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Abstract

The reduction of greenhouse gas emissions in the Internet and ICT sectors has become a critical challenge.
According to recent research, the key contributors to greenhouse gas emissions in Internet include high
energy consumption factors such as data centers, transmission network devices, and end-user devices. Among
Internet services, video streaming is one of the services having the highest traffic volume and number of
users. Consequently, developing energy-efficient solutions for video streaming networks, particularly for end-
user devices, is an urgent research priority. Reducing energy consumption in end-user devices in a video
streaming system often requires compromises in parameters that impact the quality of user experience (QoE).
Therefore, achieving an optimal trade-off between minimizing energy consumption and maintaining an
acceptable QoE is a key objective. In this study, a cost function that integrates QoE and energy consumption
is developed using the Lagrange multiplier method. Based on this function, an adaptive bitrate algorithm
is proposed to select optimal video segments for video players, ensuring maximum QoE while minimizing
energy consumption. The performance of the proposed method is evaluated using various types of video
samples under varying network bandwidth conditions. Experimental results show that the proposed method
reduces energy consumption of end-user devices by up to 5.9% and enhances QoE by 3.9% compared to
previous methods.
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1. Introduction

According to recent research by the global climate
consulting organization Carbon Trust (UK) on CO2
emissions [1], the Information and Communications
Technology (ICT) sector is one of the ten sectors having
the highest emissions beside industries such as steel,
plastic and cement production. In the ICT sector, three
components contribute to the process of emissions
including data centers, transmission networks and end-
user devices.

∗Corresponding author. Email: tienvh@ptit.edu.vn

Data centers are places where centralized servers are
located to process and store data for all activities on the
Internet. Research in [1] show that these data centers
consume about 208TWh of electricity, equivalent to
emitting about 2% of global CO2 emissions per year.
Besides data centers, data transmission networks also
contribute to CO2 emissions. Although the amount of
electricity consumed per GB gradually decreases each
year due to the development of transmission equipment
manufacturing technology, the amount of data on the
network increases each year. Therefore, the total energy
consumption of the network still increases year by year.
The third factor, which is a major contributor to CO2
emissions, is terminal devices including computers and
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mobile devices with more than 50% of the emissions
of the entire ICT network. Among applications at end-
user, video content traffic accounts for more than 70%
of total Internet traffic and is forecast to grow more
in the near future [2]-[3]. This explosion in traffic is
mainly due to the rapid increase in video streaming
services (video streaming, video conferencing, video on
demand), the increasement of video quality (2K, 4K,
8K) and the increasement in the number and diversity
of terminal devices (TV, PC, mobile devices). It can
be said that video streaming is one of the services
that significantly contribute to CO2 emissions on the
Internet. Hence, proposing solutions to reduce energy
consumption (EC) with the goal of reducing CO2
emissions is one of the urgent tasks today.

Recently, many studies in the field of video streaming
have focused on reducing energy consumption for
components in this network. In [4], energy consumption
models for the entire network are proposed. The
research indicated that the total energy consumption of
a video sequence at server side is sum of the encoding
energy, the decoding energy and energy consumed for
storing that video in server. The energy consumption
model of the transmission network encompasses the
energy usage of all network components involved
in the video content delivery process. The energy
consumption model at client side equals to the sum
of energy consumption in process of sending requests,
downloading and playing back video content.

On the server side, authors in [5] analyzed energy
consumption for x265 encoder at different bitrate
values. To measure energy consumption, authors used
tools to measure energy consumption of each part of
the system, CPU, DRAM and cache. The encoder is
configured at different coding modes to measure energy
consumption. The results show that when the bitrate in
coding modes is decreased, the energy consumption is
increased and vice versa. In addition, the results also
indicate that CPU account for 95% of the total energy
consumption, followed by DRAM at 3% and the cache
memories consumes the lowest energy at 2%.

On the client side, based on the given energy
consumption models, several studies have focused on
reducing energy consumption for end-user devices
[6]-[7]. Along with the issue of energy consumption,
the quality of user experience (QoE) at client side
in video streaming system is also an issue that
needs to be considered. Quality of experience is
defined as the level of satisfaction or dissatisfaction
of users when using a service or application [8].
Due to the abundance of video sources, users
will easily stop consuming the video content if
its quality is not as expected [9]. Therefore, to
satisfy users’ expectations, content providers also
need to guarantee an acceptable QoE level besides
the target of reducing EC. Additionally, previous

researches also showed that energy consumption is
strong correlated to QoE. High-quality video means
a large amount of data to transmit, leading to
end-user’s devices need more energy to process.
Consequently, achieving a balance between reducing
energy consumption and maintaining acceptable QoE
at the client side in video streaming systems remains
a critical challenge. In [10], a survey is conducted to
investigate user preferences regarding energy saving
in video streaming. Specifically, the study examines
whether users are willing to compromise QoE to
save energy and the extent to which they are
willing to reduce video streaming quality for energy
efficiency. The survey results indicate that reducing
QoE to an acceptable level, rather than maintaining
maximum QoE, is a viable approach to lowering energy
consumption.

In [6], an Arduino based low-cost platform is
designed to measure the energy consumption of the
smart mobile device. The experiment results of this
method show that the energy consumption at end-
user device depends on radio interface and bitrate of
network. In particular, the end-user device using WiFi
has higher energy efficiency than one using LTE net-
work. In addition, the higher quality level of network
results in the lower energy consumption for end-user
device. In [7], a QoE model is proposed, which defines
QoE metric as the perceived video quality reduced
by impairments caused during data transmission and
quality fluctuations during playback. In addition, an
energy consumption model is formulated by estimat-
ing a quadratic function to represent the relation-
ship between energy consumption, video bitrate, and
wireless signal strength. Based on these models, an
optimization problem is formulated with the objective
of minimizing energy consumption while maximizing
QoE.

To date, many methods for optimizing QoE and
EC have been proposed. However, to enhance system
performance by maximizing QoE and minimizing
EC, the QoE and EC estimation models must be
accurate. Therefore, in this study, a new QoE and
EC estimation model is proposed. Specifically, an EC
model is developed based on the bitrate levels of video
segments downloaded by the client. Then, a Lagrange
cost function for QoE and EC is constructed based on
the two QoE and EC models. Based on the Lagrange
cost function, an adaptive bitrate selection algorithm is
proposed to determine the optimal bitrate level for each
video segment.

The structure of this paper is organized as follows.
Section 2 introduces the background and related
works including HTTP Adaptive Streaming (HAS)
technology, QoE and EC models as well as joint
optimization between QoE and EC algorithms for video
streaming system. Section 3 describes the proposed EC
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Figure 1. HTTP Adaptive Streaming System Architecture.

model, QoE-EC optimal function and adaptive bitrate
selection algorithm. Afterward, Section 4 describes the
experiments and evaluates the system’s performance.
Finally, Section 5 presents the conclusions.

2. Related works

2.1. HTTP Adaptive Birate Video Streaming
In recent years, The most popular technique for
streaming video over the Internet has been adaptive
streaming via the HTTP Hypertext Transfer Protocol or
HAS (HTTP Adaptive Streaming). HAS offers several
benefits and partially addresses cost-related challenges.
Using HTTP, providers can use web servers instead
of expensive equipment to reduce costs significantly.
Furthermore, HAS allows media packets, particularly
input videos, to pass through firewalls and network
address translators (NAT) efficiently and seamlessly.

Figure 1 provides an overview of the HAS architec-
ture. On the server side, the original video sequence
is divided into equal time segments and encoded at
different quality levels corresponding to each resolution
and bitrate. The higher the resolution and bitrate, the
better the video quality. On the client side, the video
player selects video segments at an appropriate quality
level, sends requests to the server, and downloads them
using the HTTP protocol. Once downloaded, the client
stores the received video segments in a buffer, decodes
the segments sequentially, and displays them on the
user’s device.

As illustrated in Figure 1, the content server provides
N different quality versions of the video. The adaptive
bitrate (ABR) algorithm on the client side selects the
most suitable segment based on network conditions,
buffer status, or energy consumption, and sends a
request to the server accordingly. For instance, when
the network bandwidth is in good condition, the
client can request higher-quality segments of the
video. Conversely, when the network bandwidth is

poor, the client may request lower-quality segments.
This approach helps prevent the client’s buffer from
depleting, thereby avoiding playback interruptions.

Currently, several protocols have been developed
based on the HTTP platform, including Apple’s
HTTP Live Streaming (HLS) [11], Microsoft’s Smooth
Streaming [12], and Adobe’s HTTP Dynamic Streaming
[13]. However, due to the lack of synchronization
among these protocols, the Moving Picture Experts
Group (MPEG) and the International Organization
for Standardization (ISO) introduced the MPEG-DASH
standard in 2012 [14]. The second version of the DASH
standard was released in 2014, with further updates
and new features introduced in 2017.

2.2. QoE Model

In general, parameters affecting QoE may include
initial delay, stalling frequency, stalling duration,
video quality, switching frequency, and rebuffering
frequency [15] [16]. However, these parameters in
a video streaming system are interdependent. For
instance, a method aimed at enhancing video quality
may increase stalling duration because high video
quality typically corresponds to a higher bitrate and
resolution. Therefore, to address the trade-offs between
parameters, the proposed methods attempt to establish
a QoE model that integrates multiple parameters and
then maximize the QoE value.

To date, many QoE estimation methods have been
proposed and standardized, but two main approaches
exist: using Mean Opinion Score (MOS) and using
utility score. The MOS-based model, also known as a
non-reference model because it is based on subjective
evaluation of the viewer and does not need to be
compared with the original video. In [17], subjective
experiments are conducted to derive the impairment
function for factors including initial delay, stall and
quality level variation. Then, a comprehensive user
experience model is formulated from the derived
functions. In [18], a model was developed to explore
scene statistics of luminance coefficients to quantify
image distortion. The advantage of this method is
that it accurately reflects the perception of the
human visual perception. However, this method is
difficult to implement at end-user device due to its
high computational complexity. On the other hand,
the methods using utility score are more widely
proposed in ABR algorithms due to their real-time
QoE estimation capability. In [19], the utility score
is estimated by the sum of three parameters: bitrate,
quality level change, and rebuffering. The formula for
calculating the utility score for a set of M consecutive
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video chunks is given as follows.

Utility =
M∑
n=1

Q(Rn) − µT − ξ
M−1∑
n=1

|Q(Rn+1) −Q(Rn)| (1)

where Q(Rn) is the function that measures user-
perceived quality based on the bitrate Rn of the nth

chunk. Q(Rn) is the penalty incurred after each change
in quality level. µ and ξ are the weights for the penalties
associated with rebuffering and quality variability, µ
= 3000 and ξ = 1. T denotes the total rebuffering
time. In the calculation of the utility score, the first
element represents the bitrate utility, while the second
and third elements correspond to the penalties for
rebuffering and bitrate changes, respectively. Various
ABR algorithms incorporate different variations of
this QoE calculation model, with optimized bitrate
computations and penalty weights [20] - [22]. In [23],
a QoE model is built based on bitrate as following
function:

QoE = a × rb + c (2)

In which r denotes bitrate while a, b, and c are
the coefficients varied according to video resolutions.
Although Eq. (2) has the advantage of computational
simplicity, it models QoE solely as a function of bitrate,
without accounting for critical influencing factors such
as buffer depletion or quality fluctuations. In contrast,
Eq. (1) incorporates three key QoE components: user-
perceived quality, rebuffering penalty, and quality
fluctuation penalty. By incorporating such both short-
term factors (instantaneous quality) and long-term
factors (quality stability and buffering impact), Eq. (1) is
commonly used in various methods for estimating QoE
values [24], [25].

2.3. Energy Consumption Model for End-User
Devices
As mentioned above, the energy consumption of user
devices is one of the key factors contributing to the
overall energy consumption of the network. Therefore,
reducing the energy consumption of user devices can
significantly lower the total energy consumption of
the online video streaming system. To achieve this
reduction, an energy consumption estimation model
for user devices must be developed. Previous studies
have employed two primary approaches to estimate
energy consumption: hardware-based method [6] and
software-based method [26]. In [6], a low-cost device
based on an Arduino board was designed to measure
the energy consumption of a smartphone. In this device,
the energy consumption P is modeled in LTE and Wifi
network as follow:

P = rd × R + rt + ν (3)

where rd is the energy consumption rate for data
transfer, measured in mJoule/kbit, rt is the energy
consumption per unit of time in mWatt, R is the
average bitrate of the video in kbps and ν is a
constant value. An advantage of the above model is
that it accounts for signal strength across different
network types. However, a limitation of the model
lies in its assumption that power consumption is a
linear function of bitrate. This simplification may not
accurately reflect the nonlinear processing behavior of
devices in adaptive bitrate video streaming networks.

Instead of using hardware, a software-based
approach is introduced in [26], where an application
called eLens is presented. In this application, the energy
consumption cost of each instruction in the source code
is estimated. The proposed method demonstrates that
the estimation accuracy exceeds 90%, and its runtime is
acceptable. The advantage of this method is that it can
be adapted across various platforms, provided that an
energy cost model per instruction is available, thereby
increasing its versatility. However, it requires a detailed
energy model that maps each instruction type (or API
call) to its corresponding energy cost.

2.4. QoE-EC Model
In some previous methods, QoE and EC are typically
considered independent values. Therefore, the objec-
tives of these methods are either to maximize QoE or
to minimize energy consumption. As a result, the ABR
algorithm on the client side tends to request higher
bitrate for video chunks to enhance QoE. This may
lead to an increase the energy consumption of the
user device due to the more processing requirements
associated with larger data volumes. To address the
growing energy challenges in video streaming systems,
the QoE-EC optimization algorithms have been pro-
posed in [27]-[29]. The goal of QoE-EC optimization
algorithms are to maximize the QoE and to minimize
the energy consumption simultaneously. To achieve this
target, a cost function incorporating both QoE and
EC is formulated, and factors related to QoE and EC
are adjusted to minimize the cost function. In [27],
an algorithm is proposed to optimize QoE and EC by
adjusting the quality and brightness of videos at the
server. Then, on the client side, the proposed algorithm
selects video chunks with predetermined quality and
brightness levels based on network bandwidth. In this
algorithm, although the trade-off between QoE and EC
is considered, sudden changes in quality and brightness
between video chunks are not accounted for. In [28], an
algorithm for optimizing QoE and EC in mobile video
systems is proposed. In this algorithm, QoE is measured
in MOS while the energy consumption model is based
on coding time and energy consumption at each coding
layer. Based on these QoE and EC models, the particle
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swarm optimization (PSO) method is employed to solve
the optimization problem. Although this algorithm sig-
nificantly reduces energy consumption, it also results
in a considerable reduction in QoE compared to an
approach that selects bitrate based solely on the QoE
model..

To address the limitations of the above algorithms,
in [29], method called E-WISH introduces a total cost
function incorporating throughput cost, buffer cost,
quality cost, and energy cost. The optimal bitrate is then
determined for each video segment by minimizing the
total cost function. In particular, the total cost function
is computed as follows:

C(i) = αCt(i) + βCb(i) + γCq(i) + δCe(i) (4)

where i represents the index of the bitrate level. Ct(i),
Cb(i), Cq(i), and Ce(i) represent the throughput cost,
buffer cost, quality cost, and energy cost of a video
chunk with bitrate Ri , respectively. The weights α, β,
γ , and δ are computed as 0.074, 0.203, 0.723, and 0.1,
respectively. In this method, the EC model is estimated
as a linear function of frame rate, resolution, and
bitrate:

Ce(i) = w1fi + w2ri + w3Ri (5)

where fi and ri are frame rate and resolution of video
chunk. The w1, w2, and w3 are selected as 0.19, 6.29 ×
10−8, and 3.522 × 10−4, respectively.

In Eq. (4), the cost function is designed as a linear
combination of QoE-related costs (throughput cost,
buffer cost, and quality cost) and energy consumption
cost in Eq. (5). The bitrate of video segment is
then selected to minimize this overall cost function.
However, in this study, the constraint between QoE
and EC is not explicitly considered. Furthermore, the
cost function in this approach is nonlinear with respect
to bitrate, necessitating the use of differentiation
to determine its extrema. To effectively solve the
constraint between QoE and EC, we employ the
Lagrange multiplier method to derive the optimal
bitrate that minimizes the cost function. This method
is particularly suitable for optimization problems
involving extrema of nonlinear cost functions under
constraints.

3. Proposed method
3.1. Architecture of the proposed framework
Figure 2 illustrates the architecture of the proposed
framework. In this framework, the QoE model and
EC model are designed to estimate QoE and EC
values corresponding to different bitrate levels. These
estimated QoE and EC values, along with the buffer
occupancy value—which represents the duration of
video content stored in the buffer—are provided to the

Figure 2. Architecture of the proposed framework.

adaptive bitrate selector. The adaptive bitrate selector
aims to determine the optimal bitrate that maximizes
QoE while minimizing energy consumption. Based on
the input parameters and the QoE estimation model,
the adaptive bitrate selector estimates QoE values for
all available bitrate options. The bitrate that yields the
highest QoE value is selected for the next video chunk.
Subsequently, a request containing the chunk index and
its corresponding bitrate is sent to the video server.

3.2. QoE Estimation Model
As mentioned above, the QoE metric is evaluated
based on several factors, including initial delay, stalling
frequency, stalling duration, switching frequency, video
quality. However, a video streaming system cannot
achieve the best conditions of all factors simultaneously
because of constraints between factors. For example, a
video system that attempts to improve video quality
under limited bandwidth conditions may experience
an increase in stalling frequency. Therefore, in QoE
evaluation, only a subset of these factors is considered,
depending on the strategy of each method. In this
article, the model from [19] is used to estimate the
QoE metric based on factors such as stalling frequency,
switching frequency, and video quality for adaptive
chunk selection. By integrating these factors, the QoE
model provides a more accurate estimation of QoE
compared to simpler models that only rely on bitrate.
This makes the model well-suited for the bitrate
optimization framework proposed in the paper, where
the goal is not only to maximize visual quality but also
to minimize rebuffering and ensure smooth playback,
all of which are essential to delivering high-quality user
experience. Specifically, the QoE estimation model in
this proposed method is computed as follows:

QoE(R) = R − µ
(R × L

C
− Bc

)
− |R − Rn−1| (6)

where R is the bitrate of the current video chunk
being considered for download. L is length of the video
chunk, C is the tredicted network bandwidth, Bc is
the current buffer occupancy, Rn−1 is the bitrate of the
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Table 1. Energy consumption at different bitrates for the "Big
Buck Bunny Video" sequence

Bitrate
(kbps)

Energy consumption
(mWs)

100 3063
200 3071
300 3209
— —

11000 3551
12000 3672

previously downloaded chunk. In this work, the simple
sliding percentile algorithm in ExoPlayer [32] is used to
predict network bandwidth.

3.3. Energy Consumption Model
In general, the energy consumption estimation model
for user devices may depend on various factors,
including screen brightness, signal strength, hardware
processing capability, frame rate, bitrate and resolution
[29], [30], [31]. However, apart from the available
bitrate and resolution levels of video segments on the
server, which the video player can select, the remaining
factors are external and cannot be adjusted by the
video player. Therefore, in this study, the EC estimation
model is established based on variations in bitrate
and resolution, while other factors remain constant.
To establish the EC model as a function of bitrate,
the video sequence Big Buck Bunny at five resolutions
including 448 × 252, 592 × 332, 768 × 432, 1280 × 720,
and 1920 × 1080 is encoded with different bitrates from
100Kbps to 12Mbps. Since energy consumption is not
significantly affected by a specific video content, the
estimated EC model can be applied to other video
sequences that having the same parameters as the tested
Big Buck Bunny video sequence.

In this experiment, a Samsung Galaxy Note 10
smartphone running Android 12 is used to measure
energy consumption at each bitrate level. In addition,
the open-source ExoPlayer [32] is used video playback
and the Android API BatteryManager [33] is used to
measure energy consumption. To collect data, each
video sequence is played at 12 different bitrate levels
and energy consumption is measured during each
playback session. Table 1 presents the data points
for the Big Buck Bunny video sequence, which has a
duration of two minutes.

After testing with five video sequences, the least-
squares regression method was employed to derive
the fitted curve representing the relationship between
energy consumption (EC) and bitrate (R). The data
points and the fitted curve are illustrated in Figure 3

Figure 3. The fitting curve of EC function.

with the estimated energy function EC(R) as follows:

EC(R) = −2 × 10−5 × R2 + 0.3 × R + 2965 (7)

where EC denotes energy consumption, and R repre-
sents the bitrate of the video segments. The accuracy of
the fitted curve was assessed using the R-squared (R2)
metric, which yielded a value of 0.93, indicating a high
degree of fit.

The results presented in Fig.3 demonstrate that
energy consumption is directly proportional to the
bitrate when the bitrate is below 8000Kbps, and
inversely proportional when the bitrate exceeds
8000Kbps. This trend arises from the fact that, at
lower bitrates, the video player requires a longer
duration to download video segments, keeping the
device in an active state and thereby increasing energy
consumption. Furthermore, the power consumption of
the video decoder rises with increasing bitrate of video
segments, contributing to higher overall consumption
in the low-bitrate range. In contrast, when the bitrate
exceeds 8000Kbps, video segments are downloaded
more rapidly, leading to faster buffer saturation. As
a result, the video player transitions to an idle state
sooner, thereby reducing energy consumption for
downloading video segments. Consequently, beyond
this bitrate threshold, the overall power consumption
decreases in comparison to lower bitrate conditions.

3.4. QoE - Energy Consumption Optimization
Algorithm
In an ABR video streaming system, the main task of
the video player is to select the bitrate for each video
chunk to maximize the QoE value. However, when
considering both QoE and EC, the task of the video
player is to select bitrate that maximizes QoE while
minimizing energy consumption. To solve this problem,
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the Lagrange multiplier method is used to determine
the optimal bitrate value at which QoE is maximized
and EC is minimized.

Assuming that QoE(R) is a function of QoE with
respect to bitrate, and EC(R) is a function of EC with
respect to R. To maximize QoE(R) and minimize EC(R),
the Lagrange cost function J is formulated as follows:

J =
1

QoE(R)
+ λEC(R) (8)

in which λ is the Lagrange multiplier. The above
problem can be reformulated as finding the solutions
for R that minimize J . In Lagrange multiplier method,
the cost function can be formulated in both maximal
or minimal functions. However, this method often
minimizes a cost function rather than maximizing it
because, in many applications, we seek to minimize
error, energy, or cost. Therefore, in this study, the
minimizing J cost function is used because our objective
is to minimize EC(R).

In the extrema problem, the minimum of the J cost
function is obtained by setting its derivative to zero, i.e.,

∂J
∂R

= 0 (9)

From (8) and (9), the Lagrange multiplier can be derived
as:

λ = −
∂ 1
QoE(R)
∂R

∂EC(R)
∂R

(10)

Substitute (6) and (7) into (10), the Lagrange multiplier
is derived as:

λ =


− (2−µ L

C )

((2−µ L
C )R+µBc− Rn−1)2(−4.10−5R+0.3)

if R < Rn−1

− 1−µ L
C

((1 −µ L
C )R+µBc)2(−4.10−5R+0.3) if R = Rn−1

µ L
C

(−µ L
C R+µBc+Rn−1)2(−4.10−5R+0.3) if R > Rn−1

(11)

Substitute (12) into (8), the Lagrange cost function can
be computed as:

J =


1

(2−µ L
C )R+µBc−Rn−1

− λEC(R) if R < Rn−1
1

(1−µ L
C )R+µBc

− λEC(R) if R = Rn−1
1

−µ L
C R+µBc+Rn−1

− λEC(R) if R > Rn−1

(12)

Based on the above Lagrange cost function, an EC-
based adaptive bitrate (EC_ABR) algorithm is proposed
as shown in the pseudocode in Algorithm 1.

In the proposed EC_ABR algorithm, the objective
of the loop is to determine the optimal bitrate R∗ for
chunk nth among the available bitrates at different
quality levels to achieve the highest QoE metric while

Algorithm 1 EC-based adaptive bitrate algorithm

Input: Rn−1: Bitrate of the previous downloaded
chunk;
Ri : Bitrate at quality level ith of the video chunk
index nth;
J icost : The Lagrange cost at bitrate Ri ;
N : The number of quality levels of video sequence;
L: The length of video chunk;
Bc : The current buffer occupancy;
C: The predicted bandwidth;
Jmin := Integer.MAX_VALUE.

Output: R∗: Optimal bitrate for video chunk nth

1: for (i = 0; i >= N ; i + +) do

2: J icost =


1

(2−µ L
C )Ri+µBc−Rn−1

− λEC(Ri) if Ri < Rn−1
1

(1−µ L
C )Ri+µBc

− λEC(Ri) if Ri = Rn−1
1

−µ L
C Ri+µBc+Rn−1

− λEC(Ri) if Ri > Rn−1

3: if (J icost < Jmin&Ri ≤ C) then
4: Jmin = J icost ;
5: R∗ = Ri ;
6: else
7: R∗ = R0;
8: end if
9: end for

10: return R∗;

minimizing energy consumption. For each bitrate value,
from the lowest to the highest, corresponding to
the lowest to the highest video quality levels, the
algorithm computes Lagrange cost Jcost as in (12). If
Jcost is minimal and the bitrate is lower than predicted
network bandwidth, the considered bitrate is selected
for downloading the next video chunk. Otherwise, the
lowest bitrate is selected.

4. Experiment and Performance Evaluation
4.1. Experiment Setup
In this experiment, a testbed for an HTTP-based video
streaming system is built on a Node.js web server. To
simulate different scenarios, the network bandwidth
between the server and the client is shaped using
Traffic Control tool [34] which is used for managing
and manipulating packet transmission. On the client
side, ExoPlayer is employed to implement the proposed
adaptive bitrate selection algorithm.

To validate the performance of the proposed
method, four video sequences representing four
video categories—sports, animation, action films, and
documentaries—are utilized in a dataset conforming
to the latest version of the MPEG-DASH standard
[35]. The experiments are conducted under four
different network bandwidth scenarios, including
low-speed (200Kbps and 500Kbps), medium-speed
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Table 2. Resolutions and bitrates of video test sequences

Video
sequences Type Duration

(second) Resolutions Bitrate
(Mbps)

Big Buck
Bunny Animation 300

480x270, 640x360,
1280x720,1920x1080

0.257, 0.512, 0.815,
1.5, 2.4,3.0,

4.1, 6.1, 10.1

Tears of
Steel

Action
movie 300

480x270, 640x360,
1280x720, 1920x1080

0.257, 0.512, 0.815,
1.5,2.4, 3.0, 4.1,

6.1, 10.1

Red Bull
Playstreets Sport 300

320x240, 480x360,
854x480,1280x720,

1920x1080

0.102, 0.152, 0.202,
0.252, 0.302,0.401,
0.501, 0.701, 0.9,

1.5, 2.0, 2.5,
3.0, 4.0, 5.0, 6.0

Of Forest
And Men Documentary 300

320x240, 480x360,
854x480, 1024x576

0.48, 0.94, 0.138,
0.189, 0.234, 0.280,
0.370, 0.470, 0.561,

0.652, 0.837, 1.0,
1.3, 1.5, 1.8,

2.2, 2.6, 3.3, 3.9

Table 3. Comparison of estimated energy consumption models

Video
sequences

Benchmark E-WISH p_ECM
EC (mWs) EC (mWs) MAE EC (mWs) MAE

Big Buck
Bunny

3930 1230

2126

3681

344Tears of
Steel

3979 2378 3627

Red Bull
Playstreets

3271 1760 3829

Of Forest
and Men

3839 1147 3620

(1000Kbps and 2000Kbps), and high-speed (5000Kbps
and 10000Kbps). These bandwidth levels are commonly
employed to simulate Wi-Fi, 3G, and 4G network
conditions for video streaming systems [3].

To evaluate the accuracy of the proposed energy
consumption model (p_ECM), four video sequences
listed in Table 2 are used. These source videos are
encoded at standard resolutions range from 480p
(480270) to 1080p (19201080) corresponding to bitrates
from 0.1Mbps to 10Mbps [36]. The encoded video
sequences are then divided into equal-length segments
in duration of 2 seconds, and stored in .m4s files
according to MPEG-DASH standard.

4.2. Energy Consumption Evaluation
To evaluate the accuracy of the proposed energy
consumption model (p_ECM), four video sequences
listed in Table 2 are used. First, the benchmark
energy consumption is measured using the Android
BatteryManager API. Then, the four video sequences

are played again to estimate energy consumption using
Eq. (5) and Eq. (7). Table 3 presents a comparison
between the p_ECM and the E-WISH model. As the
results show, the Mean Absolute Error (MAE) of the
energy consumption in E-WISH is 2126, while that of
p_ECM is 344. The lower accuracy of E-WISH’s method
is due to its energy consumption model being computed
using a simple linear combination of resolution, bitrate,
and frame rate. In contrast, the p_ECM establishes
the energy consumption model through a regression
method based on real measured energy consumption
data.

4.3. QoE-Energy Consumption Performance
Evaluation
As mentioned above, QoE and EC are interdependent
quantities. To evaluate the effectiveness of QoE and EC
optimization methods, the Bjontegaard metric [37]-[38]
is used in this work. This metric is commonly applied
to assess the performance of video encoders using two
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Table 4. Comparison of QoE-EC performance of methods

Video Resolution Exo E-WISH EC_ABR EC_ABR vs. Exo EC_ABR vs.
E-WISH

EC
(mWs) QoE EC

(mWs) QoE EC
(mWs) QoE BD-EC BD-QoE BD-EC BD-QoE

Big Buck Bunny

200 Kbps 5210 31902 5221 31503 5181 32102

-3.28 611.66 -0.07 1774.30

500 Kbps 5185 32250 5061 32370 5090 33480
1 Mbps 4944 33540 4610 33980 4214 35910
2 Mbps 4727 36090 4627 36910 4686 37350
5 Mbps 4692 37940 4592 38210 4487 39700

10 Mbps 4613 38250 4521 38376 4413 39853

Tears of Steel

200 Kbps 4997 43571 4802 44160 4589 46153

-6.05 3.76 -5.44 -96.86

500 Kbps 4943 43840 4710 44020 4544 46570
1 Mbps 4880 47550 4720 47710 4230 48580
2 Mbps 4413 48215 4319 49250 4010 51740
5 Mbps 4079 48800 3968 49320 3810 53750

10 Mbps 4012 49517 3910 49730 3798 53910

Red Bull Playstreets

200 Kbps 5138 38190 5019 38279 5121 38429

-14.91 617.17 4.02 5128.45

500 Kbps 5043 38210 4990 38800 4810 41280
1 Mbps 4985 37940 4815 39240 4887 39980
2 Mbps 4357 59050 4157 60314 4156 61200
5 Mbps 4345 66280 4045 67439 4300 66180

10 Mbps 4289 66428 4016 67830 3989 66472

Of Forest And Men

200 Kbps 4897 49865 4728 51012 4659 52892

0.62 389.64 0.06 494.25

500 Kbps 4866 50200 4721 51231 4644 52940
1 Mbps 4536 51460 4415 52212 4313 54050
2 Mbps 4381 52600 4291 53719 4157 55750
5 Mbps 4256 55320 4131 57421 3978 61060

10 Mbps 4132 55810 4078 57987 3873 61984
Average -5.90 405.56 -0.36 1825.03

values: video quality (measured by PSNR in dB) and
bitrate (measured in Kbps or Mbps). In the Bjontegaard
metric, BD-PSNR and BD-Rate are used to quantify
how much one codec improves over another in terms of
PSNR and bitrate. In this work, the Bjontegaard metric
is applied to compare the performance of the proposed
EC_ABR method with ExoPlayer and E-WISH in terms
of QoE and EC. Similar to RD performance evaluation
in video coding, a positive BD-QoE indicates that the
QoE of the proposed method is higher than that of
the other methods, while a negative BD-EC indicates
that the energy consumption of the proposed method
is lower than that of the other methods.

Table 4 presents the QoE-EC performance compari-
son of three methods: ExoPlayer, E-WISH and EC_ABR.
As the results show, compared to ExoPlayer, the aver-
age BD-EC is −5.9, meaning that EC_ABR reduces
energy consumption by 5.9% compared to ExoPlayer
while BD-QoE is 405.7 higher than that of ExoPlayer
(Approximately a 0.9% increase in average QoE across
all bandwidth cases). Compared to E-WISH, the energy
consumption of EC_ABR is lower by 0.4 while the BD-
QoE is higher by 1825. This means that EC_ABR can
reduce energy consumption by 0.4% and improve QoE
by 3.9% over E-WISH for the same bandwidth value.

Figure 4 illustrates the average QoE and energy
consumption of four video sequences at six bandwidth
values. The results indicate that QoE values tend to be
directly proportional to network bandwidth, whereas

Figure 4. QoE-EC comparison between methods.

EC values exhibit an inverse relationship with network
bandwidth. At the highest bandwidth level (10Mbps),
the QoE values of three methods are highest, while
EC is lowest. Conversely, at the lowest bandwidth
level (0.2Mbps), the QoE values of three methods
are lowest, whereas EC reaches its highest for all
three methods. The reason is that when the network
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Figure 5. Comparison of energy consumption across different methods for four video sequences.

bandwidth is at its maximum value of 10Mbps (upper-
left corner points of the curves), the ABR algorithms of
all three methods are capable of selecting higher-bitrate
video segments for download. According to the QoE
formulations in Eq.(4) (used by E-WISH) and Eq.(6)
(used by ExoPlayer and EC-ABR), higher bitrates lead
to higher QoE values. Moreover, at high bandwidth
levels, video segments are downloaded more quickly,
allowing the video player to remain in an active state for
a shorter duration. Consequently, energy consumption
is reduced. Conversely, when the network bandwidth is
at its lowest value of 0.2Mbps (lower-right corner points
of the curves), the ABR algorithms of the methods tend
to select lower-bitrate video segments. As a result, QoE
decreases while energy consumption increases due to
the prolonged active state of the video player.

Figure 4 also shows that at the same bandwidth
value, the proposed method EC_ABR can achieve lower
energy consumption and higher QoE compared to the
other methods. In particular, at the highest bandwidth
level of 10Mbps, the energy consumption of EC_ABR
is approximately 4000mWs, while that of E-WISH and

ExoPlayer is approximately 4100mWs and 4200mWs,
respectively. At the same bandwidth level, the QoE of
EC_ABR reaches the highest value of approximately
55554, whereas the QoE of E-WISH and ExoPlayer are
lower, at approximately 53480 and 52500, respectively.
Similarly, at the lowest bandwidth level of 0.2Mbps, the
EC and QoE of EC_ABR are approximately 4887 and
42394, respectively. Meanwhile, the EC of E-WISH and
ExoPlayer is higher, at approximately 4942 and 5060,
respectively. QoE values of E-WISH and ExoPlayer are
lower, at approximately 41238 and 40882, respectively.

Figure 5 illustrates the energy consumption of three
methods at different bandwidth levels. The results
show that the proposed method has the lowest energy
consumption, followed by E-WISH and ExoPlayer. This
is because energy consumption is not considered in the
adaptive bitrate algorithm of ExoPlayer. To improve
the adaptive bitrate algorithm, energy consumption
is taken into account in the QoE model of the E-
WISH algorithm. However, in this method, the energy
consumption model is a linear function of resolution,
bitrate, and framerate, which has lower accuracy
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than the quadratic polynomial model of EC_ABR.
Consequently, the proposed EC_ABR can select a
more optimal bitrate compared to the other methods,
achieving lower EC while maintaining higher QoE.

Figure 5 also shows that when the available
bandwidth decreases, the ABR algorithm tends to select
lower-quality video segments corresponding to lower
bitrates, and the download speed is also reduced.
Consequently, the playback buffer is depleted more
rapidly, leading to playback stalls. As a result, the video
player must repeatedly send requests to the server or
frequently operates with an empty buffer, both of which
contribute to increased energy usage. Conversely, when
the bandwidth increases, the ABR algorithm selects
higher-quality video segments, and the download rate
to the buffer improves. As the buffer is replenished
more effectively, the likelihood of playback stalls is
reduced, leading to improved QoE. Furthermore, higher
bandwidth conditions eliminate the need for repeated
server requests and prevent interruptions in segment
downloading, thereby reducing the frequency of buffer
depletion. As a result, the energy consumption of the
video player is significantly reduced.

5. Conclusion
In this work, we propose a method to reduce energy
consumption and enhance QoE simultaneously based
on the Lagrange multiplier method. In particular, an
energy consumption function of bitrate is estimated.
Then, a cost function incorporating both QoE and
energy consumption is formulated using the Lagrange
multiplier method. Based on the cost function, an
adaptive bitrate algorithm is proposed to estimate the
optimal bitrate for the next video chunk, allowing the
video player to achieve the highest performance in
terms of energy consumption and QoE. The results
show that the proposed method achieves up to a 5.9%
reduction in average energy consumption and a 3.9%
increase in average overall QoE compared to some
previous methods.
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