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Abstract

Viewer’s eye movements and behavioural responses were analysed in order to determine the relationship
between selective perception and visual attention during a dual detection task in the central and peripheral
fields of vision. A hierarchical Bayesian modelling technique was introduced to extract local directions of
attention paying behaviour chronologically in order to design better functioning information displays. The
model was constructed based on the response accuracy of stimulus detection and temporal changes of the
microsaccade rate. In the results, the dominance of the response in the peripheral field of vision is confirmed
to be deviations in the estimated parameters. Also, chronological changes in levels of attention and the
contribution of these changes to behavioural responses were examined. The relationship between behavioural
responses, microsaccade rate, and the directional dominance of certain viewing areas in the peripheral field
of vision were discussed, in order to evaluate the level of visual attention of viewers.
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1. Introduction
Discussion of the human vision system often concerns
the two types of vision; the central and peripheral
fields of vision. The visual characteristics of each
are different and function independently [1, 2]. Most
studies of visual perception and eye tracking focus
on visual interests in the central region of the field
of vision [3]. In particular, perception of motion in
the peripheral field of vision has been often discussed
[4], and the contributions of the peripheral field
of vision are emphasised in visual search tasks [5].
Visual display systems and presentations have been
used to study the functions of the peripheral field
of vision [6–8], and some degree of influence of eye
movements has been reported [9]. The independent
function of the peripheral field of vision was employed
to obtain additional information from visual display
equipment using a head mounted display (HMD) [10,

∗Corresponding author. Email: nakayama@ict.e.titech.ac.jp

11]. In the visual presentation, visual activity in the
peripheral field of vision is examined by measuring
the performance detection of vibration targets [12, 13].
If detection performance depends on the region of
peripheral direction, either or both the locality of the
level of attention being paid or the level of viewing
ability may be influenced. It means that locality or
level of viewing ability or both may be influenced. It
is necessary for the attentional preference or accuracy
of detection of object vibration to appear as a viewing
behaviour-related activity. For perception and attention
levels in the peripheral field of vision, metrics of
eye movement such as rate of microsaccade (MS) are
often introduced [14–16]. Since the MS rate represents
a high level of information processing activity, task
performance can be evaluated using this metric [17].

Generally, experimental evaluation of these compli-
cated functions does not seem to be easy to analyse
using conventional statistics tests such as frequentest
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statistics, as the number of trials per participant is lim-
ited. Recently, a statistical modelling technique includ-
ingMarkov chain sampling was used to provide another
solution, even for the measurement of temporal data
such as biological signals [18–20]. If a hierarchical
model between observed visual attention and latent
resource activity could be defined, changes in the level
of visual attention as temporal events in eye tracking
may make it possible to extract this latent resource
using statistical modelling technique.
This paper examines the possibility of estimating the

directional bias of the peripheral field of vision using
the appearance of MS rates and behavioural responses.
Directional biases of awareness were observed using
a perceptual experiment based on paying attention
to dual tasks in the central and peripheral fields
of vision. Estimation of the level of attention was
conducted using a hierarchical modelling technique. In
particular, temporal changes in attention are extracted
using estimated parameters. The following topics will
be addressed in this paper.

1. Visual attention characteristics of the peripheral
field of vision are estimated and analysed using
both eye movements and perceptual responses.

2. Temporal attention levels are estimated using
MS rate measurements, and directional bias is
examined using response reactions.

3. Estimated parameters of the converged model are
analysed to extract characteristics of directional
bias or response features while the temporal
change in attentional level is evaluated.

2. Related works
2.1. Possible applications of peripheral field of vision
Peripheral cues have been studied, as peripheral stimuli
such as Posner tasks and derivative tasks can provide a
benefit to information processing as a covert attention
[21–23]. In these studies, behaviour related to paying
attention and the concomitant spatial and temporal
changes in the results of experiments in response to the
response conditions during experiments are discussed
[6, 8, 24]. The phenomena which are related to the
roles of the central and peripheral field of vision have
been discussed in order to understand the viewing
mechanisms [5]. These functions play a major role in
complicated tasks such as driving a car or playing
video games, where general purpose viewing ability is
measured as UFOV (useful field of view) [2, 6, 25].
The viewing characteristics of displays vary, and thus

human peripheral attention distribution and attention
paying behaviour studies using displays have been
conducted in order to develop better display interfaces
[26, 27]. Viewing attention in the peripheral field of

vision has also been studied in the field of research
of human computer interaction [7, 28]. Recently,
viewing behaviours in the peripheral field of vision was
considered during the development of head mounted
display (HMD) system. Visual perception ability and
its possible application to improving display utilisation
has been studied [29–32]. Some of these studies also
measure eye movement in order to extend information
displays using the peripheral field of vision [10, 11, 33].
The dynamic characteristics of viewing behaviour were
also studied in detail when information was shown to
both central and peripheral field of vision [12, 34].

2.2. Eye movement and the peripheral field of vision
In addition to using activity in the field of vision
[35] and visual cortex activity [36], attention levels
can be evaluated using features of eye movements
[37, 38] The peripheral field of vision has been
used to study attention levels in computer vision
systems [9]. In addition to conventional eye movement,
microsaccade behaviour has often been discussed as
a key metric of attention-paying activities such as
fixation on a particular point in the peripheral field
of view [39–42]. Since microsaccade rates reflect brain
activity, microsaccades can be an index of attention-
paying activity [43–46]. The relationships between
microsaccade rate mitigation and peripheral target
appearance may provide some evidence of the existence
of a human visual information processing mechanism
[42]. Visual attention is driven by attention-paying
activity in the central and peripheral fields of vision,
and affects microsaccade rates [44, 47]. However,
the detailed mechanism of human visual information
processing and attentions remains unclear in regard
to the design of an effective functional display, and
thus changes in temporal attention levels should be
examined.

2.3. Dominance of the field of vision
Eye movement is driven by bottom-up factors of image
features such as saliency [48]. Visual attention con-
tributions are often considered for attention payment
and viewing behaviour [49]. Viewing behaviour and
eye movement patterns are often explained using these
approaches. These factors reduce gradually during
observation and the fixation point becomes centralised,
however [50]. Of course, attention distribution may
not be explained by simple phenomena. Behavioural
responses are influenced by various visual or spatial
factors [51, 52]. On the other hand, a well-known prac-
tical bias is reading direction, which is based on left-to-
right scanning behaviour [53]. Similar dominance has
been observed during the viewing of faces in several
experiments [54, 55]. One possible reason given is the
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Figure 1. Presentation time flowchart

imbalance of activation of the left and right hemi-
spheres [56, 57].
These results may suggest asymmetries in viewing

behaviour. The results of tests of attention distribution
in viewing areas and toward objects shows a leftward
dominance in asymmetric performance [58]. This result
should be confirmed in this paper.

2.4. Bayesian inference approach
Most psychological experiments are based on a
rigid experimental design which is structured in
advance to extract statistical differences in order to
examine hypothesis. Both the influence of repeated
measurement in order to obtain stable responses
and the individual difference of participants should
be considered in the analysis. Therefore, innovative
measurement techniques and paradigms are required
to obtain more accurate data. Recently, the Bayesian
inference approach has provided some advantages
to obtaining robust solutions, even in cases where
the number of measurements is limited or the
measurements include artefacts [18, 20, 59]. Also,
several calculation platforms have been developed
which allow the introduction of various types of data
[60–62].
The Bayesian inference approach technique can

be applied to data sets gathered in advance. The
conventional experimental paradigms have been re-
analysed and new evidence of mental mechanisms have
been extracted [63, 64]. Also, temporal changes in
observation can be analysed using this approach [65].

3. Method
Experimental design and measurement procedures to
measure viewer’s responses are as follows.

3.1. Experimental procedure
The experimental design was based on previous studies
[12]. Temporal visual attention levels were observed
using an experiment which presented central and
peripheral cues, a timecourse of presenting visual
stimuli is shown in Figure 1 [66]. Some experimental

conditions were updated in order to focus on the level
of attention in comparison with the responses of the
previous experiment [13]. Twelve small dots (size: 2deg)
were placed in a circle (radius: 25deg angle of vision),
one every 30deg, and one of the dots was vibrated
within a radius of 1px (0.054deg) at 2 frequencies
(10 and 15 Hz). The colour of the dots was white
and the background was black. The experimental task
consisted of a dual task, namely the detection of an
object vibrating in the peripheral field of vision, while
searching in the central field of vision for numerals. The
experiment’s tasks are defined as the central vision task
and the peripheral vision task.
The central field of vision viewing task is based on a

RSVP (Rapid Serial Visual Presentation) task where the
object is to find two or three single numeral targets from
among randomised sequences of letters of the alphabet.
The visual angle of the letters is 2.5deg. The numerals
appeared at around 2000 and 4000ms, with the option
to display them again at 6000ms. Therefore, the central
task consisted of two levels of task difficulty. One of the
peripheral dots vibrated at around 3000 and 5000ms,
which allowed the two levels of difficulty of the task to
be controlled. Stimulus onset timing was varied slightly
around the specified times in order to avoid prediction
of the appearance of the dots.
The stimuli were displayed on a 27 inch LCDmonitor

(EIZO: EV 2736W-Z), with subjects positioned 330mm
away from the monitor, seated, and using a chin rest.
The eye movements of both eyes were measured at
400Hz using an eye tracker (Arrington:BCU400). MS
rates for every 500ms period were extracted from the
eye movement observations of both eyes using the
Microsaccade toolbox [67]. The algorithm of detecting
MS is based on measured velocity and duration of
saccades, synchronised MSs on both eyes are selected
finally. The observed frequency (yt) for every 100ms
period was calculated.
The experimental tasks were explained to all subjects,

with the central field of vision task of viewing displays
of characters given as the focus of the four trial
exercises. Regarding the design of the experiment, the
number of trials was 96 (12 directions × 2 kinds of
targets × 2 timings × 2 frequencies), and these were
divided into three sets, consisting of 32 trials with 10
minute breaks between each set.
Subjects were asked to report orally the direction of

vibration of the dot in relation to the centre. Five paid
participants, who were aged 23±1 and who possessed
sufficient visual acuity and colour perception, took part
in this experiment in order to confirm the phenomenon
from the previous experiment [13]. Most phenomena
have already been confirmed using a number of paid
participants in experiments which were conducted
previously. The experimental conditions, including the
number of measurement trials, were based a design
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that was used to produce the results of our previous
experiment [13].
All subjects participated in an instruction session

before the experiment and provided their written
consent in order to participate. The procedure was
approved by an ethics committee at Tokyo Institute of
Technology (#2019052).

3.2. Observed responses
Behavioural responses: . The behavioural attention
level in the designated peripheral vision regions was
evaluated using a variable vibration detection rate and
was based on oral responses.
The mean correct detection rates at the two frequency

levels (10Hz and 15Hz) are illustrated in Figure 2.
Here, the points around the circle show the directional
position of the vibration presented, and the points on
the polar scale show the rate of correct detection as a
percentage. Detection rates at two vibration frequencies
(10Hz and 15Hz) are illustrated. When vibrations were
presented at 10Hz, the detection rate of most directions
was almost perfect, except for the completely vertical
up and down directions where the rates were above
80%. When the vibration frequency was increased to
15Hz, detection rates fall to zero in most directions
except toward the region on the left. These results
confirm that the frequency of vibration influenced the
vibration detection rate [66].

Ocular responses: . The mean rates for correct and
incorrect responses having 95% confidence intervals
(CI) are summarised in Figure 6. There are some
significant differences (effect size=small) in MS rates
between responses, and the changes in levels of
attention are unclear.

4. Results of observer’s responses
In the following analysis, some irregular eye tracking
data was omitted, such as eye movement 10 degrees
or more away from the central fixation point. As the
overall error rates of reporting numeral targets deviated
7.9∼22.1%, the task difficulty setting might work well
in comparison with the task difficulty of our previous
study [13].

4.1. Behavioural responses
The behavioural attention level in the regions of the
peripheral field of view was measured using a vibration
detection rate which was based on oral responses. The
mean detection rates at the two frequency levels (10
and 15Hz) are illustrated in Figure 2 using a polar axis
format. Since the rates for the upper and lower regions
decrease when the frequency of vibration is increased,
the effect of the frequency change is confirmed.
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Figure 2. Mean detection rates for peripheral tasks using polar
coordinates.

Modelling equations: . As behavioural detection ability
may involve various factors, the contribution of the
factors was analysed using the hierarchical Bayesian
modelling technique [13, 68, 69], as shown in the
following four models. In this study, the effectiveness
of the three parameters in Table 1 are considered.
As noted in the experimental procedure, the number
of participants and measurement trials are limited.
The number of samplings was controlled to obtain
a converged solution in order to compensate for the
insufficient volume of measured data produced during
model optimisation.

1. Fundamental model

Here, the mean detection rate (θ) is hypothesised
as a summation of observed binary data Y (cor-
rect/incorrect responses), as shown in Equation
(1). The rate θ can be noted using a logit link
function and the summation of the two vibra-
tion frequencies (F) with intercept (β1) as a fixed
factor, and the twelve directional effects (PO) as
variable factors. The individual effect (rID) is
added in Equation (2) in order to represent the
differences of each individual subject [13]. The
order effect was ignored since the values are too
small.

Y ∼ Bernoulli (θ) (1)

logit (θ) = β1 × F + PO + rID (2)

2. Effect of correctness on the central task

The detection rate can be updated by influencing
the performance of the central task using the
parameter Ctask_Ef f ect. This parameter corre-
lates with the parameter C_CorrectFlag which
gives the correct central task response, as shown
in Equation (3). The parameter Ctask_Ef f ect in
Equation (4) is defined as a Normal distribution
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Table 1. Parameter estimation

Parameter label N of parameters Description Probability Distribution
Ctask_Ef f ect 1 Correctness of the central task Normal (0, sCEf f )
Ctask_P attern 2 Task difficulty of the central task Normal (0, sCP att)
P task_P attern 2 Timing of peripheral task Normal (0, sP P att)

with mean 0 and sCEf f as SD.

logit (θ) = β1 × F + PO + rID

+ Ctask_Ef f ect × C_CorrectFlag (3)

Ctask_Ef f ect ∼ Normal (0, sCEf f ) (4)

3. Effect of the number of targets on the central task

The effect is assigned to the above Equation (2)
using the parameter Ctask_P attern, as shown in
Equation (5). The parameter follows a Normal
distribution with two mean values (6) in response
to display timings, as shown in Equation (6), and
is defined as a Normal distribution with mean 0
and sCP att as SD.

logit (θ) = β1 × F + PO + rID + CtaskP attern
(5)

CtaskP atternc ∼ Normal (0, sCP att) (c = 1, 2)
(6)

4. Effect of timing on peripheral vibration

The effect is also assigned to the above Equation
(2) using the parameter P task_P attern, as shown
in Equation (7). The parameter P task_P attern also
deviates between intervals when vibration occurs,
as shown in equation (8), and is defined as a
Normal distribution with mean 0 and sP P att as
SD.

logit (θ) = β1 × F + PO + rID + P taskP attern (7)

P taskP atternp ∼ Normal (0, sP P att) (p = 1, 2)
(8)

Estimation and model selection. Model parameters were
estimated using the Markov Chain Monte Carlo
(MCMC) technique, and an EAP (estimated as a
posterior) estimation was used to calculate the mean of
the parameter samples obtained from between 500 and
4000 iteration periods in each of the four independent
MCMC chains. The convergence of the calculation
was evaluated using the index (R̂ ≤ 1.1). The model
fitness was evaluated using an index of WAIC. In the
results, Equation (2) (WAIC=280.8) and Equation (3)
(WAIC=277.2) were optimised, but the other equations
were not. In regard to WAIC values, the model based
on Equation (3) is the best one. Therefore, the two
factors of the number of targets in the central field of
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vision task and the timing of the peripheral vibrations
cannot be confirmed. As a result, these factors may
be ignored in the following analysis. Detection ability
in the regions of the peripheral field of vision using
Equation (3) is discussed in the following sections.

Detection ability analysis using estimated parameters: . The
effectiveness of the parameters for individual factor
(rID), intercept for vibration frequency (β1) and the
correctness of responses in the central field of vision
task (Ctask_Ef f ect) are confirmed, as the changes are
in response to behavioural reactions.
The results of posterior distribution analysis of

directional parameter PO are summarised in Figure 3 as
a solid line using a polar axis format map. The fine line
indicates a confidence interval of 95%. In comparison
with Figure 2, Figure 3 shows a plausible response, thus
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Figure 5. Directional distributions of differentials by fixation
point: [a] vibration detection, [b] vibration not detected

the effectiveness of the estimation has been confirmed.
In order to extract the similarities of the directional
responses, cluster analysis was applied to the features of
the estimated parameter PO using the k-means method,
to the values of the means and SDs, and to the values
of the confidence intervals. In the results, three clusters
were extracted, and these are labelled as Clust1∼Clust3
in Figure 3. The fundamental tendency is similar to the
results of the previous study [13].
The vibration frequency reaction performance of the

three clusters is summarised in Figure 4. The horizontal
axis represents the frequency (10 and 15Hz), and the
vertical axis represents the estimated detection rate
parameter. Estimated parameter means and standard
errors for the three clusters are illustrated in the figure.
For Clust3, detection performance decreases with
vibration frequency, which suggests that performance
changes according to the peripheral region cluster.
Performance is the highest when the stimulus is
presented in a leftward direction, as is shown in Figure
4. Clust1 on the left side shows the highest correct rates,
which may have been caused by the tendency to view
the left area of a document first while reading, which is
known as reading bias [53–55].

4.2. Distribution of fixation points
The influence of peripheral vibration on eye movement
while viewing the central field of vision task was
examined in order to measure the awareness capability
of the peripheral field of vision. Fixation point
differentials of before and after introduction of the
peripheral vibration stimulus were measured. The
initial point was set to means of fixation points before
vibration occurred, and the final point was set to
the mean points of the viewer’s responses, when the
subjects became aware of the peripheral stimulus.
Otherwise, the duration was set to 582msec. as the
overall mean of reaction time.
Frequency of differential direction for vibration

detection [a] and condition of unconsciousness of the

0

1

2

3

2 3 4 5 6 7

Time  (sec.)

M
ic

ro
s
a

c
c
a
d

ic
 r

a
te

 (
H

z
)

Correct

Incorrect

n.s.* Small * Small * Smalln.s. n.s. n.s. n.s. n.s. n.s.

Figure 6. Mean MS rates of correct and incorrect responses
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stimulus [b] are summarised in Figure 5, using a polar
axis format. The figure suggests that eye movement is
observedmainly as a series of vertical shifts. As Figure 5
shows, the directional frequency patterns seem similar.
Using cross correlation, the coefficient for the condition
with and without awareness of the peripheral stimulu
is r = 0.71. Therefore, observed eye movements under
both conditions were mostly vertical oscillations, and
thus viewers did not pay attention to the peripheral
field of vision stimuli.

5. Modelling for Microsaccades
5.1. MS rates in regions of the peripheral field of
vision
In order to extract the procedure used to process
visual information and to evaluate changes in viewer’s
attention, another statistical model of the MS rate
measurements was created in regard to the behavioural
model mentioned above. Here, latent activity as shown
by the MS rates is summarised in a trial, as shown in
Figure 6.
The MS rate may be influenced by the clusters in the

peripheral regions, and these changes are summarised
in Figures 8 ∼ 10. The peaks of the rates shifted around
the early stage in Class1, and the peaks are delayed
in both Class2 and Class3. These responses may be
affected by the viewer’s latent activity.

Model definition for Microsaccades: . In regards to
observations of latent activity using MSs, a variable
for attention resource was introduced [70]. An outline
diagram of the modelling presentation is shown in
Figure 7. During observations, MS rates variations
may be the result of the changes in the level of
human latent attention resources, which are updated
using the level of attention. These dynamics are noted
as variables and equational calculations, as follows.
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Attention resource Attn is a summation of the latent
activity Attention_level and intercept variables such as
Response, Clust and rID. Response represents the bias
of correct or incorrect responses, and Clust represents
the peripheral position bias corresponding with the
three clusters of positions in Figure 3. rID represents
the factor for individual participants. Attention_level
is an original measurement of MSs, and is shown
in Figure 16 using a state model format. MS rate
MSactimes is noted as a state model using Poisson
distribution. The observation period for modelling is
set to 5 seconds, from 2 to 7sec. after the initial
central task. Originally, the MS rate was measured
every 100ms (0.1sec.), however the above parameters
could not be introduced into the model. Patterns of the
temporal re-sampled MS rates were compared in order
to evaluate the contributions of response correctness
and peripheral regions of stimulus presented [66].
Since the number of states might be too high for the
estimation of parameters, some re-sampling processes
were conducted during optimisation, as noted in the
following calculations.

• Latent Attention Resource level:

Attn = Attention_level + Response + Clust + rID

State Model:

Attention_leveli ∼ normal(Attention_leveli−1, σs)

• Microsaccade rate:

λ = exp(µnoise)

Observation Model:

µnoise ∼ normal(Attn, σnoise)

MSactimes ∼ P oisson(λ)

Model estimations: . All parameters were estimated
based on observed MS rates using the above models and
the MCMC technique. The data from 11000 iterations
with 500 burn-in lengths was sampled. All converged

models were evaluated, and the ones which were
optimised were selected using a fitness index such as
R̂, as well as using the above model. Parameters were
estimated for all subjects and trials.
Means and CIs of the estimated attention levels

Attention_level are summarised in 10 time bins (2∼7
sec.), as shown in Figure 11. The time bins were
reduced to 10 in order to obtain optimally converged
results from the 50 time bins. Therefore, each time bin
corresponds to responses made every 0.5 seconds. The
level increases gradually until the 7th bin (5.5 sec.)
at perception of the second peripheral stimulus. The
changes in internal levels of attention are also displayed
in the figure.
Correct and incorrect Response parameters are

summarised as distributions in Figure 12. Clust is
summarised in Figure 13, and participant’s parameter
rIDs are summarised in Figure 14. Though the
differences between the categories seem small for
Responses and Clust, for participant’s parameters rID
the differences between individuals are shown clearly.

5.2. Estimation of attention states
Another attention resource variable Attn is calculated
as a summation of attention levels (Attention_level),
correct and incorrect responses (Response), position
factors presented as a cluster (Clust), and individual
factors (rID). The estimated statistics for correct and
incorrect responses are illustrated using means and CIs,
as shown in Figure 16. The horizontal axis represents
time course in seconds during the trial, and the vertical
axis represents latent attention resources. The attention
resource Attn may display the resources remaining
for information processing. Therefore, dropped periods
show a high mental workload demand. Attention levels
dropped just after the appearance of stimuli at 3 and 5
sec., due to the introduction of the stimuli. The levels
between correct and incorrect responses are compared
using a t-test. In the results, there are significant
differences, and the effect sizes are “Medium” for all
time bins [71].
As Figure 16 shows, the levels for correct responses

are significantly higher than for incorrect responses.
The results suggest that, for any cluster, more resources
are used for incorrect response reactions to the stimuli
which were presented during the trial sessions. This
means that viewers have used a large amount of their
attention resources, but the task is not completed as the
situation is out of the ordinary. In particular, the levels
dropped just after the appearance of stimuli at 3 and 5
sec., as specific processing resources were required for
incorrect reactions made in response to the occurrence
of the peripheral vibration cue.
In addition, measurements of attention resource

Attn in correct responses are classified into 3 clusters
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in order to evaluate the effect of the position of
the peripheral vibration during the detection of
stimuli. Attention resources for correct responses are
summarised as three clusters in the time bins in Figure
17 using the same format as in Figure 16 by illustrating
the means and CIs. The three plots represent the means
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Figure 13. Parameter distributions of Clust.
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Figure 14. Parameter distributions of rID .

of Clust1∼Clust3 from left to right. The differences
of the three clusters are not significant using one-way
ANOVA (F(2, 288) = 2.21, p = 0.11), and the effect size
is “Small” (η2 = 0.02). In regard to the order of means
for levels of attention resources remaining, peripheral
stimuli on Clust1 require a lower level of resources and
the stimuli onClust3 require a higher level of resources.
Incorrect responses are introduced to the compari-

son of attention resources of the three clusters, and
the results are summarised in Figure 18. For correct
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Figure 16. Estimation of latent attention resources (Attn) of
correct and incorrect responses. The effect size is medium due to
significant differences in the resources in each time bin.

responses, the order of incorrect responses of means
for levels of resources is reversed Two-way ANOVA
is applied to attention resources for both responses
in order to extract analysed factors for responses and
clusters. The result show that the factor for type of
response is significant (F(1, 322) = 12.0, p < 0.01; η2 =
0.02, Effectsize: Small), and that their interaction is
also significant (F(2, 332) = 3.5, p < 0.05; η2 = 0.02). For
incorrect responses, the factor of clusters is not sig-
nificant (F(2, 44) = 2.2, p = 0.12; η2 = 0.09, Effectsize:
Medium). The mean levels for Clust2 and Clust3 for
incorrect responses are lower than for other conditions,
but the mean levels for Clust3 are comparable with the
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Figure 17. Estimation of latent attention resources (Attn) of
the three clusters (from left to right: Clust1∼Clust3 for correct
responses). The effect size shows small due to the significant
differences in resources of the three clusters for each condition.
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Figure 18. Estimation of latent attention resources (Attn) of the
three clusters (from left to right: Clust1∼Clust3 for correct and
incorrect responses in each time bin). The significant differences
of the effect sizes of the resources of three clusters for each
condition are shown.

means for Clust1 for correct responses. In the experi-
ment, the number of incorrect responses was relatively
small, and during some trials a few MSs were observed
in Clust1. The estimation model may provide lower
values, causing calculations using missing responses.
On the other hand, the high estimation for incorrect
responses in Clust3 may come from cases of missed
stimulus due to not having paid enough attention.
It may be possible to remain at a comparable level
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of correct responses. The estimated attention level of
incorrect responses in Clus3 might be irregular, since
participants did not recognise the stimulus well.

6. Discussion
Both behavioural responses and visual attention levels
based on MS rates of the peripheral and central fields
of vision during a dual task are compared in order to
extract internal visual processing information during
an experiment [13, 66].
The rates of detection of peripheral stimulus

vibration as a measurement of behavioural response
performance are summarised in Figure 2. The bias
of the positions of the peripheral stimulus toward
behavioural response performance was estimated using
a modelling technique, and the distribution was
summarised in Figure 3. In regard to the distribution
of behavioural responses, the dominance of the left side
was confirmed for the rate of correct responses. Though
the visual stimulus was presented at set positions
around a circle, the locations of correct responses were
distributed along a horizontal ellipse which has a
protrusion on the left side. Initially, this spatial bias
might have been influenced by factors related to an
issue with the setup of the experiment, the phenomenon
was confirmed in additional experiments. In regard to
the previous studies, the dominance of the left side field
of view is suggested by the effect of the direction in
which the text is read, which is from the left side of the
document display [53–55]. Some of the benefit of the
bias which was introduced is also used to pay greater
attention to the field of view on the left side. The reason
for a different factor for the negative bias of the top
and bottom positions of the field of view may be due to
the shape of the field of view, but the factors regarding
the setup of the experiment may also influence viewing
behaviour.
The intention of this research is the confirmation of

whether the behavioural bias synchronises the sensitiv-
ity of peripheral visual attention using microsaccade
rates. As the level of visual attention changes during
trials, the factor of the position of the visual stimulus
in the peripheral field of vision needs to be extracted
and evaluated. Using a hierarchical Bayesian modelling
technique, the contribution to the three cluster of posi-
tion in the peripheral field of vision was evaluated.
Figure 16 shows that correct responses require more
attention resources than do incorrect responses. The
attention resources for correct responses required in
each of the three clusters are compared in Figure
17. The resources required for Clust1 are less than
those required for Clust2 and Clust3. In particular,
the reduction of resources required around periph-
eral stimulus onset is significant at around 3000 and
5000ms.

However, the above discussion is based on estima-
tion made using only a small quantity of microsaccade
rates, and excluding any physiological evidence. One
possible estimation to be considered is the direction
position bias in the peripheral field of vision. In order
to discuss the matter further, multiple biological mea-
surements should be introduced. Conventional physio-
logical measurements should certainly be employed to
examine this phenomenon. In addtional, the number
of estimations of incorrect responses was extraodinary,
as the number of responses was small and the proper
performance of the task might not have been confirmed
well. The condition of paying attention during incorrect
responses will be another subject of our further study.
In this work, microsaccade rates were evaluated every

500ms in order to reduce computational cost and the
possibility of convergence. For a more detailed analysis,
an assessment at a higher eye tracking frequency should
be conducted. These approaches will be subjects of our
further study.

7. Conclusion
This paper examines the directional bias of the
peripheral field of vision during responses made in
a dual task experiment, using a modelling technique
applied to behavioural responses and MS rates.
First, modelling the accuracy of behavioural

responses allows the biases of the advantage of the field
of vision on the left side, and the influence of the field
of view at the top and bottom to be extracted. In order
to extract latent attention levels during responses,
another modelling technique was applied to estimate
attention resources using MS rates as indices of mental
processing. The parameters of the model suggested
that changes in attention levels are required while
responses are taking place. Also, the temporal effects
of the directional bias of the peripheral field of vision
on correct and incorrect responses were extracted
and compared. Peripheral stimulus onset also affected
latent attention levels.
In order to optimise the model, the MS rate sampling

rate was reduced. Analysis using higher intervals of
measurement and a more robust modelling technique
will be subjects of our further study.
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