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Abstract

Child undernutrition remains a major public-health challenge in Ethiopia, often occurring in concurrent forms that are
clinically more severe than single deficits. We develop a supervised machine-learning framework to classify children into
concurrent nutritional states using World Health Organization anthropometric indicators. Using baseline data from the
Young Lives Cohort Study, we model seven observed nutritional categories under substantial class imbalance. Models were

evaluated using imbalance-aware metrics, including Macro-F1, Balanced Accuracy, and ROC-AUC. Random Forest
achieved the strongest overall performance and provided improved discrimination for concurrent undernutrition cate-gories.
Explainability analysis using SHAP highlighted the importance of house-hold and caregiver-related factors. These findings
demonstrate the potential of explainable machine-learning approaches for modeling concurrent undernutrition and provide
a foundation for future longitudinal and multi-label extensions.
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1. Introduction issues such as overfitting. In contrast, machine learning (ML)

approaches have emerged as a powerful alternative, offering
improved performance in uncovering significant factors and

As child undernutrition increasingly becomes a critical issue, identifying previously unknown variables [6].

it demands more advanced research methodologies.
Traditional regression models have often been used to  \1a pine learning approaches have been widely employed to
identify determinants of child undernutrition [1-5]. However, identify significant factors contributing to child

these? quels may Stmggle with - complex, non-linear , jernutrition in Bangladesh [7-10], India [11-14], Nigeria
relationships between predictors and can suffer from [10], Ghana [15], and Ethiopia [6, 16, 17]. These studies have
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demonstrated the value of ML algorithms across diverse
settings. The predictors influencing nutritional status vary
based on geography and policy context; however, most
existing ML studies classify children into single nutritional
categories or rely on composite indices. These approaches do
not explicitly model concurrent undernutrition states, despite
their clinical importance.

Furthermore, previous studies applying machine learning to
child undernutrition often used composite indices [9, 16, 18]
or categorized children into groups such as normal,
underweight, stunted, and wasted [6, 8, 10, 15, 19-23].
However, these studies did not account for the possibility of
concurrent outcomes, where children might exhibit multiple
forms of undernutrition simultaneously. Concurrent
conditions are inherently multi-label in structure, as each
anthropometric deficit represents a binary attribute. Although
we adopt a multi-class formulation in this proof-of-concept
study, the multi-label nature of the problem remains
important and motivates future methodological extensions.
In addition, most ML studies addressing undernutrition have
relied on basic imbalance-handling techniques or have not
systematically compared approaches such as class-weighting,
threshold calibration, or alternative oversampling strategies.
Modern imbalance-aware and explainable ML techniques are
rarely evaluated in this context, particularly in low-resource
settings.

In Ethiopia, where undernutrition is severe, no ML study has
classified concurrent conditions like underweight and stunted
(US) or underweight, stunted, and wasted (USW), a gap this
research addresses using the Young Lives Cohort Study
(YLCS) dataset. This study develops an explainable and
imbalance-aware ML framework that models multiple
concurrent anthropometric outcomes, evaluates a range of
classifiers using stratified cross-validation, and provides
insights into key socioeconomic and household predictors.
The work serves as a foundation for future extensions to
multi-label modeling, advanced imbalance handling, and
temporal validation using longitudinal data.

2. Materials and Methods
Data Source and Study Participant

This study uses baseline data from the Young Lives Cohort
Study (YLCS) on childhood poverty in Ethiopia, which
provides a cross-sectional snapshot from Round 1 (2002) of
the survey. The analysis focuses on 1,994 children from five
regions: Amhara, Oromiya, Tigray, Southern Nations,
Nationalities and Peoples' Region (SNNP), and Addis Ababa,
sampled from both urban and rural communities. Data were
primarily reported by mothers or primary caregivers [24].

Outcome Variable and Potential Features

Using WHO standards, children’s nutritional status was
defined using Z-scores: underweight (weight-for-age Z <-2),
stunted (height-for-age Z < -2), and wasted (weight-for-
height Z < -2). These Z-scores were provided by the YLCS
team.

We categorized outcomes into seven anthropometric
combinations: normal (N), underweight only (U), stunted
only (S), wasted only (W), underweight and stunted (US),
underweight and wasted (UW), and underweight, stunted, and
wasted (USW) [25]. The "stunted and wasted" (SW) category
did not occur in the raw data and was not synthesized to avoid
clinically implausible labels. Per-class metrics and macro-
averaged performance scores were calculated for the
observed categories only.

Predictor variables were grouped into child-level, caregiver-
level, parental, and household characteristics, consistent with
prior research on undernutrition, including demographic,
socioeconomic, health, and environmental factors. Some
potential predictors, such as breastfeeding duration and
maternal employment status, were not available in the
baseline data.

Data Preprocessing Workflow

Approximately 5% of entries had missing values, imputed
using mean (numerical) and mode (categorical). No
significant outliers were detected. String variables were
converted to numeric, and categorical variables were one-hot
encoded [26-30]. All transformations were performed within
the training folds to prevent data leakage.

Stratified splitting by the outcome categories ensured class
representation, and SMOTE was applied only to the training
set. Feature scaling used Min—Max normalization within each
fold. The Random Forest classifier was trained in multiclass
mode, using a one-vs-rest formulation for per-class metrics
only (Figure 1). Feature selection was based on impurity-
based importance within each fold, with a median threshold
to retain informative predictors.
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Figure 1: Workflow of Diagram for Machine Learning
Model

Model Training and Analytic Strategy

The data were split into stratified training and test sets
(90:10). All preprocessing steps—including imputation,
encoding, scaling, feature selection, and SMOTE—were
applied exclusively within the training folds to prevent data
leakage; the test set remained untouched. Model development
followed a nested cross-validation framework, with inner 5-
fold cross-validation for hyperparameter tuning and outer
folds for performance evaluation. Reported results
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correspond to cross-validated estimates and final test-set
performance.

Models were implemented in Python (scikit-learn). Random
Forest (RF) served as the primary classifier and was trained
in its native multiclass mode; a one-vs-rest formulation was
used only for computing class-wise performance metrics.
Feature selection was performed within each training fold
using RF impurity-based importance with a median-
importance threshold, and was used for dimensionality
reduction rather than causal interpretation. The final model
was retrained on the full training set using optimal
hyperparameters and evaluated on the held-out test set.

Model explainability

Model interpretability was assessed using SHAP (SHapley
Additive exPlanations) for the best-performing Random
Forest classifier. SHAP values were computed using
TreeExplainer on the fully trained model and evaluated
exclusively on the original, non-oversampled test set. For the
multiclass setting, SHAP was computed using a one-vs-rest
formulation to obtain class-specific explanations for all seven
outcome categories. Global importance was summarized
using mean absolute SHAP values, with PDP and ICE plots
used to examine marginal effects. SHAP results reflect
learned associations and do not imply causality.

Model performance metrics

Model performance was evaluated using metrics appropriate
for imbalanced multiclass data, including precision, recall,
Fl-score, Balanced Accuracy, and one-vs-rest ROC-AUC.
Macro-averaged metrics were emphasized to ensure equal
weighting of rare outcome categories. Confusion matrices
were used to summarize class-wise performance. Cross-
validated estimates and test-set results are reported, with
additional metric definitions provided in the Supplementary
Material.

3. Results

Among 1,994 children, the most common category was
normal (N), followed by stunted only (S) and concurrent
undernutrition (US, UW, USW). Class imbalance was
substantial, with the rarest category being USW (Figure 2).
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Figure 2: Distribution of child nutritional status by their
gender and region where they are residence in
Ethiopia

2 EA

As shown in Figure 3, Random Forest (RF achieves the
highest mean cross-validated accuracy among the evaluated
classifiers, followed by Gradient Boosting. Support Vector
Machine (SVM) and AdaBoost show moderate performance,
while Logistic Regression, K-Nearest Neighbors, Naive
Bayes, Decision Tree, and regularized linear models obtain
lower mean accuracies across folds. These results represent
cross-validated training performance and are not directly
comparable to hold-out test accuracy (Figure 3).
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Figure 3: Comparison of machine learning classifiers
based on mean accuracy (95% Cl) at five different
cross-validation folds

SHAP  indicated that household services and
caregiver/household characteristics were among the strongest
predictors. Improved living conditions (e.g., water,
sanitation, maternal literacy) generally reduced predicted
risk, whereas indicators of deprivation increased it (Figure 4).

SHAP Summary (Beeswarm)
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Figure 4: SHAP summary (beeswarm) for Random
Forest on the hold-out test set. Each point shows a
child’s SHAP value for a feature; values to the right
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(left) increase (decrease) the model’s predicted risk.
Wider spreads indicate greater global influence.

The confusion matrices for male and female children (Figure
5) show that most predictions fall along the diagonal,
indicating correct classifications across cate-gories. Normal
(N) and Wasted (W) categories exhibit the highest counts of
cor-rect predictions for both genders. Misclassifications are
observed—for example, 6 instances for males and 10 for
females in the N category, and some errors in the US category
(underweight and stunted)—but these remain limited in
number.
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Figure 5: Confusion matrix for child nutritional status
classification model across gender in Ethiopia

The Random Forest classifier shows strong multiclass
performance. Normal (N) achieves high scores (OvR
accuracy = 0.94, Balanced Accuracy = 0.96, AUC = 0.97),
with similarly reliable results for W (AUC = 0.89; F1 = 0.84;
Balanced Acc. = 0.87) and S (AUC = 0.87; F1 = 0.82;
Balanced Acc. = 0.85). Performance on concurrent categories
is lower—particularly USW (Recall = 0.80; Balanced Acc. =
0.82; AUC = 0.85)—but remains informative. US and UW
maintain Bal-anced Accuracy values of 0.88 and 0.93,
respectively. Because overall OVR accu-racy can be inflated
in imbalanced settings, Balanced Accuracy is highlighted as
a more reliable indicator of per-class performance. Table 1
summarizes all class-wise scores.

Table 1: Class-wise performance scores of the random
forest classifier

Class-wise N U S W US U
Metrics W W
0
2

Sensitivity 09 08 0.8 08 0.8

Specificity 09 09 08 08 08 09 0.83
6 0 6 8 9 3
Precision 09 08 08 08 08 09 0.79

F1-score 09 08 08 08 08 09
4 8 2 4 7 1

0.79

ROC-AUC 09 09 08 08 09 09 085
(OVR) 7 1 7 9 0 3
Accuracy 09 08 08 08 0.8 09 0381
(OVR) 4 9 3 6 8 1
Balanced 09 08 08 08 08 09 0.82
Accuracy 6 9 5 7 8 3
Macro-avg 08 08 08 08 09 08 0.88

7 9 6 6 0 7

NB: The SW class does not appear in this because no SW
instances were present, summary metrics reflect the
observed classes.

4. Discussion

This study demonstrates that machine-learning models,
particularly Random Forest, can effectively classify
concurrent child undernutrition categories under substantial
class imbalance, extending prior ML applications that
primarily focused on single anthropometric outcomes [9, 23,
30-35]. Explicit modeling of concurrent conditions addresses
a clinically relevant but underexplored problem in nutritional
epidemiology.

Random Forest showed strong overall performance, with
reduced but informative discrimination for rare concurrent
categories, reflecting the inherent difficulty of predicting
multiple simultaneous deficits[9, 16]. Explainability analysis
using SHAP highlighted the importance of household
services and caregiver-related factors, consistent with
previous evidence linking socioeconomic conditions to child
undernutrition risk [26-30].

Although the analysis relies on baseline survey data, the
findings provide a methodological foundation for explainable
and imbalance-aware modeling of concurrent undernutrition.
Future work should extend this framework using longitudinal
data and alternative imbalance-handling strategies, and
consider multi-label formulations to better capture the
dynamic and overlapping nature of childhood undernutrition
[16, 36, 37].

5. Conclusion

These results robustly confirm the hypothesis formed This
study shows that machine-learning models, particularly
Random Forest, can classify child undernutrition—including
concurrent conditions—with promising performance when
evaluated using imbalance-aware metrics such as Macro-F1
and Balanced Accuracy. Explicit modeling of concurrent
outcomes and SHAP-based explanations provides a
transparent framework for understanding complex nutritional
risk patterns.

While results are encouraging, they are based on baseline
survey data and imbalanced outcome categories,
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underscoring the need for cautious interpretation. Future
work should extend this approach using longitudinal data,
improved imbalance-handling strategies, and multi-label
formulations to better capture the dynamic and overlapping
nature of childhood undernutrition.
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