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Abstract

Automatic speech recognition (ASR) for tonal low-resource languages remains challenging due to the scarcity
of labelled data and the need to model complex prosodic systems. This paper presents a hybrid multi-
modular ASR architecture for tpuri, a Mboum-Day Niger-Congo language spoken in Cameroon and Chad
that exhibits contrastive lexical tone, vowel length and nasalisation. The system combines a self-supervised
Wav2Vec 2.0 acoustic encoder with a tonal processing module based on YIN pitch estimation and STFT-
derived spectral features, and an adaptive fusion mechanism that integrates acoustic and tonal representations
before decoding. We pretrain the acoustic encoder on 45 hours of read and spontaneous speech and fine-
tune it on 19h35 of scripted speech. On the scripted test set, our best configuration reaches a word error
rate (WER) of 10.4%, a phone error rate (PER) of 8.7% and a tone error rate (TER) of 6.1%. Ablation
experiments show that removing the tonal module (+1.5 WER, +2.3 TER) or self-supervised pretraining
(+3.4 WER) substantially degrades performance, while adaptive fusion and tone-aware data augmentation
yield smaller but consistent gains. A fine-grained error analysis across tonal, grammatical, syllabic and
morphological dimensions indicates that the architecture is particularly effective at modelling lexical tone
and clause-level syntax, but still struggles with complex syllable structures and rich morphology. Overall, the
results demonstrate that competitive ASR is attainable for under-resourced tonal languages such as tpuri by
tightly coupling self-supervised acoustic modelling with explicit tonal representations, and provide a reusable
blueprint for extending ASR to other Niger-Congo languages.
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1. Introduction Crucially, the degree to which a language is under-
resourced does not depend solely on its number of
speakers, but rather on the quantity, quality and
internal consistency of its digital resources and tools |5,
6]. Large communities may still be underserved if there
are few reliable corpora, no standard orthography or
only rudimentary NLP and ASR tools. Conversely, some
languages with relatively small speaker populations can
be well supported when sustained investment has been
made in corpus building and tool development. From
this perspective, many African languages including
those with several hundred thousand speakers remain
clearly under-resourced.

Spoken language technologies such as automatic speech
recognition (ASR), speech synthesis and spoken dia-
logue systems rely critically on the availability of high-
quality linguistic resources, including text corpora,
pronunciation lexicons and multimodal datasets[1, 2].
While languages such as English or Mandarin benefit
from massive annotated corpora and mature toolchains,
many of the world’s languages remain largely absent
from the digital sphere, particularly in Africa and parts
of Asia[3, 4]. This imbalance severely limits access
to speech technologies and contributes to a persistent This work focuses on tpuri, a Mboum-Day Niger-
“digital language divide”. Congo language spoken in Cameroon and Chad.
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Existing estimates place the number of speakers
between roughly 500000 and 750000 [7], although
recent fine-grained census data are lacking [8]. Tpuri
is typologically challenging for ASR: it exhibits
contrastive lexical tone, a rich vowel inventory
with phonemic length and nasalisation, and complex
morphophonological alternations. At the same time,
it lacks large digital corpora and dedicated speech
technologies, making it a prototypical example of
an under-resourced, structurally complex African
language. Bridging this gap calls for architectures
that can exploit modern self-supervised learning while
incorporating explicit linguistic knowledge about tone
and prosody.

In this paper, we address these challenges by
developing and empirically evaluating a multi-modular
ASR system tailored to tpuri. Our approach combines
a self-supervised acoustic encoder with an explicit
tonal front-end and an adaptive fusion mechanism that
integrates these complementary representations before
decoding. Beyond obtaining a working system, our
goals are to quantify how much explicit tonal modelling
helps in a low-resource setting and to characterise
which error patterns remain for this tonal, low-resource
language.

Our main contributions are as follows:

* We document the acoustic and tonal characteris-
tics of tpuri from an ASR perspective, highlight-
ing those phonological properties lexical tone,
vowel length and nasalisation, that are most criti-
cal for speech recognition.

* We propose a hybrid multi-modular architecture
that combines a Wav2Vec 2.0-based acoustic
encoder with a tonal processing module based
on YIN pitch estimation and STFT-derived
spectral features, together with an adaptive fusion
mechanism that dynamically integrates acoustic
and tonal information.

* We conduct an extensive empirical study on tpuri
speech, including ablation experiments that quan-
tify the relative contributions of explicit tonal
modelling, adaptive fusion and self-supervised
pretraining.

* We provide a fine-grained error analysis across
tonal, grammatical, syllabic and morphological
dimensions, showing that the proposed design
substantially improves the modelling of lexical
tone and clause-level syntax, while revealing
remaining weaknesses in the treatment of syllable
structure and complex morphology.

Taken together, these results demonstrate that com-
petitive ASR systems can be built for a tonal, under-
resourced language such as tpuri by tightly coupling

self-supervised acoustic modelling with explicit tonal
representations. More broadly, the methodology pro-
posed here offers a reusable blueprint for extending
ASR to other low-resource tonal languages beyond
tpuri.

2. Related Work

Automatic speech recognition (ASR) for under-
resourced languages remains challenging due to
limited transcribed speech, sparse text resources for
language modelling, and scarce linguistic tools. For
tonal languages, these constraints are amplified because
lexical meaning often depends on suprasegmental cues
such as fundamental frequency (Fy;) and voicing,
which can be degraded by noise, channel effects, or
speaker variability. This section positions our work
at the intersection of low-resource ASR, tone-aware
modelling, and self-supervised speech representation
learning.

2.1. ASR for Low-Resource Languages

Traditional low-resource ASR strategies include data
augmentation, pronunciation lexicon bootstrapping,
and cross-lingual or multilingual transfer. Data aug-
mentation has been shown to be particularly effective
when labelled data is scarce, improving robustness and
reducing overfitting [9]. More recently, transfer learn-
ing with pretrained acoustic encoders has become a
dominant paradigm, as it enables strong performance
with limited labelled speech by leveraging large-scale
unlabelled pretraining. In African and other under-
resourced settings, public corpora are still limited and
language diversity is high; therefore, approaches that
are effective under small-data regimes and that can
incorporate language-specific cues are especially valu-
able. In this context, our work targets Tpuri, a low-
resource tonal language, and explicitly models tone as a
complementary information source rather than relying
on acoustics alone.

2.2. Tonal and Pitch-Aware ASR

Tone-aware ASR has a long history, with two recurring
design patterns. The first is embedded modelling, where
pitch-related cues (e.g., smoothed Fy, AF,, or voicing
measures) are appended to short-term acoustic features
and learned jointly by the acoustic model. The second
is explicit modelling, where tone (or tone class) is
predicted over longer spans (often syllable-level) and
combined with phonetic decoding through rescoring,
multi-stream fusion, or factorised representations.
Mandarin has served as a primary testbed for tone
modelling. Early work explored robust pitch tracking
and tone feature extraction for Mandarin ASR [10],
and subsequent studies examined integration strategies
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that combine pitch cues with spectral features [11].
For Mandarin broadcast news, Lei et al. showed
that embedded F, features and an explicit tone
classifier can provide complementary gains when
combined via lattice rescoring [12]. Beyond Mandarin,
similar themes appear in other tonal languages. For
Vietnamese LVCSR, Vu and Schultz compared tone-
handling strategies supported by pitch extraction in
a large-vocabulary setting [13]. For extremely low-
resource tonal settings, Coto-Solano demonstrated that
factorising tone in transcription (separating tone from
segmental units) can yield consistent improvements in
both HMM/GMM and CTC systems, even with under
two hours of data [14]. Recent corpus-building work
for Yoruba also highlights that diacritics encode lexical
tone and reports wav2vec 2.0 baselines for ASR [15].

These results collectively suggest that tonal evidence
is complementary to segmental acoustics, and that
the optimal integration depends on both the linguis-
tic structure (tone-bearing units) and signal reliability
(availability of stable Fj). Motivated by this literature,
we adopt a multi-modular design: a strong SSL acous-
tic encoder coupled with a dedicated tonal module,
combined through an adaptive fusion gate. This archi-
tecture follows the multi-stream intuition (acoustic vs.
tonal evidence) while remaining compatible with end-
to-end decoding; we further analyse the learned gate to
quantify when tonal evidence is emphasised.

2.3. Self-Supervised Speech Representation Learning

Self-supervised representation learning has become a
key enabler for low-resource ASR by providing pre-
trained acoustic encoders that transfer effectively with
limited labelled data. Wav2Vec 2.0 is a prominent
example, demonstrating strong gains across languages
and data regimes [15]. However, tone remains com-
paratively underexplored in the SSL literature beyond
Mandarin-centric benchmarks. Recent analyses suggest
that the temporal span and salience of tone cues cap-
tured by SSL models can vary across tonal systems and
transfer conditions [16]. Our approach leverages SSL
pretraining for robust acoustic modelling, while explic-
itly injecting tonal information through a dedicated
module and an adaptive fusion mechanism, targeting
reliable recognition in a low-resource tonal language.

3. Tpuri Language and Its Resources

3.1. Classification and Demographics

Tpuri (also written Tupuri in some sources) is primarily
spoken in parts of Chad and Cameroon, where it
functions as a local lingua franca in several urban
centres and surrounding rural areas. In Chad, speakers
are concentrated mainly in the Mayo-Kebbi Est region;
in Cameroon, they are found in the Far North Region

along the border with Chad. Existing estimates place
the number of speakers between roughly 500 000 and
750000(8, 17], although the absence of recent, fine-
grained census data in both countries prevents a more
precise demographic assessment.

From a genealogical perspective, Tpuri is commonly
classified (following Boyd, as reported in descriptive
accounts) among the Mbum languages (Group 6) of the
Adamawa branch within the Niger-Congo family[8]. In
both national contexts, Tpuri coexists with other local
languages as well as regional and official languages. It
is used in everyday communication within families and
neighbourhoods, in markets and local administration,
and in a range of ritual and ceremonial contexts.
Oral traditions, narrative practices and songs play
an important role in maintaining a shared cultural
identity [7]. Written usage remains comparatively
limited and orthographic conventions are not yet fully
standardised, a factor that has direct implications for
the construction of text corpora and pronunciation
lexicons for ASR.

3.2. Phonological Inventory

Vowels. Descriptive work on Tpuri reports a relatively
rich vowel system. Following Ruelland, the language
distinguishes 24 vowel phonemes organised along three
dimensions: vowel quality, orality versus nasality, and
vowel length[18]. In practical orthography, long vowels
are commonly indicated by doubling the vowel letter
(aa, ee, ii, 0o, , uu), while nasalisation is marked with a
tilde (a, , 1, 6, @) [18].

Length is phonemic and contributes to lexical
contrasts; however, descriptive accounts note that
the length contrast is most clearly distinctive in
open syllables, whereas in closed syllables it may be
neutralised and only slight lengthening can arise as a
phonetic correlate of contour tones[18]. From an ASR
perspective, this implies that the system must model
durational variability jointly with spectral and tonal
cues.

Consonants. The consonantal system of Tpuri further
contributes to its segmental complexity. Descriptive
analyses report around 25 consonants, including
oral consonants as well as nasal and prenasalised
segments[8, 18]. Prenasalised stops are particularly
frequent and play an important role in syllable
structure and morphophonology. From the standpoint
of acoustic modelling, these segments give rise to
characteristic transitions and coarticulatory patterns
that must be captured reliably by the encoder.

In this work, we adopt the phoneme inventory
observed in our corpus and lexicon (Table 1).
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Table 1. Tpuri consonant inventory used in this work (IPA in
TIPA notation).

Category Phonemes
Stops /pbtdkgb/
Fricatives /fsh/
Affricates /tf dz/

Nasals /mny/
Prenasalized /mb nd yg/
Liquids /lr/

Glides /wij/

Tone. Thpuriis a tonal language: pitch patterns realised
on syllables contribute to both lexical contrasts and
grammatical distinctions. The system distinguishes six
tones, four level (High, Mid-high, Mid-low, Low) and
two contour tones (Rising and Falling). Tone interacts
with morphology and syntax through phenomena such
as tone spreading and tone sandhi, whereby the surface
realisation of a tone depends on neighbouring tones and
on prosodic phrasing.

For ASR, this rich tonal system is particularly
challenging. First, tone is realised primarily through
fundamental frequency (F;) movements that are
superimposed on segmental cues. Second, the six-way
tonal contrast leads to a high density of minimal
or near-minimal pairs, such that small errors in
pitch tracking may result in changes of lexical
meaning or grammatical function. Finally, sandhi and
other contextual effects mean that the mapping from
underlying tonal categories to surface F, contours
is often many-to-many. These properties motivate
the inclusion of a dedicated tonal module in our
architecture (Sections 4 and 6) that can exploit fine-
grained information about F; dynamics and their
interaction with segmental context.

3.3. Audio Corpus

To support the development and evaluation of ASR
systems for Tpuri, we collected a multi-genre speech
corpus comprising scripted, read and spontaneous
speech. Scripted speech consists primarily of carefully
prepared sentences, elicited to cover a broad range
of phonological and morphosyntactic patterns. Read
speech involves controlled reading of texts such as
narratives or dialogues, while spontaneous speech
includes conversational and narrative material recorded
in more naturalistic settings. This design aims to
balance phonological coverage with the need to capture
natural usage patterns, disfluencies and prosodic
variation.

Table 2 summarises the composition of the corpus.
All recordings were digitised at 16 kHz with 16-bit
linear PCM encoding, which is standard for modern
ASR and facilitates integration with existing toolchains.

(a) Waveform with orthographic
segmentation.

(b) Spectrogram of the same
utterance (optionally with Fq
overlay).

Figure 1. Tpuri utterance illustrating sandhi-induced phoneme
fusion without pause. (a) Waveform and orthographic segmen-
tation; (b) spectrogram showing continuous energy across word
boundaries.

Table 2. Tpuri audio corpus summary.

Speech Type Duration Speakers
Scripted Speech  19h35m24s 35(18F/17M)
Read Speech 7h32m17s 12(6 F/ 6 M)
Spontaneous 36 h34m28s 28(15F/13M)
Dataset Availability and Reproducibility. To facilitate

reproducibility, we will release the pronunciation
lexicon (with tone-marked entries), the metadata
for train/dev/test splits, and the complete
training/decoding recipes (configuration files and

scripts)[19]. Public redistribution of raw audio
depends on speaker consent and local ethics
requirements. When full public release is not

possible, we will provide access to the audio under
a research-only data sharing agreement, while still
making all non-audio resources openly available via
https://github.com/bayang89/asr_tpuri.

4. Preliminary Acoustic Analysis

4.1. Spectrogram and Formants

Figure 1 illustrates a Tpuri utterance in which sandhi
processes lead to phoneme fusion without an audible
pause between words. The signal is segmented into
orthographic units, shown below the waveform. From
left to right, the segments Blo: p6 jay caw so form a
prosodic unit with continuous energy, as speakers often
avoid inserting clear silence at word boundaries.

In the spectrogram (Figure 1b), frequency is plotted
on the vertical axis and time on the horizontal axis,
with darker regions indicating higher energy. Formant
trajectories and consonant bursts reflect the segmental
structure, while the F; contour (when available)
carries lexical and grammatical tone. The absence of
clear acoustic silence between words makes automatic
segmentation difficult and motivates a robust acoustic
encoder together with an explicit tonal analysis module
capable of leveraging pitch-related cues in tightly
connected sequences.
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4.2. Fundamental Frequency (F,) Statistics

We estimated fundamental frequency with the YIN
algorithm, constraining candidate pitch periods to 2-20
ms (50-500 Hz). We use a 25 ms analysis window and a
10 ms hop size, matching the STFT framing in Table 4
to maintain temporal alignment between acoustic and
tonal streams. We also retain YIN’s voicing probability
as a pitch-confidence measure.

5. Signal Preprocessing

The primary goals of signal preprocessing are to
enhance the signal-to-noise ratio, to normalise loudness
across recordings and to segment the audio stream into
speech chunks that can be processed efficiently by the
acoustic and tonal encoders. This section summarises
the main steps of the pipeline.

5.1. Preprocessing Parameters

Table 3 lists the hyperparameters used throughout the
preprocessing stage. They were selected empirically
to maximise speech/noise separation and spectral
stability while remaining compatible with standard
ASR practices.

Table 3. Audio preprocessing hyperparameters.

Parameter Value
NMF rank r 50
Convergence threshold e 1074
Regularisation term # 10°6
Target RMS power —25 dBFS

STFT window
STFT hop

Window function
Silence threshold 6

25 ms (400 samples)
10 ms (160 samples)
Hann

Hnoise T 1.5 Onoise

5.2. Spectral Representation and NMF-Based
Denoising

We first compute a complex short-time Fourier
transform (STFT) of the input signal using a 25 ms
Hann window and a 10 ms hop. The magnitude
spectrogram is denoted by X € RIXT, where F is the
number of frequency bins and T the number of time
frames.

To reduce stationary background noise, we apply
non-negative matrix factorisation (NMF), approximat-
ing the spectrogram as

X ~ WH,

where W € REX" contains spectral basis vectors
and H € R7T contains their time-varying activations.
Optimisation is performed with multiplicative updates

under a regularised divergence criterion, using the rank
r, convergence threshold € and regularisation term #
given in Table 3.

After convergence, we identify basis vectors associ-
ated with noise (typically broad and slowly varying)
and those associated with speech. Retaining only the
latter yields a denoised spectrogram

Xspeech = Wspeech Hspeech’

which is then inverted with the original phase
to obtain a cleaned time-domain signal. This step
improves robustness of both the acoustic and tonal
encoders, especially in spontaneous recordings col-
lected in noisy environments.

5.3. Loudness Normalisation

For each speech segment S(#) of duration T, we compute
its root-mean-square (RMS) power as

1T
pP= 7.[0 S(t)2 dt.

All segments are then rescaled to a fixed target power
level:

Ptarget
F=—3=, Parga = =25 dBFS,

Snorm(t) = F - S(#).

This simple normalisation reduces loudness vari-
ability across speakers, recording sessions and speech
types, which in turn stabilises training and improves
convergence of the downstream neural models.

5.4. Temporal Segmentation and VAD

Finally, we perform temporal segmentation using an
energy-based voice activity detection (VAD) scheme.
For each recording, noise statistics are estimated from
low-energy regions, yielding a mean p,;5e and standard
deviation opgise. Frames whose energy exceeds the
threshold 0 = ppise + 1.5 0poise are classified as speech;
others are treated as silence or background noise.

Contiguous stretches of detected speech are grouped
into segments, with short pauses optionally merged
when they fall below a minimum duration. These
segments are then passed to the acoustic encoder and
tonal module described in Section 6. This segmentation
strategy strikes a balance between preserving prosodic
continuity and producing units of manageable length
for training and decoding.

6. Multi-Modular ASR Architecture

Our ASR system combines three main components
(Figure 2): a self-supervised acoustic encoder, a tonal
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analysis module and an adaptive fusion layer integrates
these complementary representations before feeding a
Transformer-based CTC prediction head. Final word
hypotheses are obtained using lexicon-constrained
beam search with an external language model. This
section describes each component and its role in the
overall architecture.

Given a raw waveform X = (xy,...,x7), the system
first computes a sequence of contextualised acoustic
representations with a Wav2Vec 2.0-style encoder [15].
In parallel, a tonal front-end extracts pitch-related and
spectral features using YIN-based F, estimation and
short-time Fourier analysis. The resulting tonal rep-
resentations are passed through a small convolutional
network. An adaptive fusion mechanism then combines
acoustic and tonal features at each time step before
being mapped to token posteriors by a Transformer-
based prediction head optimized with a CTC objec-
tive; final word hypotheses are obtained via lexicon-
constrained beam search with an external language
model.

Formally, the architecture maps an input waveform X
to a sequence of fused hidden states

Hfusion — ]_—(Hacoustic’ Htonal )’

where H2Ustic denotes the sequence of acoustic
encoder outputs, H'°"! the tonal representations and
F the adaptive fusion function. The CTC prediction
head produces frame-level posterior distributions over
the output label inventory. A lexicon-constrained beam
search combined with the external language model
yields the final token/word sequence.

6.1. Self-Supervised Acoustic Encoder

The acoustic encoder follows the Wav2Vec 2.0 design
[15]. A stack of temporal convolutions acts as a feature
encoder, mapping the input waveform X to a sequence
of latent representations

C =(c1,...,cr) = ConvEnc(X),

where each ¢, summarises a short window of the
signal. A multi-layer Transformer then produces
contextualised representations

acoustic acoustic
H = (hacoustic,

e, hicou“ic) = Transformer(C),
which integrate longer-range phonetic and prosodic
dependencies.

We first pretrain the encoder on 45 hours of
unlabelled tpuri speech (read and spontaneous) using
the contrastive self-supervised objective of [15], and
then fine-tune it on 19h35 of scripted speech with a
CTC loss. Pretraining allows the model to learn robust
acoustic patterns from a larger pool of data, which is
crucial in our low-resource setting.

6.2. Tonal Analysis Module

In parallel with the acoustic encoder, we compute tonal
features that explicitly encode fundamental frequency
and local spectral shape. Fundamental frequency F(t)
is estimated with the YIN algorithm [20] within a
linguistically motivated range of candidate periods. We
use the same framing scheme as for the STFT described
in Section 5, thereby maintaining temporal alignment
between acoustic and tonal streams.
For each frame, we extract:

* the estimated F( value and voicing probability;
* log-scaled energy;

* a low-dimensional projection of the magnitude
spectrum (e.g. via mel filterbanks or principal
components).

These features are concatenated and passed through
a small convolutional network with K layers:

Htonal = (htlonal’ ey htLonal) = CNNtone(F)’

where F denotes the frame-level tonal feature sequence.
The convolutional network captures local contour
patterns and short-range dependencies in the tonal
domain while keeping the dimensionality of H'onal
compatible with that of Hacoustic,

6.3. Adaptive Fusion Mechanism

The two representation streams are combined by an
adaptive fusion mechanism operating at each time step.
Given an acoustic vector h3“"" and a tonal vector

htg"“al for frame ¢, we compute a 2-way gate and a fused
representation:

g = softmax(W[h?C"uStic; h}onal] + b) e R?,

fusion _ acoustic tonal
hy ™% = gg1 by + 802 M,

where W and b are trainable parameters and [-;-]
denotes concatenation. By construction, &1 t8c2=
1, so the model can smoothly trade off between
acoustic and tonal evidence at each frame. This simple
mechanism allows the network to emphasise tonal
cues when they are informative for instance in lexical
minimal pairs while relying more heavily on the
acoustic encoder when tonal information is less reliable
or less discriminative.

The fusion parameters are learned jointly with the
rest of the model during fine-tuning. In practice, we
observe that the fusion gate assigns higher weights to
the tonal stream in segments dominated by vowels and
sonorants, and higher weights to the acoustic stream in
consonant clusters and noisy regions.
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Acoustic

Adaptive Textual
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encoder

Tonal

fusion decoder
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analysis

Figure 2. Overview of the multi-modular ASR architecture for tpuri.

6.4. Decoder and Language Model

The fused sequence Hyyion is fed to a Transformer based
CTC prediction head (non-autoregressive), followed
by a linear projection over the label inventory. Note
that decoding is performed externally via lexicon
constrained CTC beam search (Eq. 2) rather than by
an autoregressive seq2seq decoder. We use lexicon-
constrained CTC decoding with beam search and an
external language model trained on Tpuri text.

During decoding, each candidate hypothesis is scored
by interpolating the CTC acoustic score with the
language-model score and a word insertion penalty:

Y = argmax (log pcrc(Y | Hiusion) + Alog pum(Y) + 71Y1),

(2)
where A controls the influence of the language model
and y acts as a word insertion penalty that encourages
or discourages longer hypotheses.

The external LM is a 4-gram word-level model
trained with modified Kneser-Ney smoothing using
the KenLM toolkit [21]. The training corpus consists
of the normalized transcripts of the scripted training
split (80% of the scripted subset: 12,013 sentences,
162,927 running word tokens). We apply the same
text normalization used for WER/PER/TER scoring;:
tones and diacritics are preserved in the orthography,
punctuation is standardized, and casing and spacing are
made consistent. The LM vocabulary is derived from
the training transcripts and the pronunciation lexicon;
out-of-vocabulary words are mapped to a dedicated
<unk> symbol. Singleton n-grams (those appearing only
once in the training data) are pruned for n > 3 to reduce
model size and improve generalization. The resulting
vocabulary contains 6,381 unique word types, with an
OOV rate of 4.7% on the test set.

Decoding is performed with a beam width of B = 100.
The fusion weight A and insertion penalty y are tuned
on the development split via grid search over the ranges
A €[0.5,2.0] (step 0.1) and y € [-1.0,0.0] (step 0.1), and
then kept fixed for all ablations. The optimal values
used in all reported results are A = 1.2 and y = -0.3. All

decoding settings, including the complete grid-search
space and beam-search options, are released with the
training and decoding recipes.

This modular design makes it possible to upgrade
the language model or pronunciation lexicon without
retraining the acoustic and tonal encoders. It also
isolates the contributions of acoustic-tonal modelling
from purely textual improvements, which is important
for interpreting the ablation results in Section 7.

7. Experimental Results

7.1. Evaluation Protocol

To contextualise the performance of our multi-modular
architecture, we compare it against two strong baseline
systems trained on the same 19.5 hours of scripted tpuri
speech.

Baseline A: Wav2Vec 2.0 without explicit tonal mod-
ule. The first baseline uses the same Wav2Vec 2.0
acoustic encoder as our full system, initialised from the
same self-supervised pretraining. The encoder directly
followed by the same Transformer-based CTC predic-
tion head described in Section 6, without any parallel
tonal CNN or adaptive fusion. Instead, the CTC pre-
diction head operates solely on the acoustic representa-
tions H2°Usti¢ Training and decoding hyperparameters,
including the external language model and beam search
settings, are kept identical to those of the proposed sys-
tem. This baseline isolates the contribution of explicit
tonal modelling and adaptive fusion.

Baseline B: CNN-BLSTM-CTC. The second baseline
is a conventional fully supervised acoustic model
trained from scratch. The architecture consists of a
stack of 5 two-dimensional convolutional layers with
batch normalisation and ReLU activations, followed by
3 bidirectional LSTM layers with 512 units in each
direction and a final linear projection to the label
inventory. The input is a sequence of 80-dimensional
log-mel filterbank features with 25 ms window and
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10 ms hop, computed on the denoised waveform.
We train this model with the CTC loss using the
same mixed phoneme-tone inventory as in our main
system, but without any self-supervised pretraining.
No external language model is used at decoding time;
instead, we perform simple beam search with beam
width 20. This baseline reflects the performance of
a strong traditional architecture under the same data
conditions, but without self-supervised learning or
explicit tonal fusion.

7.2. Computational Environment, Training Setup and
Reproducibility

All experiments were conducted on a single NVIDIA
Tesla T4 GPU (16 GB memory) with a multi-core CPU
environment, using PyTorch with CUDA acceleration.
We use mixed-precision training (FP16/AMP).

Audio is resampled to 16 kHz. We fine-tune a
pretrained Wav2Vec 2.0 acoustic encoder with a
CTC objective on the scripted corpus (19 h 35
m of transcribed speech, split into 80%/10%/10%
train/dev/test with disjoint speakers). This corresponds
to approximately 15.7 h of training audio and about 2.0
h each for development and test.

Optimisation uses AdamW (weight decay 0.01) with
a peak learning rate of 3 x 107>, scheduled with linear
warmup (1000 steps) followed by linear decay. Due to
GPU memory constraints, we train with mini-batches
of 4-8 utterances per GPU and gradient accumulation
(4 steps). We clip gradients to 1.0 for stability and freeze
the convolutional feature extractor during the first 10k
updates.

We apply tone-aware augmentation consisting of
speed perturbation (0.9/1.0/1.1) and additive noise (10-
20 dB SNR), while avoiding pitch shifting to preserve
lexical tone patterns.

We fix random seeds 42 for all runs and report results
using predefined train/dev/test splits. We release
training/decoding configuration files, including beam
size and shallow-fusion parameters (A, ), together
with evaluation scripts and text normalization for
WER/PER/TER computation.

Evaluation Metrics. We evaluate recognition perfor-

mance at three complementary levels: words, phones

and tones. For all metrics, we use standard minimum-

edit-distance alignment between reference and hypoth-

esis sequences, and report error rates as percentages.
Word error rate is computed as

Sw+ Dy +1,

Phone error rate is computed analogously on
phoneme sequences obtained from the pronunciation
lexicon:

PER = 100 x S”+D—”+I”, (4)
NP
where Sp, Dp, Ip and Np are defined in terms of
phoneme tokens.

Tone error rate measures the accuracy of lexical tone
recognition independently of segmental correctness.
We define tone-bearing units (TBUs) as vowel nuclei
in the phonemic transcription. Each TBU is annotated
with one of six tonal categories: High (H), Mid-High
(MH), Mid-Low (ML), Low (L), Rising (R) and Falling
(F). Given a reference transcription, we extract the
sequence of tonal labels (ty,..., Ty,) associated with its
TBUs. For each hypothesis transcription, we obtain the
corresponding tonal sequence by applying the same
lexicon-based mapping from phones to tonal labels.
We then perform edit-distance alignment between
reference and hypothesis tonal sequences, and compute

Si+ D+ 1;

TER =100
X N,

(3)

where S;, D; and I; are the numbers of tonal
substitutions, deletions and insertions, and N; is the
number of reference TBUs. TBUs without underlying
lexical tone (e.g. toneless clitics, if any) are excluded
from the computation.

Confidence Intervals and Statistical Significance. To assess
the robustness of our results, we complement point
estimates with confidence intervals and significance
testing.

Bootstrap Confidence Intervals. For each system
and each metric (WER, PER, TER), we estimate 95%
confidence intervals using non-parametric bootstrap
resampling at the utterance level. Concretely, we
generate B = 1,000 bootstrap samples of the test set
by sampling utterances with replacement. For each
bootstrap replicate b, we recompute the metric of
interest, yielding a sample {n%(h)}llj:l. The 2.5th and
97.5th percentiles of this sample define the lower and
upper bounds of the 95% confidence interval.

Significance Testing. When comparing two systems
A and B, we use the same bootstrap samples to test
whether the difference in error rates is statistically
significant. For each bootstrap replicate b, we compute

the difference A(?) = n‘if) - rﬁg’). The empirical p-value

WER = 100 x ¥ Zw ™ w, (3)
Ny is given by
where S,, D, and I, denote the number of word B B
substitutions, deletions and insertions, respectively, p=2 min(l Zl (A®) > 0}, 1 Z,l {A(b) < 0}).(6)
and N, is the total number of reference words. B oy B =
EAFAldRdprasrkdiansasipnson
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where I[-] is the indicator function. We consider
differences with p < 0.05 to be statistically significant.
This procedure allows us to identify, for example,
whether the gains of the proposed tonal fusion
architecture over the Wav2Vec 2.0 baseline are unlikely
to be due to random variation in the test set.

We evaluate the proposed multi-modular architec-
ture on the scripted portion of the annotated tpuri
corpus described in Section 3 (see Table 2). The scripted
data amount to 19h35 of transcribed speech (approx-
imately 19.5 hours), corresponding to 162927 tokens
and 12013 sentences. We split this corpus into 80%
training, 10% development and 10% test, with disjoint
speakers and a balanced gender distribution across
splits. Unless otherwise stated, all results reported in
this section are computed on the scripted test set.

Recognition performance is measured in terms of
word error rate (WER), phone error rate (PER) and
tone error rate (TER). On the scripted test set, the
full multi-modular system achieves a WER of 10.4%, a
PER of 8.7% and a TER of 6.1%. Given the relatively
small amount of labelled data and the tonal and
morphophonological complexity of tpuri, these figures
indicate that the proposed architecture provides a
competitive entry point for ASR in this language.

Figure 3 shows the evolution of the training and
validation loss as a function of the number of
training iterations. Both curves decrease steadily before
plateauing, and the gap between them remains limited
throughout training. No strong signs of overfitting are
observed in the final stages, suggesting that the model
capacity is reasonably well matched to the size of the
corpus. Early stopping based on the development loss
typically selects models in the 40-50 epoch range.

To better understand the strengths and weaknesses
of the system, we analyse performance across four
linguistic dimensions: tonal phenomena, grammatical
constructions, syllable structure and morphology. For
each dimension, we evaluate WER and PER on a subset
of the test corpus where the corresponding phenomena
are particularly salient (Figure 4). The system performs
best on tonal and grammatical contexts, where WER
remains below 10.2% and PER below 8.0%. Syllable
structure and morphology remain more challenging,
with WER of up to 15.3% and PER of up to 11.2%.
This pattern confirms that explicit tonal modelling
is beneficial, while highlighting the need for richer
modelling of complex syllable types and morphological
alternations.

Finally, Table 4 presents an ablation study quanti-
fying the contribution of each module. Removing the
tonal branch increases WER by 1.5 points and TER by
2.3 points, demonstrating the importance of explicit

tonal features even in the presence of a powerful self-
supervised encoder. Disabling self-supervised pretrain-
ing degrades WER by 3.4 points, confirming the ben-
efit of pretraining on unlabelled tpuri speech. Adap-
tive fusion and tone-aware data augmentation yield
smaller but consistent improvements. Together, these
results support our central claim: competitive ASR
performance on a low-resource tonal language can be
achieved by tightly integrating self-supervised acoustic
representations with dedicated tonal modelling.

2 T T T T | |
e —— Training
R - - - Validation
1.5}
w
8 1}
._1
0.5
O | | | | | |
0 10 20 30 40 50
Iterations

Figure 3. Training and validation loss as a function of training
iterations.

The joint convergence of training and validation
losses, without a marked divergence in validation,
indicates a globally stable optimization regime and a
model capacity that is well matched to the data size.
The moderate gap between training and validation
curves suggests good generalization, and an early
stopping point around 40-50 iterations would likely
prevent late-stage overfitting while preserving peak
performance.

The highest error rates are observed for syllable
structure, indicating difficulties in modeling consonant
clusters and phonotactic constraints. Strengthening
decoding constraints (e.g., via a more structured lan-
guage model or explicit penalties on illicit sequences),
together with additional targeted training data, is likely
to improve performance in this area. In contrast, tonal
error rates are the lowest among all tasks, suggesting
that the acoustic features leveraged, in particular F
contours, effectively capture relevant tonal contrasts.
The gaps between WER and PER also highlight lexical
and segmentation errors beyond the phoneme level
(e.g., function words, agreement, morphological mark-
ers), pointing to potential gains from more powerful
language-model rescoring and a more finely normalized
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20 ‘ dedicated tonal module are effective for tpuri. However,
JOWER the distribution of errors is not uniform and reveals
0o PER systematic differences between level and contour tones.
15 — | The lowest TER is obtained for high level tones (H,
12.5 il 3.8%), suggesting that these are acoustically the most
] 11.2 salient and the most consistently realized in the corpus.
9.8 ] 10.2 10.1] Mid-high (MH, 5.3%) and mid-low (ML, 6.1%) tones
8 exhibit slightly higher error rates, which is consistent
6.5 with the fact that their Fy ranges partially overlap
and are therefore more prone to confusion, both for
human annotators and for the model. Low tones (L,
5.5%) remain relatively well recognized, although their
lower intensity and potential interaction with voicing
0 \ \ \ \ \ and segmental context make them somewhat more
1 2 3 4 5 challenging than H tones.
Tasks As expected, contour tones (Rising and Falling) are
the most difficult to model, with TERs of 7.0% and
Syllable structure 6.7%, respectively. These tones require the systerp
Tonality to track not only absolute F, values but also their
Grammar temporal dynamics over the syllable, and they are more
Morphology sensitive to local prosodic variation, coarticulation,
and phrase-level intonation. The fact that contour
Figure 4. Comparison of WER and PER across different  tones still remain below 8% TER indicates that the
evaluation tasks. combination of F, trajectories, spectral features, and
contextual embeddings captures a substantial portion
of the tonal structure, but also points to a clear avenue

Error (%)
=
[
|
o]
N
|
|
|

Syllable

lexicon. Overall, these results indicate that the pro- for improvement. In particularl increasing the amount
posed multi-modular architecture is particularly effec-  of annotated data for contour tones and incorporating
tive for tonal and grammatical recognition in tpuri, more ﬁne-grained mode]ing of phrase-]eve] prosody are
while also revealing clear avenues for future improve- likely to further reduce these residual errors.
ments in syllable structure and morphology. As shown in Table 4, both the tonal module and the
self-supervised pretraining on tpuri play a central role
12 in the overall performance of the system. Removing
the tonal branch leads to a +1.5 absolute increase in
10 - | WER and a +2.3 increase in TER, while disabling self-
supervised pretraining degrades WER by +3.4 points.
gl | Adaptive fusion and tonal-aware data augmentation
s oh 7 6.7 | bring additional but more moderate gains.
= 6 5.3 ] 515 | Configuration WER (%) PER (%) TER (%)
= Full multi-modular system (ours) 10.4 8.7 6.1
4+ 3.8 - w/o tonal module 11.9 9.8 8.4
w/o self-supervised pretraining on tpuri 13.8 11.4 9.7
w/o adaptive fusion (simple late concat.) 11.3 9.1 7.0
2L | w/o tone-preserving augmentation (speed-+noise) 11.0 9.0 6.9
Table 4. Ablation study of the proposed tpuri ASR system on
0 ‘ ‘ ‘ the scripted speech test set.

! ! !
H MH ML L  Rising Falling
Tone categories

7.3. Analysis of the Adaptive Fusion Gate

Logging and aggregation. During inference on the
scripted test set, we log g, for every frame and
aggregate these weights globally, by broad phonetic

Figure 5 reports the tone error rate (TER) per tone  class (vowel/sonorant vs. obstruent), and by local
category. Overall, the system achieves relatively low  signal conditions (high-SNR vs. low-SNR frames,
error rates across all tones (all TERs below 8%), which  approximated by frame-level energy). Broad phonetic
confirms that the explicit tonal modeling and the classes are obtained by force-aligning the reference

Figure 5. Tone Error Rate (TER) by tone category for the tpuri
ASR system.
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transcription with the acoustic stream and mapping
phones to classes.

Figure 6 shows the distribution of tonal weights g,
and Table 5 reports the mean and standard deviation
by class. Overall, the model assigns a higher tonal
weight on vowel nuclei and sonorant segments (tone-
bearing regions), while down-weighting tonal features
in consonant clusters and low-energy/noisy frames.
This behaviour is consistent with the linguistic status
of tone in tpuri (primarily realised on vowel nuclei) and
supports the design choice of an explicit tonal branch.

30 | | ‘I - Y | | |
vai 0 Histogram
- b ¢ Mean (y ~ 0.33) |
= | 3 1 iiMedian (% ~ 0.31)
< 20p ' 1
bid
= - [ .
< L
) | Al
5 H H |
[ H Odmm
T T 1 7 T T ] T ] T ] T [ T 7T T
0 0.10.20.3040.50.60.70809 1

Tonal gate weight g,

Figure 6. Distribution of tonal gate weights g, on the scripted
test set. Lower values indicate acoustic-dominated decisions
(82,1 = 1 — g¢,2), while higher values indicate stronger reliance
on tonal cues.

For the signal classes, we compute a frame-level SNR
proxy in dB by comparing speech-frame energy to the
estimated noise-floor energy (from non-speech regions
used in VAD), and bin frames into < 10 dB, 10-20 dB
and > 20 dB. Pitch confidence is derived from YIN'’s
voicing probability (high if > 0.6, low otherwise).

Across phonetic classes, g/, is highest on vowels and
sonorants, i.e., tone-bearing and FO-stable regions, and
lowest on unvoiced obstruents and pauses where pitch
cues are absent. Across signal conditions, tonal reliance
decreases under low SNR or low pitch-confidence,
indicating that the fusion gate adapts to the reliability
of tonal evidence rather than enforcing tone uniformly.

8. Limitations

Despite the strong results obtained on scripted tpuri
speech, the present study has several limitations that
should be considered when interpreting the findings
and when reusing the proposed architecture.

Data size and domain coverage. Our labelled training
set is limited (19h35 scripted speech) and primarily
read/scripted. Performance on spontaneous speech,

(a) Phonetic classes (tone-bearing segments show higher gz 5).

Class Mean Std Med. Py Py
Vowels (tone-bearing) 0.44 0.17 0.42 0.21 0.69
Sonorants (N/L/G) 0.37 0.15 0.35 0.18 0.58
Voiced obstruents 0.28 0.13 0.27 0.12 0.47
Unvoiced obstruents 0.16 0.10 0.15 0.05 0.32
Silence / pause 0.05 0.04 0.04 0.01 0.12

(b) Signal classes (tonal reliance decreases when Fp becomes less
reliable).

Class Mean Std Med. Py Py
High SNR (>20 dB) 0.36 0.14 0.35 0.17 0.58
Mid SNR (10-20 dB) 0.33 0.15 0.31 0.15 0.56
Low SNR (<10 dB) 0.24 0.14 0.22 0.08 0.48
High pitch conf. 0.40 0.15 0.39 0.20 0.63
Low pitch conf. 0.22 0.13 0.20 0.06 0.44

Table 5. Summary statistics of tonal gate weights gy, by
phonetic and signal classes on the scripted test set. Higher values
indicate stronger reliance on tonal cues.

code-switching, and noisy field recordings may be
lower. While we include self-supervised pretraining
on 45 hours of read and spontaneous speech, this
remains small compared to high-resource benchmarks,
and additional unlabelled audio could further improve
robustness.

Generalisability to other tonal systems. Tpuri
exhibits a six-way lexical tone system with both level
and contour tones. While the modular design is meant
to transfer to other tonal languages, different tone
inventories (e.g. register vs. contour, downstep, tone
sandhi) may require modifications to the tonal feature
extraction and the tone-aware lexicon.

Tonal feature extraction. We use YIN-based F,
estimation, which can be sensitive to breathy voice,
creaky voice, and low SNR conditions. Although the
adaptive fusion layer can down-weight unreliable tonal
cues, a more robust neural pitch estimator or joint
pitch-ASR training could reduce failure cases.

Resource availability constraints. Full release of raw
audio may be constrained by speaker consent and insti-
tutional policies. To support reproducibility, we will at
minimum release the pronunciation lexicon, tone anno-
tations, train/dev/test splits, and training/decoding
recipes, and we will provide access to audio via
an appropriate data-sharing mechanism where public
redistribution is not possible.

Evaluation scope. We report WER/PER/TER on a
held-out test set with disjoint speakers, but we do
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not yet provide extensive out-of-domain evaluations  References
(new speakers, new domains) or human perceptual
evaluations of tone errors. These are important [1] Birp, S. (2009) Natural language processing and

directions for follow-up work.

9. Conclusion

This paper has presented a hybrid multi-modular
architecture for automatic speech recognition in tpuri, a
low-resource tonal language of the Mboum-Day branch
of the Niger-Congo family. The system combines a
self-supervised Wav2Vec 2.0 acoustic encoder with
a dedicated tonal analysis module based on YIN
pitch estimation and STFT-derived spectral features,

(2]

(3]

linguistic fieldwork. Computational linguistics 35(3):
469-474.

MicHAILOVSKY, B., MAazAauDpoN, M., MicHAUD, A., GUIL-
LauME, S., Francors, A. and Apamou, E. (2014) Doc-
umenting and researching endangered languages: the
pangloss collection .

De Vries, N.J., DaverL, M.H., BADENHORST, ]., BAssoN,
W.D., Dt WEer, E, Barnarp, E. and De Waar, A. (2014)
A smartphone-based ASR data collection tool for under-
resourced languages. Speech Communication 56(1): 119-
131. doi:10.1016/j.specom.2013.07.001, URL http://
dx.doi.org/10.1016/j.specom.2013.07.001.

. . . . [4] BuaskararaO, P. (2004) Phonetic documentation
integrated through an adaptive fusion mechanism and ) )
T f based CTC diction head of endangered languages: Creating a knowledge-
a lrans orrr'ler— ase prediction hea . base containing sound recording, transcription
On a scripted corpus of 19h35 of tpuri speech, the and analysis. Acoustical Science and Technology
proposed architecture achieves a word error rate of 25(4):  219-226.  doi:10.1250/ast.25.219,  URL

10.4%, a phone error rate of 8.7% and a tone error
rate of 6.1%. Ablation experiments show that both self-
supervised pretraining and explicit tonal modelling are
crucial to this performance: removing the tonal branch
or disabling pretraining leads to substantial degrada-
tions in WER and TER. A fine-grained error analysis
across tonal, grammatical, syllabic and morphological
dimensions further indicates that the system models
lexical tone and clause-level syntax relatively well,
while complex syllable structure and rich morphology
remain challenging.

These findings support our central claim that com-
petitive ASR systems can be built for under-resourced
tonal languages by tightly coupling self-supervised
acoustic representations with linguistically informed
tonal features. Beyond tpuri, the methodological choices
made here corpus design, tonal feature extraction,
adaptive fusion and error analysis offer a reusable
blueprint for extending ASR to other Niger-Congo and
tonal languages facing similar data constraints.

Future work will focus on several directions. First, we
plan to enrich the language model and pronunciation
lexicon in order to better handle morphological varia-
tion and rare lexical items. Second, we aim to incorpo-
rate more detailed phrase-level prosodic information,
including boundary tones and intonational patterns, to
further reduce confusions among contour tones. Third,
we will explore cross-lingual transfer from related
Mboum-Day and Niger-Congo languages, as well as
multilingual self-supervised pretraining, to investigate
how far carefully chosen auxiliary languages can com-
pensate for the limited amount of labelled tpuri data.
More broadly, we hope that the resources and results
reported in this work will encourage further research on
speech and language technologies for under-resourced
African languages.

(5]

(6]

(7]

(8]
[9]

(10]

(11]

(12]

(13]

[14]

https://www.jstage.jst.go. jp/article/ast/25/
4/25_4_219/_pdf/-char/ja.

BENAHMED, Y. (2018) Analyse Sémantique pour Systémes
de Dialogue Verbaux. Ph.D. thesis, Institut National de la
Recherche Scientifique (Canada).

MenTta, D., Dippeg, H., SAXENA, A., SHUKLA, A., SANTY,
S., Kommiva, R., SHARMA, A. et al. (2022) Learnings from
technological interventions in a low resource language.
arXiv preprint arXiv:2211.16172 .

SeigNnoBos, C. and Tourneux, H. (2002) Le Nord-
Cameroun d travers ses mots: dictionnaire de termes anciens
et modernes: province de I'extréme-nord (KARTHALA
Editions).

Koryang, D.T. (2010) PARLONS TPURI-Cameroun et
Tchad (Harmattan).

Raani, A., Kniir, K.M., Mabpuavi MaLLipi, S.R., GALEs,
M.J.E. and Woopranp, P.C. (2014) Data augmentation
for low resource languages. In Proceedings of Interspeech:
810-814.

Huang, H. and Seme, E (2000) Pitch tracking and
tone features for mandarin speech recognition. In
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3:
1523-1526. doi:10.1109/ICASSP.2000.861942.

Wang, Y. and Leg, L. (2010) Mandarin tone recogni-
tion using affine-invariant prosodic features and tone
posteriorgram. In Proceedings of Interspeech: 2850-2853.
doi:10.21437/Interspeech.2010-305.

Ler, X. and OsTENDORF, M. (2007) Word-level tone mod-
eling for mandarin speech recognition. In Proceedings of
the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP): 665—668.

Scuurrz, T., Vu, N.T. and Schrippg, T. (2013) Global-
phone: A multilingual text & speech database in 20 lan-
guages. In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing (IEEE): 8126-8130.
Coro-Sorano, R. (2021) Explicit tone transcription
improves ASR performance in extremely low-resource
languages: A case study in Bribri. In Macer, M.,
Oncevay, A., Rios, A., Ruiz, I.LV.M., PaLmer, A,
NeuBig, G. and Kann, K. [eds.] Proceedings of

EAI Endorsed Transactions on
Intelligent Systems and Machine Learning Applications
| Volume 2 | 2025 |

2 EAI ”


https://doi.org/10.1016/j.specom.2013.07.001
http://dx.doi.org/10.1016/j.specom.2013.07.001
http://dx.doi.org/10.1016/j.specom.2013.07.001
https://doi.org/10.1250/ast.25.219
https://www.jstage.jst.go.jp/article/ast/25/4/25_4_219/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/ast/25/4/25_4_219/_pdf/-char/ja
https://doi.org/10.1109/ICASSP.2000.861942
https://doi.org/10.21437/Interspeech.2010-305

Acoustic and Tonal Modeling of the tpuri Language

the First Workshop on Natural Language Processing
for Indigenous Languages of the Americas (Online:
Association for Computational Linguistics): 173-184.
doi:10.18653/v1/2021.americasnlp-1.20, URL https:
//aclanthology.org/2021.americasnlp-1.20/.

[15] Baevski, A., Zuou, Y., Monamep, A. and Auri, M.
(2020) wav2vec 2.0: A framework for self-supervised
learning of speech representations. In Advances in Neural
Information Processing Systems (NeurIPS), 33: 12449-
12460.

[16] Pratap, V., SriraMm, A., Tomaserro, P, HannuN, A.,
LiprcHinsky, V., SYNNAEVE, G. and CorroBerT, R. (2020)
Massively multilingual asr: 50 languages, 1 model, 1
billion parameters. In Proceedings of Interspeech: 4751—
4755.

[17] Rerrmaier, T. and corLeaGgues (2022) Opportunities
and challenges of automatic speech recognition systems
for low-resource language speakers. Proceedings of the
ACM on Human-Computer Interaction 6(CSCW1): 1-28.
doi:10.1145/3517639.

[18] Ruerranp, S. (1992) Description du parler tupuri de
Mindaore (Tchad). In Phonologie, morphologie, syntaxe
(Université de la Sorbonne Nouvelle Paris III).

[19] WrrtENBURG, P., Moser, U. and Dwyer, A. (2002) Meth-
ods of language documentation in the DOBES project. In
Proceedings of the Third International Conference on Lan-
guage Resources and Evaluation (LREC’02) (Las Palmas,
Canary Islands - Spain: European Language Resources
Association (ELRA)). URL https://aclanthology.org/
L02-1221/.

[20] De CueveigNg, A. and Kawanara, H. (2002) Yin, a
fundamental frequency estimator for speech and music.
The Journal of the Acoustical Society of America 111(4):
1917-1930.

[21] Hearerp, K. (2011) Kenlm: Faster and smaller lan-
guage model queries. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation (Edinburgh,
Scotland: Association for Computational Linguistics):
187-197. doi:10.18653/v1/W11-2123, URL https://
aclanthology.org/W11-2123.

EAIl Endorsed Transactions on

C ,O 13 Intelligent Systems and Machine Learning Applications
P [ Volume 2 | 2025 |


https://doi.org/10.18653/v1/2021.americasnlp-1.20
https://aclanthology.org/2021.americasnlp-1.20/
https://aclanthology.org/2021.americasnlp-1.20/
https://doi.org/10.1145/3517639
https://aclanthology.org/L02-1221/
https://aclanthology.org/L02-1221/
https://doi.org/10.18653/v1/W11-2123
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123

	1 Introduction
	2 Related Work
	2.1 ASR for Low-Resource Languages
	2.2 Tonal and Pitch-Aware ASR
	2.3 Self-Supervised Speech Representation Learning

	3 Tpuri Language and Its Resources
	3.1 Classification and Demographics
	3.2 Phonological Inventory
	Vowels
	Consonants
	Tone

	3.3 Audio Corpus
	Dataset Availability and Reproducibility


	4 Preliminary Acoustic Analysis
	4.1 Spectrogram and Formants
	4.2 Fundamental Frequency (F0) Statistics

	5 Signal Preprocessing
	5.1 Preprocessing Parameters
	5.2 Spectral Representation and NMF-Based Denoising
	5.3 Loudness Normalisation
	5.4 Temporal Segmentation and VAD

	6 Multi-Modular ASR Architecture
	6.1 Self-Supervised Acoustic Encoder
	6.2 Tonal Analysis Module
	6.3 Adaptive Fusion Mechanism
	6.4 Decoder and Language Model

	7 Experimental Results
	7.1 Evaluation Protocol
	7.2 Computational Environment, Training Setup and Reproducibility
	Evaluation Metrics
	Confidence Intervals and Statistical Significance

	7.3 Analysis of the Adaptive Fusion Gate

	8 Limitations
	9 Conclusion



