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Abstract 

Child undernutrition remains a major public-health challenge in Ethiopia, often occurring in concurrent forms that are 
clinically more severe than single deficits. We develop a supervised machine-learning framework to classify children into 
concurrent nutritional states using World Health Organization anthropometric indicators. Using baseline data from the 
Young Lives Cohort Study, we model seven observed nutritional categories under substantial class imbalance. Models were 
evaluated using imbalance-aware metrics, including Macro-F1, Balanced Accuracy, and ROC-AUC. Random Forest 
achieved the strongest overall performance and provided improved discrimination for concurrent undernutrition cate-gories. 
Explainability analysis using SHAP highlighted the importance of house-hold and caregiver-related factors. These findings 
demonstrate the potential of explainable machine-learning approaches for modeling concurrent undernutrition and provide 
a foundation for future longitudinal and multi-label extensions. 
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1. Introduction

As child undernutrition increasingly becomes a critical issue, 
it demands more advanced research methodologies. 
Traditional regression models have often been used to 
identify determinants of child undernutrition [1-5]. However, 
these models may struggle with complex, non-linear 
relationships between predictors and can suffer from  

issues such as overfitting. In contrast, machine learning (ML) 
approaches have emerged as a powerful alternative, offering 
improved performance in uncovering significant factors and 
identifying previously unknown variables [6].  

Machine learning approaches have been widely employed to 
identify significant factors contributing to child 
undernutrition in Bangladesh [7-10], India [11-14], Nigeria 
[10], Ghana [15], and Ethiopia [6, 16, 17]. These studies have 
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demonstrated the value of ML algorithms across diverse 
settings. The predictors influencing nutritional status vary 
based on geography and policy context; however, most 
existing ML studies classify children into single nutritional 
categories or rely on composite indices. These approaches do 
not explicitly model concurrent undernutrition states, despite 
their clinical importance.  
Furthermore, previous studies applying machine learning to 
child undernutrition often used composite indices [9, 16, 18] 
or categorized children into groups such as normal, 
underweight, stunted, and wasted [6, 8, 10, 15, 19-23]. 
However, these studies did not account for the possibility of 
concurrent outcomes, where children might exhibit multiple 
forms of undernutrition simultaneously. Concurrent 
conditions are inherently multi-label in structure, as each 
anthropometric deficit represents a binary attribute. Although 
we adopt a multi-class formulation in this proof-of-concept 
study, the multi-label nature of the problem remains 
important and motivates future methodological extensions. 
In addition, most ML studies addressing undernutrition have 
relied on basic imbalance-handling techniques or have not 
systematically compared approaches such as class-weighting, 
threshold calibration, or alternative oversampling strategies. 
Modern imbalance-aware and explainable ML techniques are 
rarely evaluated in this context, particularly in low-resource 
settings.  
In Ethiopia, where undernutrition is severe, no ML study has 
classified concurrent conditions like underweight and stunted 
(US) or underweight, stunted, and wasted (USW), a gap this 
research addresses using the Young Lives Cohort Study 
(YLCS) dataset. This study develops an explainable and 
imbalance-aware ML framework that models multiple 
concurrent anthropometric outcomes, evaluates a range of 
classifiers using stratified cross-validation, and provides 
insights into key socioeconomic and household predictors. 
The work serves as a foundation for future extensions to 
multi-label modeling, advanced imbalance handling, and 
temporal validation using longitudinal data. 

2. Materials and Methods
Data Source and Study Participant

This study uses baseline data from the Young Lives Cohort 
Study (YLCS) on childhood poverty in Ethiopia, which 
provides a cross-sectional snapshot from Round 1 (2002) of 
the survey. The analysis focuses on 1,994 children from five 
regions: Amhara, Oromiya, Tigray, Southern Nations, 
Nationalities and Peoples' Region (SNNP), and Addis Ababa, 
sampled from both urban and rural communities. Data were 
primarily reported by mothers or primary caregivers [24]. 

Outcome Variable and Potential Features 

Using WHO standards, children’s nutritional status was 
defined using Z-scores: underweight (weight-for-age Z < –2), 
stunted (height-for-age Z < –2), and wasted (weight-for-
height Z < –2). These Z-scores were provided by the YLCS 
team. 
We categorized outcomes into seven anthropometric 
combinations: normal (N), underweight only (U), stunted 
only (S), wasted only (W), underweight and stunted (US), 
underweight and wasted (UW), and underweight, stunted, and 
wasted (USW) [25]. The "stunted and wasted" (SW) category 
did not occur in the raw data and was not synthesized to avoid 
clinically implausible labels. Per-class metrics and macro-
averaged performance scores were calculated for the 
observed categories only. 
Predictor variables were grouped into child-level, caregiver-
level, parental, and household characteristics, consistent with 
prior research on undernutrition, including demographic, 
socioeconomic, health, and environmental factors. Some 
potential predictors, such as breastfeeding duration and 
maternal employment status, were not available in the 
baseline data. 
Data Preprocessing Workflow 
Approximately 5% of entries had missing values, imputed 
using mean (numerical) and mode (categorical). No 
significant outliers were detected. String variables were 
converted to numeric, and categorical variables were one-hot 
encoded [26-30]. All transformations were performed within 
the training folds to prevent data leakage. 
Stratified splitting by the outcome categories ensured class 
representation, and SMOTE was applied only to the training 
set. Feature scaling used Min–Max normalization within each 
fold. The Random Forest classifier was trained in multiclass 
mode, using a one-vs-rest formulation for per-class metrics 
only (Figure 1). Feature selection was based on impurity-
based importance within each fold, with a median threshold 
to retain informative predictors. 

Figure 1: Workflow of Diagram for Machine Learning 
Model  

Model Training and Analytic Strategy 
The data were split into stratified training and test sets 
(90:10). All preprocessing steps—including imputation, 
encoding, scaling, feature selection, and SMOTE—were 
applied exclusively within the training folds to prevent data 
leakage; the test set remained untouched. Model development 
followed a nested cross-validation framework, with inner 5-
fold cross-validation for hyperparameter tuning and outer 
folds for performance evaluation. Reported results 
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correspond to cross-validated estimates and final test-set 
performance. 

Models were implemented in Python (scikit-learn). Random 
Forest (RF) served as the primary classifier and was trained 
in its native multiclass mode; a one-vs-rest formulation was 
used only for computing class-wise performance metrics. 
Feature selection was performed within each training fold 
using RF impurity-based importance with a median-
importance threshold, and was used for dimensionality 
reduction rather than causal interpretation. The final model 
was retrained on the full training set using optimal 
hyperparameters and evaluated on the held-out test set. 

Model explainability 
Model interpretability was assessed using SHAP (SHapley 
Additive exPlanations) for the best-performing Random 
Forest classifier. SHAP values were computed using 
TreeExplainer on the fully trained model and evaluated 
exclusively on the original, non-oversampled test set. For the 
multiclass setting, SHAP was computed using a one-vs-rest 
formulation to obtain class-specific explanations for all seven 
outcome categories. Global importance was summarized 
using mean absolute SHAP values, with PDP and ICE plots 
used to examine marginal effects. SHAP results reflect 
learned associations and do not imply causality. 

Model performance metrics 
Model performance was evaluated using metrics appropriate 
for imbalanced multiclass data, including precision, recall, 
F1-score, Balanced Accuracy, and one-vs-rest ROC-AUC. 
Macro-averaged metrics were emphasized to ensure equal 
weighting of rare outcome categories. Confusion matrices 
were used to summarize class-wise performance. Cross-
validated estimates and test-set results are reported, with 
additional metric definitions provided in the Supplementary 
Material. 

3. Results 

Among 1,994 children, the most common category was 
normal (N), followed by stunted only (S) and concurrent 
undernutrition (US, UW, USW). Class imbalance was 
substantial, with the rarest category being USW (Figure 2). 

 

Figure 2: Distribution of child nutritional status by their 
gender and region where they are residence in 

Ethiopia 

As shown in Figure 3, Random Forest (RF achieves the 
highest mean cross-validated accuracy among the evaluated 
classifiers, followed by Gradient Boosting. Support Vector 
Machine (SVM) and AdaBoost show moderate performance, 
while Logistic Regression, K-Nearest Neighbors, Naive 
Bayes, Decision Tree, and regularized linear models obtain 
lower mean accuracies across folds. These results represent 
cross-validated training performance and are not directly 
comparable to hold-out test accuracy (Figure 3). 

 

Figure 3: Comparison of machine learning classifiers 
based on mean accuracy (95% CI) at five different 

cross-validation folds 

SHAP indicated that household services and 
caregiver/household characteristics were among the strongest 
predictors. Improved living conditions (e.g., water, 
sanitation, maternal literacy) generally reduced predicted 
risk, whereas indicators of deprivation increased it (Figure 4). 

 

Figure 4: SHAP summary (beeswarm) for Random 
Forest on the hold-out test set. Each point shows a 
child’s SHAP value for a feature; values to the right 
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(left) increase (decrease) the model’s predicted risk. 
Wider spreads indicate greater global influence. 

The confusion matrices for male and female children (Figure 
5) show that most predictions fall along the diagonal, 
indicating correct classifications across cate-gories. Normal 
(N) and Wasted (W) categories exhibit the highest counts of 
cor-rect predictions for both genders. Misclassifications are 
observed—for example, 6 instances for males and 10 for 
females in the N category, and some errors in the US category 
(underweight and stunted)—but these remain limited in 
number. 

 

Figure 5: Confusion matrix for child nutritional status 
classification model across gender in Ethiopia 

The Random Forest classifier shows strong multiclass 
performance. Normal (N) achieves high scores (OvR 
accuracy = 0.94, Balanced Accuracy = 0.96, AUC = 0.97), 
with similarly reliable results for W (AUC = 0.89; F1 = 0.84; 
Balanced Acc. = 0.87) and S (AUC = 0.87; F1 = 0.82; 
Balanced Acc. = 0.85). Performance on concurrent categories 
is lower—particularly USW (Recall = 0.80; Balanced Acc. = 
0.82; AUC = 0.85)—but remains informative. US and UW 
maintain Bal-anced Accuracy values of 0.88 and 0.93, 
respectively. Because overall OvR accu-racy can be inflated 
in imbalanced settings, Balanced Accuracy is highlighted as 
a more reliable indicator of per-class performance. Table 1 
summarizes all class-wise scores. 

Table 1: Class-wise performance scores of the random 
forest classifier 

Class-wise 
Metrics 

N U S W US U
W 

US
W 

Sensitivity 0.9
5 

0.8
8 

0.8
3 

0.8
5 

0.8
7 

0.9
2 

0.80 

Specificity 0.9
6 

0.9
0 

0.8
6 

0.8
8 

0.8
9 

0.9
3 

0.83 

Precision 0.9
4 

0.8
9 

0.8
1 

0.8
4 

0.8
6 

0.9
1 

0.79 

F1-score 0.9
4 

0.8
8 

0.8
2 

0.8
4 

0.8
7 

0.9
1 

0.79 

ROC-AUC 
(OvR) 

0.9
7 

0.9
1 

0.8
7 

0.8
9 

0.9
0 

0.9
3 

0.85 

Accuracy 
(OvR) 

0.9
4 

0.8
9 

0.8
3 

0.8
6 

0.8
8 

0.9
1 

0.81 

Balanced 
Accuracy 

0.9
6 

0.8
9 

0.8
5 

0.8
7 

0.8
8 

0.9
3 

0.82 

Macro-avg 0.8
7 

0.8
9 

0.8
6 

0.8
6 

0.9
0 

0.8
7 

0.88 

NB: The SW class does not appear in this because no SW 
instances were present; summary metrics reflect the 
observed classes. 

4. Discussion 

This study demonstrates that machine-learning models, 
particularly Random Forest, can effectively classify 
concurrent child undernutrition categories under substantial 
class imbalance, extending prior ML applications that 
primarily focused on single anthropometric outcomes [9, 23, 
30-35]. Explicit modeling of concurrent conditions addresses 
a clinically relevant but underexplored problem in nutritional 
epidemiology. 

Random Forest showed strong overall performance, with 
reduced but informative discrimination for rare concurrent 
categories, reflecting the inherent difficulty of predicting 
multiple simultaneous deficits[9, 16]. Explainability analysis 
using SHAP highlighted the importance of household 
services and caregiver-related factors, consistent with 
previous evidence linking socioeconomic conditions to child 
undernutrition risk [26–30].  

Although the analysis relies on baseline survey data, the 
findings provide a methodological foundation for explainable 
and imbalance-aware modeling of concurrent undernutrition. 
Future work should extend this framework using longitudinal 
data and alternative imbalance-handling strategies, and 
consider multi-label formulations to better capture the 
dynamic and overlapping nature of childhood undernutrition 
[16, 36, 37]. 

5. Conclusion 

These results robustly confirm the hypothesis formed This 
study shows that machine-learning models, particularly 
Random Forest, can classify child undernutrition—including 
concurrent conditions—with promising performance when 
evaluated using imbalance-aware metrics such as Macro-F1 
and Balanced Accuracy. Explicit modeling of concurrent 
outcomes and SHAP-based explanations provides a 
transparent framework for understanding complex nutritional 
risk patterns. 
While results are encouraging, they are based on baseline 
survey data and imbalanced outcome categories, 
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underscoring the need for cautious interpretation. Future 
work should extend this approach using longitudinal data, 
improved imbalance-handling strategies, and multi-label 
formulations to better capture the dynamic and overlapping 
nature of childhood undernutrition. 
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