EAIl Endorsed Transactions

on Intelligent Systems and Machine Learning Applications

Research Article

EALEU

Detecting Alzheimer’s Patients using Features in
Differential Waveforms of Pupil Light Reflex to

Chromatic Stimuli

Minoru Nakayamal'*, Wioletta Nowak?, Tomasz Krecicki®

Information and Communications Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo,

152-8552 Japan

2Wroctaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroctaw, 50-370 Poland
3Wroctaw Medical University, Wybrzeze L. Pasteura 1, Wroctaw, 50-367 Poland

Abstract

A procedure to detect irregular signal responses to the pupil light reflex (PLR) was developed in order to detect
Alzheimer’s Disease (AD) using a functional data analysis (FDA) technique and classification with an Elastic
Net. In considering the differences in features of PLRs between AD and normal control (NC) participants,
signals of summations and differentials between experimental conditions were analysed. The coefficient

vectors for B-spline basis functions were introduced, and the number of basis functions was controlled to
produce an optimised model. Model trained data was created using a data extension technique in order to
enhance the number of participant observations. In the results, the required number of basis functions for
differential signals is larger than the number for the their summation signals, and the features of differential
signals contribute to classification performance.
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1. Introduction

1.1. Waveform analysis of the Pupil Light Reflex

Irregular signal detection is often applied to diagnostic
procedures. Though the simple pupil reaction to a
flash of light is well known as the pupil light reflex
(PLR), the responses are influenced by conditions of
retinal ganglion cells and optic nerves such as Edinger-
Westphal Nucleus [1]. In order to distinguish peo-
ple pseudo positive with Aged-macular degeneration
(AMD) or Alzheimer’s disease (AD) from a normal con-
trol group (NC), differential signals of pupil responses
under several observation conditions are examined [2-
5]. In particular, pupil responses based on intrinsically
photosensitive retinal ganglion cells (ipRGCs) [6] are
often compared in order to detect irregular responses
and used as diagnostic procedures with patients [7,
8]. Since PLR observation can be conducted in-person
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using a general-purpose device with a head-mounted
display (HMD), the response data can be accumulated
during people’s daily lives. If specific features of PLR
waveforms can be detected effectively using these obser-
vations, it may be possible to introduce an early detec-
tion procedure for Alzheimer’s disease.

1.2. Problems of feature extraction from waveform
shapes

The extraction of specific features may be the
key to diagnosing patients. Though several trials
have been conducted, as mentioned in previous
works [2, 9], a more effective procedure should be
considered. In particular, localised features in response
to characteristics of PLRs to chromatic light. Toward
this aim, polynomial spline bases using a B-spline
technique effectively extracts local features of the
functional data within the time series observations
[10]. If some typical features of AD patients could
be characterised from waveform shapes, an additional
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Table 1. Comparing feature extraction from waveform shapes

Method basis function

benefit/limitation

Fourier Descriptor [11, 12] Fourier basis
Feature definition n/a

Polynomial spline bases [10, 14, 15] | B spline basis

Periodic data analysis during observed duration, particularly
useful for periodic data 3, 10].

Some specific features need to be defined in advance such as [13].
Shape similarity is implicitly required for the observation.
Capturing local features of the functional data which contains
local changes.

analytical procedure may be possible. As the features
of AD patients show irregular responses, differences
between AD and NC groups can be evaluated along
with temporal changes in PLR waveforms. These
analyses may provide new approaches to the diagnostic
procedure.

1.3. Purpose of this paper

In this paper, the contribution of differential signals
of PLRs to the experimental process of detecting AD
patients using a polynomial spline bases using B-spline
technique as a method of functional data analysis, and
its effectiveness on the performance of the diagnostic
procedure are examined using trained discriminant
analysis. The following topics are addressed:

1. The feature extraction procedure for differential
signals between responses to chromatic stimuli
or levels of light intensity is examined using a
functional data analysis technique.

2. Classification performance for AD patients is
evaluated using the summation and differential
signals of PLRs and their features.

The reminder of the paper is structured as follows.
Section 2 reviews previous and related works. Section
3 introduces methodologies for feature extraction
from PLR waveforms using functional data analysis
and discriminant analysis. Results of performance
using discriminant analysis and a comparison of the
contributions of factors are discussed in Section 4. The
overall summary is presented in Section 5.

2. Related works

2.1. Feature extraction from waveforms

Major approaches are summarised in Table 1. Con-
ventional feature extraction of signal waveform uses
Discrete Fourier Transform (DFT), which consists of
periodical functions. Features of waveforms or line
drawn objects can be noted as Fourier Descriptors 11,
12] using DFT. Though a function-based approach can
suppress some of the noise of observations, this tech-
nique is constructed using periodical signals without
the capture of local features.

In order to emphasise local features, sampling spe-
cific feature points presents behavioural characteristics
explicitly, as shown in line 2 of Table 1. This approach
may focus on specific characteristics in waveform
shapes. A feature points-based approach to detecting
AD patients shows better performance than using fea-
tures of Fourier descriptors, but performance remains
at a limited level even when an Elastic-Net with Lasso
technique is used [16], since local features without
focused points may not be considered to be effective
(5, 13].

An additional approach may be the use of functional
data analysis by introducing polynomial spline bases
such as B-spline basis, as shown at the bottom of
Table 1. This method can be applied to waveforms
flexibly and it may be possible to detect feature
contributions during temporal changes using regression
analysis, though some tuning of the parameters would
be required, however. The differences in performance of
biological time series data between two bases functions
such as Fourier and B-spline have been examined [10].
In considering the benefit of employing polynomial
spline bases, the possibility of diagnosing AD patients
using PLR waveforms and this technique is examined.

In this paper, functional data analysis using B-spline
basis is simply referred to as functional data analysis
(FDA) when later described.

2.2. Diagnosis using PLR waveforms

PLR waveform shapes are influenced by stimulus
characteristics of light pulses, such as wavelength
(light colour) and intensity (luminance), since the
activation of irradiated ganglion cells in response to
light stimuli is different. Also, the distributions on
the retina and the activated light wavelengths between
ganglion cells, cones, rods and ipRGCs are different
[2, 6]. As temporal changes in waveform shapes on
ganglion cells are also different [9], the possibility
for a diagnostic procedure using PLRs for chromatic
light pulses has been suggested [4, 7, 8]. Also, PLR
waveforms are influenced by ageing and problems with
signal transfer pathways from the retina [1]. Therefore,
if differential signals between PLR waveforms could
be analysed, these differential waveforms may contain
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Figure 1. An example of PLRs for a normal control subject
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Figure 2. An example of PLRs for an AD patient

specific features about a patient or features of their
reaction mechanisms.

In order to create a discriminant function for AD
patients, a sufficient number of PLR observations using
both patients and a normal control group are required
as a reference. With most clinical approaches, possible
observation opportunities are limited and individual
differences are not small as well, however. Therefore,
an appropriate data extension technique needs to be
applied to the features extracted from observational
data sets using a non-parametric bootstrap technique
[17], for example. Actual examination of this possibility
will be discussed in Section 4.

3. Method
3.1. PLR observation

A single PLR waveform in response to a light pulse of
aged people was measured [5]. The stimuli consisted of
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Figure 3. A summation of PLRs for blue light pulses and B-
spline representations using 5 ~ 30 basis functions.

three chromatic lights, red (635nm), blue (470nm) and
white (CIE x:0.28, y:0.31), at two levels of brightness
(10 and 100 cd/m?). The two factors, chromatic lights
and light intensity, are keys for PLR waveforms. In total,
6 stimulus conditions were labelled as r10, r100, b10,
b100, w10 and w100. The duration of observation was
10 seconds, with the first 2s being a pre-stimulus phase
as a rest period, followed by a 1s light pulse and 7s as
a restoration phase. Pupil diameters were measured in
mm at 60Hz using a system developed by some of the
authors [5, 18]. PLRs for each stimuli were observed in
single trials using a repeated-measure design.

A conventional PLR experiment was performed on
19 participants (42~89 years old, mean age:70.6), 12
of which were healthy individuals with normal vision
(normal control (NC) group: 62~89 years old, mean
age:72.1) and 7 of which were patients with Alzheimer’s
Disease (AD Patients: 42~84 years old, mean age:68.1)
who had already been diagnosed by medical doctors. It
was not easy to invite volunteers who were aged over 80
to participate in the experiment. Informed consent was
obtained from all participants prior to the experiment.

Examples of measurements for a healthy individual
and for an AD patient are shown in Figures 1 and
2. In these figures, PLRs are illustrated in response
to 6 stimuli, namely the 3 colours and two levels of
brightness.

3.2. Functional Data Analysis

These waveforms were represented using B-spline basis
functions as a technique of functional data analysis
(FDA) technique [15, 19]. Figure 3 shows an example
of an individual summation signal of PLRs for bl0
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Figure 4. A differential signal of PLRs for blue light pulses
between 10 and 100 cd/m? and B-spline representations using
10 ~ 35 basis functions

and bl100, which are blue light pulses (the open
circles). The summation signal seems moderated and
with less noise. Some B-spline functions are introduced
periodically, and the composite signal can represent
the PLR waveform. When the number of functions
increases, the fitness of the waveform increases, as
shown in Figure 3.

A differential signal of PLRs between bl0 and
b100 is illustrated in Figure 4. As the figure shows
however, there is little difference in advance of the light
pulse, and the difference is maximised at around the
most pupil-constricted time and in the final stage of
pupil-restoration. Since the differential signal shows
spontaneous changes, noisy waveforms are presented
in comparison with the summation signal. The FDA
technique is also applied, as a greater number of
functions is required to represent the waveform.

The coefficients for each B-spline function which rep-
resent the waveform can be a feature set of individual
responses. Here, differences between chromatic stimuli
or light intensities are processed, and feature sets of
PLR waveforms are used for extracting patients with
AD.

3.3. Data Extension and Discriminant Analysis

Since the experimental data consists of only 7 AD
and 12 NC participants, the number of samples is
insufficient to perform discriminant analysis. Here, a
data extension technique is applied to the extracted
feature set of sampled data using random Gaussian
distribution numbers. As a result, 100 samples were
generated for each AD and NC group from the
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Figure 5. Feature differences for chromatic stimuli with
observation time for AD and NC subjects
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Figure 6. Classification performance for AD and NC participants
using trained models, with summation and differentials between
chromatic stimuli

statistics of the sampled data such as Gaussian data
generation with means and SDs of each group of
samples. This generated data set is used for training,
and the original measured data is used for testing
the trained models. Of course, the training data set
and models can be re-generated to extend feature
spaces when new experimental data is added. The
data spaces of the extracted features of the two
groups of participants were trained with a sparse
logistic regression function using Elastic-Net with
Lasso technique, a variable selection technique [16].
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Figure 7. Feature differences for differentials of light intensities
with observation time of AD and NC subjects (differences for White
light include a wider range than others)

Because there is very little labelled data for detecting
patients with AD, the probability of classification of
each participant is calculated using data from their
responses. Classification performance of the trained
models was evaluated in regards to the number of
basis functions using the sampled data set. This
testing procedure may provide confirmation of the
effectiveness of introducing features.

4. Results

Classification performance of the trained models using
AD and NC participants is evaluated as a level of
accuracy and as the area under the curve (AUC) of ROC
for the sampled data.

4.1. Summation and differentials between chromatic
stimuli

The effect of each chromatic stimulus is confirmed
in this section. PLRs at the two levels of light
intensity were observed, and summation signals for
each chromatic light were calculated. These signal
features were extracted using the FDA technique and
were weighted for classification using Elastic-Net. The
temporal changes of feature contributions as coefficient
functions [14] for each chromatic stimulus for AD
and NC were calculated, as shown in Figure 5. The
central dotted line indicates zero, meaning there is
no effect on the classification. So, the drawing of a
curved line far from zero may possibly be the key
to classification. The main difference appeared at the
beginning of observations because the pupil sizes of
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Figure 8. Classification performance of AD and NC participants
using trained models with summations and differentials between
two light intensities

the two groups were different. Some differences appear
during the PLR restoration process. In particular, the
differences between blue and red light pulses are larger
than the differences between white and blue or red light
pulses.

Classification performance is summarised in Figure
6. The features are generated along with the number
of basis functions using FDA. As shown in Figure
3, a small number of basis (n-basis) such as 10
or 20 is sufficient for the summation signal. For
differential signals, many n-basis are required, as shown
in Figure 4. The horizontal axis in Figure 6 represents
the n-basis for the differential signals. The vertical
axis represents the correct rates. When the feature
vectors are combined, the number of dimensions
for features increased. Therefore, performance has a
peak at around 10 to 20 n-basis when all generated
features are introduced (All,AUC = 0.83). However,
combinations of three chromatic stimuli (a merger of
R-B-W) produce a plateau when the number of n-
basis is between 40 and 70 (AUC = 0.85). However,
peak performance comes from differentials between
chromatic responses (AUC =0.88) for high light
intensities (100cd/m?), though the performance of both
low light intensity (AUC = 0.80) and a combination of
two light intensities (AUC = 0.82) remains at around
the middle level of performance. These results suggest
the difference between the level of light intensity may
provide the information needed to diagnose patients
with AD. Comparing the classification performance
using a feature points-based approach provides an
approximate value of the AUC =0.9 [5], and the
performance of most values for AUC are slightly lower.
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Nevertheless, the procedure may be applied to various
conditions using summation and differential signals.

4.2. Summation and differentials between stimulus
light intensities

Differential signals between the two light intensities
(10 and 100 cd/?) are examined, and the temporal
changes in feature contributions between AD and
NC participants for each chromatic condition are
summarised using the same format as shown in Figure
7. The differentials for red and blue light pulses may
contribute to classification along with the duration of
the observation time.

Classification performance is summarised using the
same format in Figure 8. The highest performance is
with red light, such as when there are more than 20
n-basis for differentials and 10 n-basis for summation
of PLRs at the two intensities of light (AUC = 0.88).
Conditions using blue light show similar performance
(PC =0.74, AUC = 0.88). Other conditions such as
combinations including PLRs for white light remained
at lower levels of performance.

These results suggest that PLRs for different light
intensities or a high level of light intensity with
red or blue lights may show better AD classification
performance.

5. Summary

This paper presents the effectiveness of differential
signals of PLRs for detecting AD patients and NC
participants. The experimental conditions consist of
three chromatic stimuli and two levels of light intensity.
The features of PLR waveforms were extracted using
B-spline basis functions as a FDA technique. The
number of basis functions was controlled in order to
optimise the classification performance. Classification
was conducted using a trained Elastic-Net with a data
set generated using a data extension technique.
The following results were obtained.

1. A certain number of basis functions for differ-
ential signals of PLRs contribute to classification
performance more effectively than the functions
of summation signals.

2. The differentials of PLRs for the two levels of light
intensity (red and blue light pulses) provide better
performance than other sets of combinations of
PLRs.

As the valid number of participants was too small
due to the difficulty of recruiting elderly volunteer
participants, a more appropriate set of features should
be sampled in order to create a better classification
model. Additionally, response differences between left
and right eye pupil may provide an information

D EA

of synchronised reaction of them. The periodical
observation and accumulation of the response in daily
life may help to manage individual health-care. The
procedure should be considered based on the results.
These will be the subject of our further study.
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