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Abstract

The digital twin is an emerging means of improving realworld performance from virtual spaces, especially
related to Supply Chain 5.0 in Industry 5.0. This framework employs the Integrated Cloud-Twin
Synchronization (ICTS) to secure data storage, trusted tracking, and high reliability and serves as an
architectural framework for integrating sustainable supply-chain enterprises. In this work, we introduce a
high-level architecture of a cloud-based digital twin model for supply chain 5.0, which was created to align the
system of supply chain through real-time observation as well as real-time supply chain 5.0 decision-making
and control. This study introduces a cloud-based twin optimization model for Supply Chain 5.0, validated
through genetic algorithm (GA) simulations. The model determines optimal weights to balance objectives,
achieving an optimal objective function value that reflects trade-offs among operational efficiency, cost, and
sustainability. A convergence plot illustrates the model’s iterative solution improvements, demonstrating its
dynamic adaptability. Lastly, the proposed model defines and tests a supply chain performance analysis
through dynamic simulations.
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1. Introduction

In the era of Industry, 5.0, supply chains are getting
more complex, and prone to disruptions. Supply
Chain 5.0 represents a transition to a next-generation
supply chain that is agile, resilient, and sustainable,
harnessing advanced digital technologies to drive
efficiency and agility. Digital Twins - These are
revolutionary technologies that help connect the worlds
of physical systems to their digital counterparts. Digital
twins act as rectangular mirrors that reflect the physical
supply chain environment into a dynamic virtual
world, enabling real-time monitoring, simulation, and
optimization of operations, which has proved to be
a necessity in the current supply chain management
scenario [1].

∗Corresponding author. Email: tartat@cbs.chula.ac.th

Cloud computing combined with digital twin tech-
nology also adds more to the value of digital sup-
ply chains. While cloud computing is responsible for
the elastic scalability, secure data storage, and all the
computational power necessary to perform analytics on
large quantities of real-time data, digital twins serve
as the intelligence layer that allows making predic-
tive and prescriptive decisions. Combined, they form
a strong foundation for the Integrated cloud-twin Syn-
chronization to provide a closed-loop system for supply
chain systems to enable effortless synchronization of the
physical and digital layers [2, 3].

In this paper, an integrated cloud twin model for
Supply Chain 5.0 is proposed, allowing real-time mon-
itoring, decision-making, and control of supply chain
subprocesses. The model features IoT devices collect-
ing real-time data and cloud platforms for processing
and storing that data, and digital twins to analyze
operational dynamics and lessen disruptions [4]. These

1
EAI Endorsed Transactions 

on Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 2 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<tartat@cbs.chula.ac.th>


D. Sasi Latha and T. Mokkhamakkul

digital twins draw upon real-time data during disrup-
tions to determine impacts, create alternative supply
chain networks, and evaluate key performance indica-
tors (KPIs) like inventory levels, service levels, financial
indicators, and demand trends. The effectiveness of the
proposed model was evaluated through a genetic algo-
rithm (GA) based simulation research design, involving
the use of advanced supply chain simulation and opti-
mization tools. Based on that, the concept of a digital
supply chain twin was defined and tested concern-
ing disruption analysis and resilience strategies. The
results emphasize the model’s capabilities in tackling
dynamic frameworks, enhancing operational efficiency,
and facilitating collaborative decision-making, thereby
establishing it as an instrumental facilitator of Industry
5.0 supply chains that are both resilient and adaptable
[5]. The key novelty of this work lies in the real-
time synchronization mechanism between the digital
twin and physical supply chain systems, coupled with
an adaptive multi-objective GA model that optimizes
operational performance dynamically. The proposed
framework demonstrates significant advantages over
conventional supply chain optimization models, which
typically rely on static configurations. By integrating
real-time data processing, iterative optimization, and
cloud-based digital twin technology, this model pro-
vides a scalable, intelligent, and adaptive solution for
modern supply chain management. Future work will
focus on extending this framework by incorporating
reinforcement learning-based optimization techniques
and expanding real-world deployment case studies
to further validate the robustness and scalability of
cloud-twin synchronization in Supply Chain 5.0.This
paper is organized into sections, as follows: Section 2
presents the literature review, while Section 3 outlines
the methodology employed in this study. Section 4
describes the evaluation and results. Section 5 presents
a summary performance analysis for the supply chain
with some key insights and implications. Lastly, Sec-
tion 6 concludes the research findings, contributes to
the knowledge of the topic area, and suggests future
research directions.

2. Literature Review

2.1. Evolution of Digital Twin Technology in Supply
Chain
This section explores the origins and transformative
journey of digital twin technology in supply chain
management. Initially conceptualized to enhance man-
ufacturing, DTs gradually expanded their applications
to industrial domains, gaining momentum with Indus-
try 4.0 technologies such as IoT, Big Data, and AI.
These advancements fostered more data-driven, inter-
connected supply chains [6]. Supply Chain 5.0 extends

beyond the automation and digitization focus of Indus-
try 5.0 by integrating human-centric AI and sustain-
ability principles. The key differences include in table
1

The journey to supply chain 5.0 is to be collaborative,
resilient, and sustainable. DTs integrated with cloud
platforms were among the top enablers of real-
time data exchange and support of decision-making.
Yet challenges relevant to technological barriers,
fragmented adoption, and a lack of standardization
persist. This evolution is critical to understanding and
realizing the full potential of DT. [7].

2.2. Digital Twins: Capabilities and Strategic
Importance
Digital twins are virtual replicas of physical systems
that enable real-time monitoring, simulation, and
optimization. Computing with cloud computing, DTs
provide the contemporary supply chain with powerful
platforms for data analytics and decision-making.
They help improve operational efficiency, including
both demand forecasting and inventory optimization,
proactively mitigating risk using both real-time and
historical data. Digital twin cloud systems also can
pursue sustainability objectives by monitoring energy
consumption and pollution. They are scalable for use
in a variety of supply chains. Still, small and medium-
sized enterprises (SMEs) show only limited adoption
due to risk aversion and lack of readily available
resources, emphasizing the necessity for portable and
scalable solutions that can be tailored to different
operational contexts [9].

2.3. Current Integration Frameworks
This segment discusses the frameworks proposed for
efficient integration of DTs and cloud computing in
supply chains. They address everything from simplified
monitoring to integrated end to end management
systems. Yet, despite the potential these frameworks
represent, challenges include the lack of standardized
protocols that could enable the seamless exchange of
data, high dependence on high-quality data, which may
not always be obtainable in underdeveloped regions,
and high implementation costs. Most frameworks
are inconsistent and not intuitive, especially for
supply chain professionals in their design. Scalability,
inclusivity, and ease of use are critical to solving these
limitations and enabling adoption and better operation.
[10, 11].

2.4. Challenges and Opportunities in Digital Twin
Adoption
Although a substantial amount of research has been
conducted, several gaps need to be overcome to
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Integrated Cloud-Twin Synchronization for Supply Chain 5.0

Feature Industry 5.0 Supply Chain 5.0

Focus Automation & Digitization
AI-Driven Adaptability &
Sustainability

Technology IoT, Cloud, Big Data
Digital Twins, AI Optimization,
Blockchain

Decision-Making Reactive Proactive & Predictive

Human Role Minimal AI-Augmented Decision Making

Sustainability Limited Core Consideration

Table 1. Comparison of Industry 5.0 and Supply Chain 5.0

achieve the potential benefits of DT-cloud systems in
supply chain management. There are few economic
feasibility studies, especially for SMEs. Moreover, most
research is technical and neglects behavioral and
organizational dynamics. When new technologies such
as blockchain for security or edge computing for
decentralized data processing are identified as having
high potential, it is also important to understand their
potential role in the healthcare ecosystem, but they
all remain underexplored. There is an urgent need for
standardized protocols that guarantee interoperability
and scalability. Future research should focus on human-
centric designs instead, concentrating on user-friendly
interfaces and decision-support tools that can bridge
the gap between technology and the humans who use
them. [12, 13].

2.5. Advancing Supply Chain 5.0 Through Genetic
Algorithm-Based Digital Twin Framework
The Integrated Cloud-Twin Synchronization (ICTS)
framework enhances Supply Chain 5.0 by addressing
the limitations of conventional digital twins, which
are typically hosted on local servers with restricted
scalability, delayed data processing, and limited real-
time adaptability. Unlike traditional models that rely
on batch processing and static optimization rules, the
ICTS framework leverages cloud-based digital twin
technology to enable real-time synchronization, remote
accessibility, and continuous optimization across sup-
ply chain operations. A key innovation of this approach
is the Genetic Algorithm (GA)-driven adaptive opti-
mization model, which dynamically adjusts decision
variables based on changing supply chain conditions,
ensuring greater efficiency, resilience, and sustainabil-
ity. Conventional digital twins often operate in isolated
silos, making it difficult to integrate logistics, inventory
management, and production planning in real time. In
contrast, the ICTS framework centralizes all operational
data in the cloud, allowing for coordinated decision-
making across the entire supply chain ecosystem.

This real-time adaptability offers significant advantages
in industries such as smart manufacturing, logistics,
and sustainable supply chains, where rapid decision-
making and continuous optimization are essential. For
instance, in smart factories, the ICTS framework can
dynamically optimize production schedules, reducing
downtime and enhancing throughput, while in logis-
tics networks, it enables adaptive routing strategies to
minimize disruptions and improve delivery efficiency.
Additionally, the framework’s ability to balance cost
efficiency with sustainability goals makes it ideal for
carbon footprint optimization in global supply chains.
To further strengthen the contribution, pilot-testing in
these industry applications would validate its impact
and scalability, proving that cloud-based digital twins
with real-time GA optimization can drive the next gen-
eration of intelligent, autonomous, and resilient sup-
ply chain networks empowering supply chains with
self-optimizing capabilities. To further strengthen the
impact and contribution of this research, future work
will focus on pilot-testing the model in industry-specific
use cases, such as smart manufacturing, logistics opti-
mization, and sustainable supply chain networks. This
will provide empirical validation of the model’s ability
to drive resilient, cost-efficient, and sustainable supply
chain transformation in Industry 5.0.

Digital twin technology integration with cloud com-
puting in supply chain management is a high-level
advancement, as it connects the physical and digital
domains to facilitate real-time decision-making, effi-
ciency, and sustainability. It could take several more
years for 6G technology to be fully implemented glob-
ally, although major economies are making signifi-
cant progress in this direction. Nonetheless, hampering
large-scale adoption are issues like the lack of standard-
ization, economic constraints, and the limited develop-
ment of human-centric designs. This review maps this
known landscape of digital twin and -cloud, filling the
identified gaps and paving the path for new resilient
and adaptive solutions that follow the framework set
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Figure 1. High-level architecture of the cloud-based digital twin model for Supply Chain 5.0.

by supply chain 5.0. We also used genetic algorithm
to developed a holistic digital twin framework [14].
The key contributions of this research are as follows:
An integrated framework of cloud and digital twin
based on genetic algorithm is developed to demonstrate
the potential of digital twin in improving data driven
decision making, visibility and optimizing supply chain
operations. The study fills an important gap in the
literature and provides meaningful insights for supply
chain practitioners [15, 16]. Several AI-driven optimiza-
tion techniques were considered, but GA was chosen
due to its suitability for real-time, cloud-integrated
digital twin environments.Table .1 describes the the
GA performance evaluation by discussing alternative
optimization techniques (such as Particle Swarm Opti-
mization, deepreinforcement Learning, and simulated
annealing models).

2.6. Comparative Insights: GA vs. Other AI-Based
Optimization Techniques

where:

3. Methodology

The proposed framework Fig. 1 integrates the physical
and digital layers of the supply chain using IoT, cloud
computing, and digital twin technologies. It begins
with the use of IoT devices including RFID tags,
QR codes and barcodes that observe and gather real-
time data on inventories, shipments and production
throughout supply chain nodes. It is essentially the
groundwork of digital synchronization. This data
is securely transmitted, stored and processed by
the cloud infrastructure, and divided into real-time,
derivative and basic data for use in analysis [17].
It aids in advanced analytics, data organization,
and real-time monitoring, facilitating integration with
the digital twin. The digital twin is a virtual in
the physical supply chain and is being updated
in real time. More than that, it enables scenario
testing, disruption prediction, operational simulations,
and actionable insights that can be leveraged to
successfully optimize processes and drive better
decision-making. Digital twins thus power predictive
analytics by leveraging the previously mentioned
capabilities to respond to supply chain fluctuations.
It provides scalable, adaptive, and human-centred
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Optimization Technique Advantages Limitations Why GAWas Chosen?

Genetic Algorithm (GA)

Global search capability,
multi-objective optimization,
adaptable to real-time updates,
avoids local minima

Computationally expensive for
very large datasets

Provides real-time adaptability
and ensures stable convergence
over time

Particle Swarm
Optimization (PSO)

Suitable for continuous
optimization, efficient in finding
optima

May converge prematurely, limited
adaptability in multi-objective
scenarios

GA provides more robust
adaptability for dynamic trade-offs

Deep Reinforcement
Learning (DRL)

Learns optimal policies, effective in
sequential decision-making

Requires extensive training, high
computational cost

GA is more interpretable, requires
less computational overhead, and
is easier to implement for
real-world supply chains

Simulated Annealing (SA)
Effective for combinatorial
optimization, avoids local minima

Convergence speed depends on
cooling schedule, not well-suited
for real-time dynamic updates

GA provides faster convergence in
adaptive optimization settings

Table 2. Comparative Insights: GA vs. Other AI-Based Optimization Techniques

analytical instrumentation that allows for experimental
agility [18]. Optimizer module will focus on five
key areas: transportation optimization, warehouse
optimization, inventory management optimization,
production optimization, and cost optimization with
sustainability as a priority. It enables high performance
by observing KPI metrics and adjusting operations
to be better and better suited to business needs
as those needs evolve. The framework is operated
through an interconnected feedback loop to drive
collaboration and dynamic adaptability. The Tangent in
supply chain industry 5.0 is an end-to-end integrated
system for value addition through collaborative-based
synergetic strategies that ensure resilience, efficiency,
and sustainability of operations for a future-ready
supply chain system [19, 20].

3.1. Workflow of Cloud Twin-Driven Supply Chain
5.0 Model

The Fig 2 illustrates the typical workflow of cloud twin-
driven supply chain 5.0 model with live physical and
virtual layer interactivity involving real world, real time
data, predictive analytics and optimized supply chain
system [21]. With real-time data transformation from
IoT and cloud technologies, peer-to-peer simulations,
and dynamic digital twin-driven visualizations, the
model lays the foundation for an agile, collaborative,
and proactive future ready supply chain systems. The
process starts from collecting the data through IoT
devices like RFID, QR codes and sensors installed in
different supply chain nodes. These devices measure
the levels of inventory, status of shipments, and
production status, etc., continuously, updating real time
data to the digital twin system. The data collected
will be stored to process and transferred to the
cloud infrastructure it was trained for. The data is
organized and processed into real-time, derivative, and

basic data types within the cloud. By performing this
step, we ensure that the data is handled seamlessly,
and we provide a reliable base for performing
advanced analytics, simulations, and decision-making.
As the cloud data continues, the digital twin is
automatically updated, visualizing the physical supply
chain in real-time to facilitate a closed feedback loop
and eventually eliminate human interference. This
dynamic digital twin mirrors the actual state of the
supply chain in real time, enabling simulations to
be conducted and optimizations performed. Within
this module, disruptions can be assessed, strategies
verified, and actionable insights generated. The digital
twin helps inform the strategy module, which informs
decisions and operating strategies. Predictive analytics,
visualization tools, and decision-support mechanisms
are used to improve the scalability, flexibility, and
efficiency of operations in this system. A human-centric
approach helps ensure that what needs to be sustained
will be sustained, and what needs to evolve will evolve
in line with both stakeholders and the fast-moving
supply chain landscape.

The optimizer module applies these knowledge
to help strengthen a number of essential supply
chain functions, including warehouse management,
transportation logistics, cost optimization, inventory
control, sustainability, and production scheduling. It
helps you to use resources sustainably, minimize
waste while operating, and reduce unnecessary effort
in daily activities. Performance monitoring is an
iterative process which assesses the efficiency of supply
chain processes. It also covers all key performance
indicators due to inventory levels, lead times, customer
satisfaction, etc. that help businesses make further
improvements and refine their strategies accordingly. In
the end, the system returns the feedback and optimized
strategies to the physical part of the supply chain in
real time. This ensures that the physical actions of the
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business are always connected to the digital domain,
enabling real-time progress, agility, and effectiveness.
This end-to-end value chain is a true representation of
how blending the physical and digital systems, inspired
by the tenets of industry 5.0, can lead us to a resilient
and sustainable supply chain.

4. Problem Definition: Case Study Approach
This research adopts a case study approach to
demonstrate the application of a cloud-based digital
twin model for Supply Chain 5.0 optimization. The case
study aims to use data based upon real-world supply
chain situations, sourced from Kaggle online platform,
to model, simulate, and optimize a supply chain, using
a MATLAB coded framework [22].

Key Components of the Dataset
The study utilizes five datasets from various supply
chain components, centered on Supply Chain 5.0
principles, such as collaboration, human-centricity, and
sustainability:

• Customer Satisfaction Data: Customer Satisfac-
tion Data: Includes demand fulfilled, unmet
demand penalties, and other metrics to evaluate
service levels and ensure customer-centric opera-
tions [23, 24].

• Sustainability Data: Sustainability Data: Con-
tains data on carbon emissions, renewable energy
usage, and energy consumption, emphasizing
environmentally responsible supply chain prac-
tices [25].

• Production Data: Production Data: Includes pro-
duction capacity, utilization rates, and downtime
to optimize operational efficiency and responsive-
ness [23].

• Inventory Data: Inventory Data: Represents hold-
ing costs, inventory levels, and replenishment
requirements to enhance resource optimization
and adaptability [23].

• Transportation Data: Captures lead times, trans-
portation costs, and routing efficiency, focusing on
seamless logistics and resilience [26].

4.1. Cloud-Based Digital Twin Model
The digital twin model replicates the physical supply
chain, this will live in the cloud-based environment.
Moreover, the developed model synchronizes the real-
time data with virtual copies of the supply chain,
and scenarios and analytical outputs are used for the
optimization of the performance while being in sync

Figure 2. Research workflow of cloud-based digital twin model

with the human-centric and sustainable ethos of supply
chain 5.0. The framework encompasses several critical
elements: IoT-Driven data collection: supply chain real-
time data is modeled and stored in structured datasets,
facilitating continuous monitoring, control, and cooper-
ation. Simulation module in MATLAB: The convergence
of digital twin designer in MATLAB environment and
imposition of constraints and optimization objectives in
the analog of supply chain 5.0 Optimization module:
The GA technique solves the objective function which
represents Z that balances the goal of maximization
(like customer satisfaction, efficiency, resilience) and
minimization (for instance, costs, lead time, environ-
mental impact) objectives [27, 28].

4.2. Assumptions

The cloud-based digital twin model for supply chain
5.0 is based on some very basic assumptions designed
to honor an adaptative, sustainable, and customer-
centric approach. The assumptions in the GA-driven
cloud digital twin model are justified through empirical
data, theoretical foundations, and methodological con-
siderations, ensuring alignment with Supply Chain 5.0
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principles of adaptability, sustainability, and customer-
centric optimization. The maximization terms, includ-
ing customer satisfaction, production efficiency, sup-
ply chain resilience, on-time delivery, and renewable
energy usage, are based on industry studies and real-
world supply chain data from Kaggle, which reflect ful-
filled demand, capacity utilization, disruption response
times, lead time reliability, and renewable energy pro-
portions. These parameters align with the need for real-
time adaptability and sustainability in supply chains.
Similarly, the minimization terms transportation costs,
inventory costs, lead times, carbon emissions, defect
rates, downtime, and energy consumption are derived
from widely accepted supply chain cost models, ensur-
ing realistic cost-optimization and sustainability trade-
offs. The dataset includes key supply chain metrics
such as carbon emissions per mile, inventory replen-
ishment costs, defect rates, and reinforcing empirical
validity. Furthermore, the objective function formu-
lation, which balances these maximization and mini-
mization terms, reflects a multi-objective optimization
approach that ensures supply chain efficiency while
supporting sustainability and customer service goals.
The GA parameter settings were carefully selected
based on optimization literature, ensuring a globally
optimized solution rather than a locally constrained
one. Additionally, cloud-based architecture enables
real-time data updates and scenario-based decision-
making, unlike conventional digital twins, which often
rely on static, batch-processed data. By incorporat-
ing real-time synchronization, AI-driven adaptability,
and cloud scalability, the proposed Integrated-Cloud
Twin Synchronization (ICTS) framework enhances sup-
ply chain decision-making far beyond the capabili-
ties of traditional digital twins. This methodologically
sound approach, confirmed by using publicly available
datasets from the online platform Kaggle, ensures that
the model is both technically robust and applicable,
with potential for future pilot testing in industry-
specific applications to further strengthen its contri-
bution.This presumes careful and accurate data entry
from real-world data to create a variety of different
scenarios and assesses supply chain network resilience
metrics for how well that network will improve or
expand [28, 29]. Input parameters include the propor-
tion of operations powered by renewable energy sources
as a percentage and the transportation routes are opti-
mized to reduce cost and carbon footprint while maxi-
mizing the on-time deliveries of products to keep cus-
tomers happy. Inventory holding costs are a function of
levels, making them linear, and fixed production capac-
ities will enforce constraints on the baselines, ensuring
consistencies, while costs of emissions are generally still
linear. This method of decision-making creates a con-
nection between production, inventory, transportation,
and sustainability metrics, allowing organizations to

stay adaptable and optimize operations in real time,
which aligns with the principles of supply chain 5.0. [3].

Data for this study were obtained from Kaggle,
including five key elements: customer satisfaction data
(fulfilled demand and unmet penalty), sustainability
data (carbon emissions and renewable energy), produc-
tion data (capacity, utilization, and downtime), inven-
tory data (holding cost and replenishment requirement)
and transport data (lead time and cost). All datasets
were then extended to 100 samples so the synthesized
format is consistent and capable of expansion, which is
consistent with supply chain 5.0 where adaptability and
data-driven decision-making are the focus. The digital
twin optimization model was solved using a global
multi-objective GA in MATLAB. Here are the steps in
the methodology: Objective Function Formulation: The
objective function Z is defined to balance maximization
and minimization goals, supporting the pillars of Sup-
ply Chain 5.0 [30]:

Z = (α1 × cs + α2 × pe + α3 × scnr

+ α4 × otd + α5 × reu)

− (β1 × tc + β2 × tt + β3 × ic

+ β4 × ce + β5 × it + β6 × dr

+ β7 × pd + β8 × epu) (1)

Where:

– Maximization terms (cs, pe, scnr, otd, reu) repre-
sent customer satisfaction, production efficiency,
supply chain resilience, on-time delivery, and
renewable energy usage, emphasizing collabora-
tion, efficiency, and sustainability.

– Minimization terms (tc, tt, ic, ce, lt, dr, pd,
epu) account for transportation costs, lead times,
inventory costs, carbon emissions, defect rates,
downtime, and energy consumption.

Data Mapping is expressed in the form of parameters:
Parametrization of metrics includes customer centricity
(cs) or production efficiency (pe) values derived
from customer, production, and sustainability datasets,
allowing for human-centered collaborative supply
chain objectives. GA is utilized for the weights ( and
) optimization to maximize Z as per the operation
constraints [30]. Simulation and Visualization: The
optimization process iteratively updates weights and
evaluates the objective function. A convergence plot
shows the progress of the Genetic Algorithm over
generations, visually demonstrating improvements in
Supply Chain 5.0 performance metrics. The simulation
provides:

• Optimized Weights: Identify the correct respec-
tive weights ( and ) for maximization and min-
imization terms, respectively, depict balanced
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trade-offs for Supply Chain 5.0 objectives shown
in Figure 3.

• Objective Function Value: It produces the opti-
mized value of Z which in turn represents the
trade-off between operating efficiency, cost, and
sustainability.

• Convergence Plot: This plot represents the GA
convergence over generations and how things get
better iteratively helping with dynamic and real-
time adaptability.

4.3. Explanation of Genetic Algorithm (GA)
Parameter Settings
The table summarizes the key settings for the Genetic
Algorithm (GA) used to optimize the digital twin model
for Supply Chain 5.0 [31, 32]:

The table 1 summarizes the key settings for the
Genetic Algorithm (GA) used to optimize the Digital
Twin Model for Supply Chain 5.0:

• Population Size and Generations: 50 population
size and 100 generations allow the GA to navigate
the solution space exploration while keeping to
the diversity and computational efficiency.

• Objective Function: It comprises both maxi-
mization (), customer satisfaction and renew-
able energy usage, and minimization () terms,
e.g., transportation costs, and carbon emissions.
Evenly weights ([1, 1, 1,...])

• Constraints: Lower bounds ([0, 0, ...]) and upper
bounds ([1, 1, ...]) ensure normalized weights for
practical optimization results.

• Selection, Mutation, and Crossover: The in-
built GA mechanisms handle parent selection,
mutation, and recombination, ensuring diversity
and avoiding premature convergence.

• Stopping Criteria: The algorithm terminates after
100 generations or earlier if convergence is
achieved.

• Output Metrics: The optimized weights (,) and
the objective function value (Z) demonstrate the
effectiveness of the model in achieving the goals of
Supply Chain 5.0, that is, efficiency, adaptability,
and sustainability.

5. Evaluations and Findings
This section presents the outcomes of the research
focused on the development of a cloud based digital
twin model for supply chain 5.0. The empirical results
highlights the models potential in enhancing supply

chain performance and resilience. The figure 3 shows
the graphic representations provide a glimpse into
the complex dynamics of supply chain performance.
The dynamic charts generated from the developed
digital twin model for Supply Chain 5.0 showcase
the optimization of weights over a 50-day simulation
period, emphasizing the model’s adaptability and
focus on achieving operational excellence. Below is an
explanation of the objectives represented in the charts.
The adjustments in these weights reflect the real-
time adaptability of the digital twin model, ensuring
operational efficiency while adhering to sustainability
goals. The fluctuations in the minimization terms (β)
and the stability of maximization terms (α) underscore
the digital twin model’s ability to adapt dynamically
to real-time data. This flexibility supports proactive
decision-making, allowing supply chain managers to
optimize performance metrics in response to changing
conditions. The charts provide a comprehensive
visualization of the digital twin model’s optimization
capabilities. By prioritizing customer satisfaction,
production efficiency, resilience, and sustainability,
while minimizing costs and inefficiencies, the model
aligns with the pillars of Supply Chain 5.0. This
visualization demonstrates the model’s ability to
achieve operational excellence and support decision-
making in complex supply chain environments.

The proposed integrated cloud-twin model for sup-
ply chain 5.0 bridges the gap between physical and
digital supply chain layers, leveraging real-time data,
cloud infrastructure, and genetic algorithm (ga)-based
optimization. The model focuses on achieving opera-
tional efficiency, sustainability, and adaptability, which
are core principles of supply chain 5.0. The model
comprises several key dimensions. The entity and IoT
dimension involves IoT technologies such as RFID and
sensors to collect real-time data, enabling the monitor-
ing of inventory, transportation, and production activ-
ities. The optimizer dimension includes modules like
warehouse and transportation optimization, directly
aligned with the terms in the objective function (z).
The control strategy dimension emphasizes predictive
insights, visualization, and human-centric strategies,
supporting dynamic adaptability. Finally, the cloud
infrastructure module ensures seamless data handling
for digital simulations, optimization, and performance
analysis. The fluctuations in the objective function
value (z) reflect the dynamic adaptability of the supply
chain, accounting for variations in demand fulfillment,
transportation routes, and production schedules. Real-
time data integration allows the digital twin model to
balance these trade-offs effectively, ensuring optimized
operations.
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Parameter Description Value/Setting

Population Size Number of candidate solutions in each
generation

50

Generations Maximum number of generations for
optimization

100

Objective Function Function to maximize or minimize Z

Maximization Weights (α) Weights for maximization terms (cs,
pe, scnr, otd, reu)

[1, 1, 1, 1, 1]

Minimization Weights (β) Weights for minimization terms (tc, tt,
ic, ce, lt, dr, pd, epu)

[1, 1, 1, 1, 1, 1, 1, 1]

Lower Bounds (lb) Minimum allowed values for variables [0, 0, ..., 0]

Upper Bounds (ub) Maximum allowed values for variables [1, 1, ..., 1]

Selection Mechanism Method for selecting parent solutions in-built GA

Mutation Rate Probability of mutation in the off-
spring

in-built GA

Crossover Fraction Fraction of population undergoing
crossover

in-built GA

Fitness Scaling Scaling of fitness scores in-built GA

Stopping Criteria Termination criterion for the GA Max Generations (100)

Output Metrics Optimized weights and the value
resulting from the objective function

α, β, Z

Table 3. Genetic Algorithm Parameters and Settings

Figure 3. Optimized weights for maximization and minimization terms for 50 days shown by digital twin

5.1. Role of the genetic algorithm (GA)

The GA acts as the optimization engine for the model.
It iteratively adjusts weights for maximization (α)

and minimization (β) terms to achieve a maximized
z. By continuously evolving the solution space, the
GA ensures convergence toward optimal configurations
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while maintaining resilience and adaptability. The Fig-
ure 4 objective function value (z) quantifies the trade-
offs between operational efficiency, cost minimization,
and sustainability. Peaks in z indicate successful opti-
mization, whereas dips represent operational trade-offs
or inefficiencies. The average optimal value (z=0.6485)
serves as a benchmark for consistent performance,
showcasing the model’s robustness. The model aligns
with supply chain 5.0 principles by prioritizing cus-
tomer satisfaction, sustainability, and resilience. Met-
rics like customer satisfaction and renewable energy
usage highlight the human-centric and green supply
chain focus. Additionally, the integration of resilience
metrics demonstrates the model’s ability to handle dis-
ruptions effectively.

Figure 4. objective function value (Z) over 50 days shown by
digital twin

The synergy between the ga and the digital twin
enables real-time adaptability. The GA dynamically
recalibrates weights based on real-time data, ensuring
optimal supply chain performance. Moreover, the
scalability of the digital twin model makes it suitable
for diverse and complex networks within supply chain
5.0. The developed digital twin model, powered by
a genetic algorithm, effectively balances operational
efficiency, cost, and sustainability. Its adaptability and
real-time optimization capabilities align with supply
chain 5.0 principles, making it a robust solution for
modern, dynamic supply chain environments.

5.2. Convergence plot analysis for the genetic
algorithm in the digital twin model
The Fig 5 provides convergence plot which a graphical
representation of the progression and comparison
of GA convergence over generations applied to the
digital twin model. This plot highlights the iterative
improvement of the objective function value (Z) across
100 generations, showcasing the algorithm’s ability to
refine solutions dynamically.

The upward trend in the plot indicates that the GA
continuously improves the objective function value over
generations by fine-tuning the weights αandβ). Early
in the optimization process, the algorithm explores a
wide solution space to identify promising candidates.
As generations progress, the algorithm shifts to exploit
these areas, refining the best solutions to achieve
convergence. Toward the later stages, the graph flattens,
indicating that the algorithm has reached an optimal
or near-optimal solution. This iterative process is
integral to the dynamic adaptability of the digital twin
model. By optimizing parameters such as customer
satisfaction, production efficiency, transportation costs,
carbon emissions, and renewable energy usage, the GA
ensures that the digital twin aligns with the goals of
Supply Chain 5.0. The consistent improvement in Z
demonstrates the model’s capacity to balance trade-offs
between operational efficiency, cost minimization, and
sustainability.

The inclusion of an average Z value as a bench-
mark provides additional insight into the algorithm’s
performance. The GA not only exceeds this bench-
mark consistently but also ensures resilience in supply
chain operations by dynamically responding to real-
time data inputs. The convergence plot underscores the
robustness and effectiveness of the GA-powered digital
twin model in achieving Supply Chain 5.0 objectives.
It highlights the model’s ability to balance dynamic
trade-offs, ensure sustainability, and support decision-
making in real-time operational scenarios. The com-
parison graph illustrates the convergence of two GA
runs over 100 generations, highlighting the optimiza-
tion efficiency of the digital twin model for Supply
Chain 5.0. In GA run (Blue) shows the objective func-
tion value Z steadily increases with an average value
marked by the red dashed line, demonstrating stronger
performance and higher convergence values compared
to the second run. Meanwhile, GA run (Orange) follows
a similar improvement pattern but exhibits a slightly
lower average Z indicated by the green dashed line. This
reflects a marginally less efficient optimization trajec-
tory. The comparison underscores the stochastic nature
of the GA, which can lead to variations in optimization
outcomes between runs. Despite these variations, both
runs eventually converge toward optimal values, show-
casing the robustness and adaptability of the digital
twin model. This analysis provides valuable insights
into how multiple GA runs under the same model can
achieve different levels of optimization efficiency while
maintaining overall alignment with Supply Chain 5.0
objectives.

6. Performance Analysis
The Fig 6 represents the performance analysis of
developed digital twin model for Supply Chain 5.0,
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Figure 5. Comparative Analysis of GA Convergence for Digital Twin Model in Supply Chain 5.0

Figure 6. Supply chain performance analysis.

integrated with a GA optimization framework. This
advanced model leverages real-time data, simulation,
and decision-making capabilities to optimize key sup-
ply chain parameters and ensure resilience during
disruptions. By continuously analyzing and refining
performance, the digital twin demonstrates significant
improvements across various metrics. The model effec-
tively minimizes Transportation Time by dynamically
optimizing routes and schedules, reducing delays and
ensuring stable delivery times. Similarly, it reduces
Transportation Costs by implementing efficient logis-
tics strategies, such as shipment consolidation and

optimal mode selection. For Inventory Levels, the
model prevents stockouts and overstocking by dynami-
cally aligning stock with demand, maintaining balance
and minimizing holding costs. The digital twin also
enhances Production Efficiency by optimizing resource
utilization and production schedules, ensuring con-
sistent and high operational performance. Moreover,
it improves Sustainability Metrics by reducing carbon
emissions and energy consumption through greener
and more efficient operations. Finally, the model sig-
nificantly boosts Customer Satisfaction by delivering
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orders on time, meeting demand effectively, and main-
taining reliable service levels. The integration of the
genetic algorithm enables the digital twin to evaluate a
wide range of scenarios and select the most beneficial
solution at each step, ensuring globally optimal out-
comes over time. The feedback loop between the digital
twin and the physical supply chain facilitates real-time
adjustments, further enhancing performance. In sum-
mary, the developed digital twin model, powered by
GA, dynamically optimizes supply chain performance
by addressing key parameters such as transportation,
inventory, production, sustainability, and customer sat-
isfaction. The diagram highlights its effectiveness in
achieving a robust, efficient, and adaptive Supply Chain
5.0 environment.The proposed model addresses gaps
in existing supply chain optimization frameworks. Tra-
ditional optimization frameworks often rely on static
models that do not update dynamically. The GA-based
digital twin model overcomes this by continuously
adjusting in real-time based on evolving data, making
it more resilient to disruptions and uncertainties. Con-
ventional models tend to focus on isolated objectives
such as cost minimization or efficiency. This model
integrates multiple aims cost, efficiency, resilience, and
sustainability into a single optimization framework,
allowing for a more integrated approach. Many exist-
ing frameworks lack intuitive decision-support tools.
By integrating GA with a cloud-oriented digital twin,
this model provides managers with real-time visualized
insights, allowing them to make informed, initiative-
taking decisions rather than reactive ones. Expanded
the discussion on how the proposed model addresses
gaps in existing supply chain optimization frameworks
by emphasizing real-time adaptability, multi-criteria
optimization, enhanced decision support, integration
with complex supply chains, and improved resilience.

The implementation potential of the proposed Inte-
grated Cloud-Twin Synchronization (ICTS) framework
is significant, as it aligns with the evolving needs of
Supply Chain 5.0 by enabling real-time optimization,
adaptability, and sustainability. However, for compa-
nies to successfully adopt this model in real-world sup-
ply chain environments, they must overcome key tech-
nical barriers, including interoperability, security, and
data privacy concerns. To ensure seamless integration,
businesses should adopt standardized communication
protocols such as OPC UA, MQTT, and RESTful APIs,
allowing for efficient data exchange across heteroge-
neous systems, IoT devices, and cloud-based platforms.
Addressing security and data privacy challenges is crit-
ical, as supply chain operations involve sensitive trade
data and real-time transactional information. Organi-
zations can enhance security by implementing multi-
layered encryption, blockchain-based authentication,
and zero-trust architectures, ensuring data integrity,
confidentiality, and compliance with global security

regulations. Additionally, the scalability of digital twin
adoption depends on the efficient management of real-
time data streams, which can be optimized using edge
computing and hybrid cloud architectures, reducing
latency and computational overhead while maintaining
high-speed analytics capabilities. For successful adop-
tion, companies must also invest in workforce training
programs to enhance AI-driven decision-making skills,
ensuring that supply chain professionals can interpret
real-time insights and optimize operations dynamically.
By following a structured implementation roadmap,
businesses can leverage the ICTS framework to improve
operational efficiency, enhance resilience, and drive sus-
tainable supply chain innovation, making their supply
networks more agile, intelligent, and future-ready.

The Integrated Cloud-Twin Synchronization (ICTS)
framework presented in this manuscript is well-aligned
with the evolution of Supply Chain 5.0 and Industry
5.0, emphasizing digital twin technology as a key
enabler for enhancing supply chain performance in
real-time, adaptive, and sustainable ecosystems. While
Industry 4.0 primarily focused on automation, IoT,
and cyber-physical systems, Supply Chain 5.0 extends
beyond these principles by integrating human-centric
decision-making, sustainability, and real-time AI-
driven optimization. The proposed framework directly
addresses these unique challenges, differentiating
it from traditional Industry 4.0 approaches and
demonstrating new capabilities for supply chain
adaptability, resilience, and efficiency. One of the key
distinctions of Supply Chain 5.0 is its focus on real-time
digital twin synchronization within a cloud computing
environment, allowing for continuous monitoring,
intelligent automation, and proactive decision-making.
Unlike conventional Industry 4.0 models, which rely
on predefined rule-based optimizations, our framework
introduces a dynamic Genetic Algorithm (GA) driven
optimization approach that iteratively refines supply
chain parameters, ensuring continuous adaptation to
operational changes. This advancement is crucial for
enhancing decision agility, reducing inefficiencies, and
perfecting multi-objective trade-offs in modern supply
chains.

Furthermore, the ICTS framework integrates
sustainability-driven metrics, a core principle
of Industry 5.0, by optimizing carbon footprint
reductions, renewable energy utilization, and energy-
efficient logistics. This ensures that Supply Chain
5.0 not only enhances operational efficiency but
also aligns with global sustainability goals. As
highlighted in recent research, digital twin technology
is revolutionizing industry-specific applications,
such as the pharmaceutical cold chain, where high
precision, real-time monitoring, and sustainability
compliance are critical factors. Our study extends
these principles to broader supply chain networks,
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demonstrating how cloud-integrated digital twins can
create intelligent, resilient, and future-ready supply
chain ecosystems. The research methodology ensures
a comprehensive evaluation of the ICTS framework,
utilizing real-world-inspired datasets from Kaggle, a
MATLAB-coded optimization environment, and an
extended dataset of 500 samples to confirm the model’s
scalability and adaptability. The conclusion further
emphasizes the model’s ability to dynamically perfect
key supply chain performance indicators, reinforcing
the transformation Supply Chain 5.0 brings beyond
Industry 4.0 principles. Future research will focus on
industry-level implementations to confirm the practical
scalability and impact of this framework.

7. Conclusion
This section includes the results of the research project
that concentrated on the concept of creating a cloud-
oriented digital twin model for the supply chain
5.0. These empirical results underscore the model’s
ability to improve performance and resilience in supply
chains. As indicated by the variation in the terms
of the loss derived from minimization () and the
stabilization for those derived from maximization (),
the digital twin model is adaptive and responsive
to real-time data. Figure 3 demonstrates graphic
representation provides greater insight to understand
the complexity of supply chain performance. The
developed digital twin model for Supply Chain 5.0
generates real-time dynamic charts that demonstrate
the optimization of weights over a 50-day experience
where model adaptability dominates with a scale-
down peak that emphasizes the model’s focus on
operational excellence. Here is a brief explanation
of the goals these charts show. These weights are
adjusted in response to new information, embodying
the real-time adaptive nature of the digital twin
model which allows us to balance operational efficiency
within the framework of sustainability objectives.
This adaptability enables supply chain managers to
make proactive decisions to optimize performance
metrics in real-time as conditions change. The charts
give insights into what the digital twin model
can optimize. In improving customer satisfaction,
production performance, resilience, sustainability, and
reducing costs and inefficiencies, the model covers
the key pillars of Supply Chain 5.0. The model
can be integrated into complex applications, and
this visualization illustrates the model’s potential
for achieving operational excellence alongside your
existing complex supply chain ecosystem.
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