSRR(-) (dB) > 120 134.87 134.8

Table 2. Post-optimization design variables of the two algorithm
versions

Variables FA BFA
(W/L)01 2.29µm/0.3µm 1.82µm/0.28µm
(W/L)23 1µm/0.11µm 0.99µm/0.12µm
(W/L)4 2.74µm/0.53µm 2.38µm/0.64µm
(W/L)5 18.09µm/0.53µm 18.26µm/0.64µm
(W/L)6 19.63µm/0.25µm 20.82µm/0.25µm
(W/L)7 2.74µm/0.53µm 2.38µm/0.64µm
CC 0.3pF 0.31pF
FoM 0.6133 0.6021

Figure 3. FoM value over 100 generations of two FA versions.

α0 ∈ (0, 1). Table 2 presents the best results of the two
algorithm versions. The best execution result for FA
yielded an FoM value of 0.6133 with configuration
parameters γ = 0.5 and α0 = 0.75. For BFA, the best
FoM result is 0.6021 with configuration parameters
γ = 0.1 and α0 = 0.75, and the best solution’s bit-flip
probability was rmutation = 0.1.

The FoM values over 100 iterations for both FA
versions are illustrated in Figure 3 above. These are
the best results corresponding to Table 2. Although the
values for op-amp design variables may unpredictably
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vary across iterations, their corresponding objective
function values always follow a monotonic increasing
trend as shown in Figure 3. Table 3 presents a
performance comparison of the two-stage op-amp with
a Miller compensation capacitor developed in this
study against other notable studies [7, 8, 10, 11]. The
author identified only these four previous works that
studied the same two-stage op-amp configuration with
a Miller compensation capacitor. Consequently, Table
3 provides a comparative analysis specifically with
these four studies to ensure relevance and accuracy in
benchmarking performance. This focused comparison
highlights the advancements made in this study relative
to established designs.
The results demonstrate that both versions of the FA
achieve superior FoM values, as well as higher voltage
gain (AV ), phase margin (PM), and common-mode
rejection ratio (CMRR) compared to [8]. Specifically,
the AV for FA and BFA are more than double that of
[8] (50.04 dB and 50.8 dB vs. 21.6 dB), which indicates
a higher current in the circuit and consequently,
increased power consumption. Furthermore, the larger
compensation and load capacitors (CC and CL) in FA
and BFA results in improved unity-gain bandwidth
(UGB) and slew rate (SR) values, as these parameters
are inversely proportional to capacitance.
In comparison with studies [7, 10, 11], the UGB and
PM parameters of FA and BFA are significantly higher,
particularly the UGB, which is approximately three
times better than [18], over sixty times better than [10],
and substantially higher than [11]. Although the AV
gain in FA and BFA is about 10-30 dB lower, likely
due to the larger MOSFET size range and higher supply
voltage required for the 180nm process compared to
the 65nm process, the overall FoM value remains
competitive. Notably, the FoM value in [20] is higher,
attributed to their use of a CL capacitor three times
larger than those used in FA versions.
Overall, FA and BFA outperform the benchmarks [7, 8,
10, 11] across most parameter values, with their FoM
values being particularly noteworthy. This highlights
the effectiveness of the optimization approach despite
the increased complexity of working with the 65nm
process compared to the 180nm process.
Examining the general performance of the algorithms,
the superior results of the FA versions are evident.
When compared to the Genetic Algorithm (GA), the FA
excels in local search capability due to its mechanism
of comparing neighboring fireflies to identify better
solutions. The attraction property ensures that fireflies
influence each other more when they are closer,
resulting in automatic partitioning of the population
into smaller groups. This leads to faster and more
efficient convergence than GA. For the Particle Swarm
Optimization (PSO) algorithm, PSO can be seen as a
special case of the FA when the parameter γ = 0. Thus,

FA not only inherits the advantages of PSO but also
offers a more comprehensive and effective exploration
of the search space.
In this study, traditional FA and BFA are also compared
in Fig. 3 and Table 3. As illustrated in Algorithm 2 and
Algorithm 3 regarding the beta-step and alpha-step,
BFA employs these two dynamic parameters at binary
bit level. This means that for a specific optimization
variable, which is represented by a sequence of binary
bits, the alpha and beta parameters of BFA affect every
component of the variable. This might create in-depth
and necessary changes to the optimization variables in
greater detail compared to only one value for alpha and
beta for each variable in the decimal representation. As
a result, BFA should achieve better convergence speed
compared to its FA counterpart.

6. Conclusion
This study demonstrates the effective use of the Firefly
Algorithm (FA) in optimizing analog circuit design,
focusing on a two-stage operational amplifier (op-amp)
with a 65nm CMOS process. By developing two versions
of FA—traditional and Binary Firefly Algorithm
(BFA)—and optimizing them with the FoM objective
function, a robust tool emerges for determining
optimal component sizes under technical constraints.
The results highlight FA’s strong performance in
balancing exploration and exploitation, with the BFA
showing enhanced convergence due to its binary-
level control over optimization variables. The BFA
achieves faster, more precise results, outperforming
benchmarks in key parameters like voltage gain, phase
margin, unity-gain bandwidth, and common-mode
rejection ratio. These findings underscore the potential
of FA-based approaches for automating analog design,
minimizing component sizing time, and achieving
high-performance outcomes. This work illustrates the
promise of swarm intelligence in advancing analog
design automation.
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