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Abstract

Ubi-Interact is a framework for interactive applications combining individual systems and devices distributed
over a network. Specification and implementation of such applications should be modular, extendable and
reusable. Performance, re-usability of once established capabilities and easy integration of devices are main
objectives. It relies on extendable common data formats. Edge computing capabilities allow to analyze and

transform this data. These computing modules can also manage an arbitrary number of devices with similar
capabilities interchangeably. The framework is ready to be used. Nodes for CSharp, Javascript, C++ and Java
exist and features are continuously expanded. Ubi-Interact lets users build real-time systems with modular
components that can separate system behaviour from base API calls, leaving the user free to explore and
maintain a combination of software and hardware each running in their native environment.
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1. Introduction

In recent years systems for virtual and mixed reality
applications have undoubtedly become mainstream
and affordable. Yet there’s still constant research and
development with new form factors, capabilities of
hardware and ways of interaction. This brings with it
a constantly changing environment of new standards,
APIs, SDKs and interfaces. Meanwhile companies like
Neuralink aim to elevate the link between humans and
machines to a whole different level [1].

At the same time the number of small individual
systems and devices in the fields of IoT and Industry
4.0 are also constantly rising with a myriad of sensors &
functionality and the expressed goal of inter-connecting
them and performing analysis and behaviour based
on their data. This is reflected in the concept of
digital twins [2] [3]. To keep interactions with these
systems on an acceptable timescale, the necessity of
edge computing for interactive applications has been
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emphasized by Fraga-Lamas et al. [4]. The issue of
scalability has been expressed by Navab [5].

The question is how can we effectively explore the
space of possibilities, not only of humans interaction
with these systems but also the individual system
components interacting with each other? How would
we navigate a world filled with such devices? How
do we interact with them? What are the systematic
requirements? Norouzi et al. [6] give an overview of
what future possibilities might arise from merging the
fields of augmented reality, the internet of things and
intelligent virtual agents. Ubi-Interact is designed to
explore these possibilities.

2. Motivation

The initial motivation to build a system like Ubi-
Interact was the desire to use and explore devices
like sSEMG & EEG devices, smart devices, virtual &
augmented reality hardware, IoT devices, etc. for HCI
in 3D mixed reality environments and applications.
The individual device capabilities and data should
be analysed and processed in combination with each
other - possibly using machine learning approaches

EAI Endorsed Transactions on
Mobile Communications and Applications
052021 - 07 2021 | Volume 6 | Issue 19 | e5


https://creativecommons.org/licenses/by/4.0/
mailto:<webers@in.tum.de>

S. Weber, M. Ludwig, G. Klinker

- to investigate their combined potential for novel
interaction methods and investigate if new HCI
patterns could emerge from this combination.

Another push in the direction of a networking
system solution came from the discontinuation of the
networking API UNet for the popular game-engine
Unity3D. The widespread use of Unity3D to develop
mixed-reality applications made it necessary to find
alternatives. A system that would - at the same time -
make it possible to extend Unity3D applications with
capabilities not native to the Unity ecosystem (e.g.
modern machine learning solutions) was intriguing.

Yet another interest is the development of motion
controls for full-body virtual re-embodiment avatars
[7]. In previous work these have been implemented
within the Neurorobotics Platform [8] and therefore
closely intertwined with ROS [9] & Gazebo [10] and
the provided physics engines. For a more general
purpose solution it would be interesting to see if control
strategies could be implemented that rely on only the
most basic body tracking data as input and direct
calls with force vectors/tensors to any physics engine
as output. The development of systems like [11] by
Matthes et al. and [12] by Tieck et al. could also be
application areas.

So the basic idea was to have an open and extendable
networking ecosystem with enough performance to
support HCI tasks. This opened several questions:

* What development platform should be chosen?

For the wide range of devices as well as the
library integration, we need to connect with a
variety of development languages, environments
& SDKs. For networking, the system will obvi-
ously be heavy in asynchronous I/O tasks, so we
need an environment that is strong in this regard.

* How can we easily integrate with other estab-
lished solutions? How can we keep established
solutions running over time, re-use them and
build upon them in the future?

It should be easy to integrate with other existing
frameworks and libraries. We want to support and
integrate with web technologies and IoT interfaces
as well as popular libraries like TensorFlow [13]
for machine learning, OpenCV [14] for computer
vision, ROS [9] for robotics, etc.

It should be easy for people to incorporate
existing solutions into their environment, build
upon and extend them. They should not have
to worry about or be restricted in their choice
of which environment to develop in. New and
upcoming developments in hardware as well as
implemented solutions in the form of available
libraries should be quick and easy to adapt to.
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* How can we benefit more from focused or small-
scale individual research work and integrate them
with each other? How can we produce systems
evolving beyond a prototype stage or at least keep
solutions surviving at that stage? How can we
compare results with other findings and bodies of
work?

Especially in the environments of university
and research, fluctuation of people and topics is
higher. Often enough the work of a temporary
project provides good solutions and results but is
then kept on hold and hard to pick up on by the
next person after a certain amount of time. This
hampers progress.

Or the results of individual works is hard
to compare against each other. Updated and
changing environments bring the additional
overhead of making prior solutions run again in
the new environments if not regularly touched
upon and kept up-to-date constantly.

Reproducibility of results and comparisons
between them are core to research. We'd like to
improve scalability in this regard.

* How can we quickly prototype systems? How can
we produce modular device interfaces so we can
re-use and re-combine them?

3. Goals

From the questions following the initial motivation, the
goals behind Ubi-Interact can be summed up as follows:

» Easy development of distributed network applica-
tions

We want to allow easy development of dis-
tributed network applications. We want to be able
to combine and connect different systems and
environments, exchange data and explore emer-
gent possibilities for HCI when using this data in
combination with each other.

* Make it easy to incorporate new devices into the
system

We want to be able to easily adapt to new
hardware in the future. New devices should
be easily connected to the existing system,
extending the capabilities. Furthermore, the
system should allow devices to be integrated
"loosely" - connecting and disconnecting while the
system is running without the system breaking or
making assumptions on what devices will be used
at runtime.

* Make I/O devices interchange-able, decouple sys-
tem behaviour/interactions from specific devices
used
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Where possible, devices should be interchange-
able based on the similarity of data they provide.
If for example two devices both provide IMU data,
we want to be able to use any of them for the
context of an application where accelerometer +
gyroscope data is part of the interaction. Ideally, it
should be possible to combine several individual
parts and devices to emulate or rapidly prototype
the concept of a fully developed device. One
could imagine hot-glueing together parts like an
IMU, a touchscreen and a camera to emulate the
possibilities of a smartphone.

* Make developed code reusable between different
applications and development environments

In addition to the point above, we want to
minimize the cost of re-implementing working
code when switching to different devices or
developing new applications. The possibility
to write "blackbox" functionality should be an
integral part of the system architecture. Within
these blackboxes, it should be possible to rely on
existing libraries as much as possible.

* Good performance in the context of HCI

Of course it is essential to have the system
perform on a timescale that makes interactive
tasks viable. The best possible performance
should always be a main point of consideration.

To clarify, the goal of Ubi-Interact is not to provide
connectivity to different devices on a hardware or driver
level. Its purpose is to integrate the devices into a bigger
system, given there’s access to the devices’ capabilities,
services and/or data interfaces. If a device is required
to have for example a bluetooth connection and certain
drivers installed that might be available only for certain
platforms, then the Ubi-Interact client needs to run
on the platform with the bluetooth connection and
drivers. The work on the side of Ubi-Interact ends once
there is a Ubi-Interact node for a certain platform or
operating system. Any platform with such a node can
then expose the devices capabilities to the distributed
system. If on the other hand for example an IoT
device already provides access through open network
interfaces like RESTful API, a central modular process
can be established as a communication and status
manager for this device - again exposing its capabilities
to the wider system.

4. Related Work
4.1. Messaging

One of the core questions for a network framework
is how to specify message formats and (de-)serialize
messages. There are multiple solutions to this problem,
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each with their own advantages and disadvantages.
Formats like JSON are self-descriptive and do not
rely on prior knowledge of schemas while libraries
like Google’s Protocol Buffers [15], Google’s Flatbuffers
[16] or Cap’'n Proto [17] aim to improve performance,
relying on schema files compiled for target languages.
Work by Popi¢ et al. [18] and Biswal et al. [19] made
performance comparisons for Flatbuffers, Protocol
Buffers, JSON and BSON while Flatbuffers is also
actively used by mobile game engines - a use-case that
is definitely intensive in interaction.

For its messaging layer, Ubi-Interact relies on
the proven capabilities of Protocol Buffers, possibly
switching to libraries like Flatbuffers or Cap’n Proto for
yet increased computation performance in the future.

4.2. ROS

The Robot Operating System [9] [20] has become the
de-facto standard for robotics applications. One of
its core strengths is the topic-based publish-subscribe
distribution of messages between ROS nodes and the
possibility to integrate modular packages executed
within nodes. It is mainly focused on C++ and Python
but offers bindings to several other languages.

While ROS already provides a lot of the functionality
targeted here, ultimately the goal was to have a
more lightweight system with minimal assumptions
about what environment it is used in and what other
components might become part of the system in the
future or how they can connect.

4.3. Web Services, Cloud Computing and Edge
Computing

The concept of web services & cloud computing
offers an unprecedented flexibility and availability of
computing power. Especially in the case of interactive
applications it might not be viable to rely on remote
services though. As remarked by Fraga-Lamas et al.
[4] the concept of edge computing is more viable.
Additionally, due to concerns over security and
profiling of personal data users might want to keep
their interaction data like voice commands, gestures or
even EEG locally and not send it into the cloud.

4.4. Ubitrack

The development of a ubiquitous tracking framework
by Pustka et al. [21] and Huber et al. [22] has
been another inspiration for the development of Ubi-
Interact. As the focus of this work is different from
Ubitrack it does not seek to replace it but rather leave
the possibility to work in conjunction with it in the
future. Many of its strategies to handle time-critical
computation and merging of tracking data can inspire
the future development of Ubi-Interact.
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4.5. Virtual-Reality Peripheral Network (VRPN)

Taylor et al. developed the Virtual-Reality Peripheral
Network [23] as a server-client architecture provid-
ing device-independent and network-transparent inter-
faces to VR hardware.

To achieve device-independency, it features layered
abstraction interfaces exposing common capabilities of
device types like buttons, tracking and others. Within
VRPN, these device data interfaces can also be layered
on top of each other to transform base data into higher-
level functionality and abstractions, a concept that is
reflected by Processing Modules within Ubi-Interact (see
chapter 5.5).

In comparison, Ubi-Interact tries to achieve the same
abstract handling of devices by providing common
data formats and the concept of separating devices
into components or treating separate components as
one abstract device. The VRPN feature of storing and
replaying device data could be handled generically with
a Processing Module too as they have access to the
filesystem. The goal of Ubi-Interact is a more general
integration of arbitrary system instead of focussing on
VR periphery alone. A goal is to support multiple data
stream / processing paradigms for Processing Modules
(e.g. synchronized, event-triggered, asynchronous, ...)
to give the user the freedom to configure with the
execution strategy most fitting to the context of the data
flow.

4.6. Node-RED

Node-RED is a tool aimed at connection hardware, APIs
and online services. It offers low-code programming
for event-driven, distributed applications and is based
on NodeJS. Several works have successfully shown
development of IoT-based applications with the help of
Node-RED [24][25][26].

Ubi-Interact shares the core philosophy of connecting
different processes and wiring together interactivity
through modular components. Node-RED calls these
components Nodes, in Ubi-Interact they are named
Processing Modules. Node-RED also features graphical
editors for the data flow and an online library for easy
access and public sharing - two mechanisms which
should further inspire the work on Ubi-Interact.

As a distinctive feature, while the NodeJS module
ecosystem utilized in Node-RED offers widespread
support and bindings for a lot of systems already Ubi-
Interact aims to provide a collection of nodes for any
language and environment that users choose to target.

5. System Architecture and Features

The basic structure of Ubi-Interact is a client-server
architecture. Client nodes are the I/O data producing
and consuming endpoints and therefore established
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on the I/O devices’ systems, communicating data via
the publish-subscribe pattern on identifiable topic
URIs. The server or master node acts as a centralized
data buffer for the device topics, data distributor and
optional data analyzer & processor.

The server has been implemented in Node]JS for its
architectural strength in asynchronous I/O handling
and the available support of targeted external libraries.
Client nodes are of course implemented for the target
system. So far there are clients for C# / Unity3D, C++,
Java as well as Web & Node]JS.

5.1. Message Schemas and Base Dependency

Before diving deeper into the description of the
architecture, it is essential to talk about the basic
dependency for all parts of the system - the
message schemas and data format specifications for all
networked messages. They reflect almost any part of the
system worth communicating like server configuration
& services, client configuration, backend processes,
device data etc. and can consequently be used as the
common language to describe & understand any part of
the system. Later chapters will go into detail - suffice
to say for now that these messages are used to reflect
the largest portion of internal state and configuration
of system components as well as network data and
therefore already serve as a big part of the specification
API.

As for the technology used for the message format
specifications, in the first iteration the choice fell on
Google Protocol Buffers. While formats like JSON are
universally used and have the benefit of being human-
readable in all stages and self-describing without
prior knowledge of the format / schema, performance
considerations led to choosing a framework that
reduces bandwidth while also providing performant
(de-)serialization in a broad variety of languages so
most client systems can be supported. As described
in [15], protobuf still offers abstract human-readable
schema files which can referred to for understanding
what is being communicated and can be extended with
new data formats.

5.2. Communication Patterns

Ubi-Interact uses two communication patterns between
server and clients. A synchronous connection fol-
lowing the request-reply pattern handles service-like
exchanges, e.g. basic initialization and registration of
clients, starting/stopping sessions, etc. For the imple-
mentation of the service channel a Ubi-Interact client
can rely on either HTTP(S) requests or a ZeroMQ’s
request-reply socket connection.

For continuous device I/O data with higher fre-
quency a bi-directional asynchronous connection is bet-
ter suited. Since clients should be able to join and leave
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Figure 1. Ubi-Interact overview, topic data and sessions. An overview of the system with the outer layer (blue) representing network
communication and the inner circle (red) representing modular processing. Boxes on the outer left and right indicate clients or their

representative devices.

the system at any point in time and it is unknown what
set of topic data the client might be interested in, the
publish/subscribe pattern is the ideal solution for topic
data communication. For this clients can connect to
the server via a websocket or ZeroMQ’s router-dealer
sockets. ZeroMQ’s publish-subscribe sockets are not
used since we do not want to rely on all clients being
able to integrate ZeroMQ as a library and instead offer
at least one alternative for connecting to the server,
i.e. web technologies. Consequently, we must manage
topics and subscriptions ourselves to be able to con-
nect constellations where one client is connected via
ZeroMQ and another one uses web technologies.

Network data formats and network communication
channels are deliberately kept separate and agnostic to
each other in order to potentially support additional
ways of connecting nodes in the future without having
to change the rest of the system.

5.3. Topic data and Records

Any message sent over the asynchronous pub-sub
connection is of the message format "TopicData". Such
a message can contain one or more "TopicDataRecords"
each containing a timestamp and one of the elemental
data structures described in a message schema. These
can be primitives like int, bool, string, bytes etc. up to
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higher-level descriptions of vectors, matrices, images,
button events and so on.

The bundling of TopicDataRecords into one message
helps saving bandwidth and overloading the connection
with fragmented messages when there’s a lot of
individual components to be published and/or high
traffic of subscriptions.

Apart from actual device data in records, the
asynchronous channel can also be used to transfer error
messages. This can be useful to notify clients of server
and connection errors.

5.4. Clients, Devices and Components

When connecting to the Ubi-Interact server, the first
step is to create a client node. It manages the network
connections and is automatically assigned an ID by the
server when registering. Optionally a human-readable
name, description and tags can be provided. A client
represents a physical machine or a process running on
that machine.

From there a client can proceed to register Devices,
which are in turn split into Components. A Device
in Ubi-Interact terms does not necessarily mean a
physical device like a smartphone with its individual
components like display, IMUs, buttons, ... but could
just as well be a virtual car in a game controlled
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by a player or a simulated robot with components of
simulated sensors and actuators. So the concept of a
Device again groups, identifies and holds general status
of a collection of Components. The Components in turn
are the entities describing the individual capabilities
of a Device, i.e. what data is to be produced or
consumed on a specific topic with a specific message
format. Devices and Components too can have tags and
descriptions attached.

To clarify, the concepts of Devices and Components
are not enforced on the user of Ubi-Interact. A client
can just start publishing and subscribing to any topic.
They may help with structuring and inferring status
& relationships within the distribution of the system
though.

So what about devices like IoT gadgets where it’s not
possible to run a client node and not necessary to do so
because they already expose an interface for their data
communication? The following chapter 5.5 will clarify
how to integrate these cases into the system.

(i o)

Client Node B
Devices

Master Node

n

Topic
Data

Client Node C

Network

|

IPC

Workerpool - JS

Session

/0 Mappings

Client Node A Client Node D

Bl
>

Figure 2. Node and data organization. Nodes can be connected
via network or Inter-Process-Communication (IPC). Sessions
provide runtime environments for Processing Modules, mapping
between topics and a module’s input/output specifications.

5.5. Sessions and Processing Modules

Apart from handling the network essentials like client
connections and buffering topic data, one of the
more distinguishing features of Ubi-Interact is the
possibility to establish Processing Modules (PMs) within
nodes that can manipulate topic data and provide
system behaviour in a decoupled, I/O device agnostic,
modular, reusable and shareable fashion.

In the typical scenario, processing modules are
instantiated inside dedicated processing nodes that
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offer the correct environment (dependencies) for the
module to run in. They can then provide the module’s
functionality to other nodes. If necessary, multiple
instances of the same module can be run in parallel,
each wired to its own subset of topic data.

That way, a web application can for example
rely on functionality written in C++ to solve a
high-performance task it would neither have the
resources nor correct environment to perform. Or a
readily available, tried and proven solution that is
implemented in an environment different from the rest
of our application can be encapsulated and run in its
own node. Or two modules designed to perform the
same task can be easily swapped and compared in their
performance.

It may also be the case that we have a device,
application or whole infrastructure that already comes
with its own interfaces and API. If Ubi-Interact needs
to integrate with it because a) other parts of the
Ubi-Interact system can not talk to it directly or b)
both systems need to have a tight integration for
coordination of execution etc., a Processing Module can
serve as a communication endpoint to translate between
both worlds. Similarly, if a device is not able to run a
Ubi-Interact node but has a ready-to-use network API,
a Processing Module can serve as a communicator and
status manager.

Of course any data analyzing & processing can also be
done within one of the client nodes before publishing or
after receiving data while Ubi-Interact merely serves as
a networking and data communication framework. It is
up to the user to decide at what stage computation is
best performed and where resources are available. As
stated in chapter 3, the idea is to support the concept of
black-boxed behaviour modules that

* can handle clients and relationships/interactions
between them dynamically with clients
(dis-)connecting at runtime.

» work independently of specific devices used and
how many are used.

* can be re-used and integrated with other modules
based on well-defined I/O formats, allowing
users to easily connect, share and exchange their
implemented features.

* can interface with other libraries like OpenCYV,
TensorFlow, etc.

* reduce the need to re-implement parts of the
application when replacing devices.

These modules are conceptually named Processing
Modules. Figure 2 illustrates the structure of Processing
Modules and Sessions. Processing Modules are grouped
in Sessions which reflect the runtime environment
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of the combined set of Processing Modules necessary
for a certain distributed application. Sessions can
be started and stopped to control the execution of
all Processing Modules encapsulated. Communication
between running Sessions is possible through the use of
dedicated topics (Figure 1 shows this with the middle
left topic).

A Processing Module defines its capabilities based
on desired inputs and expected outputs following the
same message formats and data structures used for
topic data. It follows a typical set of life cycle methods
like initialization and processing that are called at the
appropriate point in time. To have better control over
how a Processing Module does its work, three processing
modes are defined. Note that a Session may potentially
contain Processing Modules with differing processing
modes.

Processing Module

<

Figure 3. Processing Module life cycle overview. External
dependencies are either accessed via the internal state (if defined
globally for all PMs) or through the code of the life cycle
callbacks directly.

Processing based on set frequency. In this mode,
after starting a Processing Module it will execute its
onProcessing() life cycle callback in set time intervals.
Necessary input data will be pulled during execution
and output data will be written after processing has
finished.

As such is the most asynchronous and decoupled
mode of execution. A Processing Module will execute
on its own terms, only reacting to new data whenever
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it is running its cycle. The target execution frequency
will be kept unless the server system hits the limit of
its processing power. The delta time parameter for the
call to onProcessing() will indicate time since the last
processing iteration and therefore typically reflect this
execution frequency.

For many cases, this mode is sufficient and is
therefore chosen by default if no specifications are
given.

Processing triggered by new input. If a more immediate
execution is desired, this mode allows to run processing
whenever one or more of the input topics are updated. It
can be configured to start a processing iteration as soon
as one of the input topics updates or make it necessary
for all input topics to be updated before running again.
To avoid an overwhelming influx of execution triggers
from topics with high update frequency, a minimum
delay between executions can be defined. Delta time
will again reflect the time that passed since the last
processing call.

If the goal is to chain multiple Processing Modules
together in a pipeline where each consecutive module
relies on the output of the previous one(s), this mode
is probably a good choice to couple the modules more
closely and avoid delays of updates.

Processing in lockstep. Certainly the most involved
option is the lockstep mode. It covers the use cases
where individual executions need to be kept in
synchronization and are supposed to operate on the
same snapshot in time of topic data.

The Processing Module will not determine its own
execution. Instead a running Session on the master
node will identify all Processing Modules inside it using
lockstep mode and synchronize the execution of them.
Processing Modules with different processing modes
inside the same Session will follow their execution loop
as described above.

During a lockstep processing cycle, first all topic data
records necessary as input for the involved Processing
Modules will be gathered at the same point in time.
Then the Session will send out processing requests
to each Processing Module containing the necessary
input records as well as the time passed since the last
execution or respectively a time-step to be advanced
during processing. This time delta will of course be the
same for all Processing Modules. The Session will wait for
all processing requests to be responded to, indicating
that all Processing Modules have finished their iteration.
These responses will also contain produced output
topic records which the Session can then write back into
the general topic data buffer after the processing cycle
has been completed.

To define relations to the outside world, a Processing
Module relies on the same topic data message formats
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used by device components which guarantees seamless
integration with the rest of the system without
additional steps of data conversion - except for what
might be necessary while using external libraries. The
inputs and outputs of a Processing Module are specified
by an internal name serving as a getter / setter
variable and the data format. That way a Processing
Module can be specified without consideration for
any topic conventions, i.e code can be written with
internal naming conventions. The Session instantiating
the Processing Modules can then define I/O mappings
for each, linking topics to internal names verified to be
legal based on fitting data formats.

Internally, a Processing Module consists of a state
and life cycle callbacks to define its behaviour.
Currently there is a callback after creation for
initialization purposes and a callback for processing
defining the runtime behaviour. All callback functions
allow arbitrary code execution to guarantee maximum
freedom. The life cycle specifications are continuously
extended as necessary. Arguments for the creation
callback are the internal state while the process method
is called with references to inputs, outputs and state.
External libraries can be loaded at start to be added to
a library and are then made available to all Processing
Modules by accessing the "modules" objects of the
internal state. Alternatively external libraries can be
referenced directly from code.

In its current state Ubi-Interact allows to run
Processing Modules in Javascript (either inside a
dedicated node or as a workerpool execution) and
CSharp (dedicated node only). Work has already started
on providing integration with nodes in other languages,
which will be elaborated on in chapter 8.2. While
not having optimal performance for Processing Modules
in every case, Javascript so far can already cover a
big portion of the initially targeted external libraries
including ROS [9], TensorFlow [13] and OpenCV [14].

From a more theoretical point of view, Processing
Modules can be seen as an effort to meet the demands
of reactive systems [27] [28]. Another interpretation is
an agent that can observe and react to its environment
through inputs and outputs while relying on an internal
state to keep continuity in its behaviour. Additional
efforts definitely have to be made for time-critical use-
cases though.

5.6. Topic Multiplexing and De-Multiplexing

As soon as applications involve several users and/or
devices that interact with the system in a similar
fashion - for example multiple users with their
personal smartphones - it quickly becomes desirable
for Processing Modules to be able to take all of these
inputs with equal formats in, process them together and
possibly in relation to each other and then react with
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output relating to the individual users/devices. That
way we can write one Processing Module handling an
arbitrary number of devices dynamically. This leads to
the following requirements:

* Devices should be considered/disregarded while
connecting/disconnecting at runtime.

* The inputs and outputs that should be bundled all
have the same data format in order to guarantee
what kind of data is being accessed or written
inside the Processing Module.

* Within the code of the Processing Module we need
to be able to identify which user/device the data
originates from or respectively where to send
output.

* While writing code for the Processing Module we
want to handle references to users/devices in
an abstract and flexible fashion without prior
assumptions beyond input and output formats.

These requirements have been realized within topic
muxers/demuxers.

Topic muxers are specified by a common mes-
sage format for all input topics, a regular expres-
sion used to identify topics of interest as well as
another regular expression used to extract iden-
tity patterns from the individual topics. To illus-
trate with an example, we might want to handle
a number of smartphones all accessing the system
through a common web interface. This web inter-
face will create topics for each smartphone in the
form of "/<client-ID>/smartphone/touch_position",
".../imu-accelerometer", etc. with the client or device ID
included as a way to prevent conflicting topic URIs. A
Processing Module interested in the proximity of touch
positions could then utilize a topic muxer to identify all
topics shaped like the first example while also extract-
ing the client ID (commonly UUIDv4 is used in Ubi-
Interact). During processing of the Processing Module,
the muxer then provides a list of all relevant topic data
with elements consisting of (topic, data, type, [optional]
identity).

Analogously, a topic demuxer is specified by a
data format and an output topic format shaped like
a formatted printf() statement. To produce output,
the demuxer must be provided again with a list of
elements consisting of the data and a related list of
parameters used to fill the placeholders in the output
topic format. If the smartphone interface subscribes
to a topic "/<client-ID>/smartphone/vibrate" then we
could for example use the previously extracted client ID
to make individual smartphones vibrate based on their
touch proximity by providing sets of (vibration pattern,
client ID) as output to the demuxer.
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This is a first proof-of-concept. In the future
it is possible to extend topic muxer/demuxer to
automatically deduce client IDs from arbitrary topics
or gather topics based on device component tags or
message formats.

6. Web Frontend

Ubi-Interact provides a web frontend that comes with
a lot of usage examples and test applications as well
as administration and monitoring tools. In terms of
connection and communication with the server, the
frontend behaves just like any client. Run the web-
server on the same machine as your Ubi-Interact server
to get access to configuration and visualization tools as
well as live examples and demos.

6.1. System Performance Evaluation Tools

The web frontend includes a short list of performance
evaluation tools. As it’s web-based, you can use these
tools from any client with a browser. It includes a
short round-trip-time measurement as well as session
execution speed measurements.

6.2. System Overview and Configuration

An Processing Module editor allows creating, editing and
deleting Processing Modules through a web interface.
Processing Module files are saved in JSON format on the
server and can also be edited directly.

As auto-discovery services are not implemented yet,
a view of local IP adresses together with corresponding
QR codes allows quick access to the web frontend from
e.g. smartphones.

A topic inspector shows all services topics and
current data topics with live updated values. A client
inspector lists all client nodes, their devices and
components in a similar way.

To quickly test system behaviour a web interface can
be used to easily publish any topic data records.

7. Usage Examples
7.1. Base Example

One of the first applications implemented as part of the
web frontend was a simple webpage that reflects the
mouse cursor position. The current 2D position is sent
to the server, run through a minimal Processing Module
and then sent back to the client. At the position received
back from the server, a small red square indicator
is shown. Besides being a basic usage code example
illustrating how to publish data and subscribe to it, this
also allows the user to get a subjective and intuitive
impression and "feeling" for the latency and update rate
of the system by doing live mouse movements. For a
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detailed and commented code example please refer to
the web frontend repository.

On one hand this serves as a minimal code example
to learn how to connect to the back-end and use the
publish & subscribe mechanisms for data. On the other
hand it is meant as a personal latency evaluation tool.
We're all very much used to how a 2D cursor is
supposed to feel as we're using the standard mouse as
input device daily. The frontend example then allows
to hide either the original cursor or the red square to let
the user make better comparisons. Especially hiding the
original cursor gives a good indication and "feeling" of
how well the system is reacting to live input as the red
square becomes the only indicator for the user’s mouse
movement input.

As an additional exercise, the 2D vector doing the
round-trip is run through an Processing Module on the
server-side that can mirror the position in X and Y based
on a boolean input flag. This interaction is specified
and transmitted by the client-side on start to illustrate
how this purely client-side specification of the whole
runtime context can be achieved in principle.

7.2. 2D Object Detection for Image Streams

The web frontend provides an interface for devices
with a camera that continuously sends camera images
to the server and wuses an Processing Module in
combination with TensorFlow [13] and the CocoSSD
model for 2D object detection [29]. The Processing
Module takes images as input and produces a 2D object
list output with image coordinates and classification
results. The camera web interface can then use the
model classification results to overlay the original
image. In theory, any application producing images
(even artificial ones) can then use this Processing Module
to make use of the same functionality, only having to
worry about the message formats for images and 2D
objects.

/7.3. Topic Multiplexing

A demo implementing the example of Chapter 5.6
is available as part of the web frontend. Under
"applications - examples" you can open the "Smart
Device Gatherer" page e.g. on your desktop and
then connect additional smart devices using the web
frontend’s category "interfaces - smart device".

7.4. Ubi-Party Game

To put the system to the test in terms of usability,
performance and scalability a multiplayer gaming
application was developed where users could play using
their personal smartphones. This application called
"Ubi-Party" was designed to consist of multiple mini-
games akin to popular video game series.
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To test live performance, especially games that
require quick reaction times were found to be ideal
test cases as players in a competitive multiplayer
environment would quickly and loudly criticise any
delay or game-hindering latency recognized in the
input.

The list of mini-games so far features a short racing
game and a "king of the hill" style game where players
would push each other off a slippery platform. Another
game where players are tasked to quickly find real-life
objects and take pictures of them to earn points is under
development. It is designed to test communication
of larger chunks of data (images) and using backend
processes to analyze them (2D image recognition).

7.5. Serious Games, AR Escape Room, Superhuman
Sports

Several applications developed by Plecher et al. also
already integrated Ubi-Interact.

The first one is Oppidum - a Serious-AR-Game set
in and teaching about Celtic culture [30]. It uses Ubi-
Interact to implement the multiplayer mode.

Xanthippos [31] combined a tablet, a greek statue and
a projector to interactively color the statue. Users would
paint the 3D model of the statue on the tablet and the
projector would then overlay the texture onto the real-
life model.

A third application with the topic of designing an
AR Escape Room [32] also used Ubi-Interact to define
interactivity between teams and objects.

Another project [33] by Eichhorn et al. is exploring
the possibilities of using a tracked and controllable
drone in a spherical cage as a playing ball in the field of
Superhuman Sports. Ubi-Interact has been successfully
utilized to communicate game state and player actions
here.

7.6. Physical Embodiment in VR

In Chapter 2 the idea of virtual re-embodiment in a
physically simulated environment has been brought up.
Such a system would try to mirror a user’s real-life
movements onto a virtual body that is part of a physics
simulation, thus allowing the user physical interactions
with the virtual environment.

In the most general terms such a system would always
rely on some sort of user body tracking as a first input
step and commanding a physics engine to apply forces
to a virtual body as a last output step. Body tracking
data could for example come from of a camera based
pose/skeleton estimation or typical VR hardware’s head
and hand tracking positions possibly complemented by
waist and feet tracking targets. On the other end might
lie one of several physics engines embedded in e.g. a
game engine or a robotics simulator - PhysX, (Py)Bullet,
ODE, OpenSim or Simbody to name some.
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In between several other steps need to happen.
Depending on how detailed the data of the body
tracking system is, a body pose estimation step using
e.g. inverse kinematics (IK) needs to happen. Following
this, from the current pose of the virtual body and
the (estimated) target user pose we can determine the
motion necessary for the virtual body to reach the target
pose. From that pose error one can derive forces to be
applied each time step of simulation.

One of the expressed goals of Ubi-Interact is to be
able to abstract away solutions from the base input
and output modalities, offering components that can
be reused in different scenarios and keeping the time
investment to switch platforms to a minimum. As an
example, if one were to switch physics engines - or the
whole simulation engine for that matter - one would
like to only re-implement the base calls for the step of
receiving target forces and applying these to a certain
body in the new engine. The other steps could in theory
stay the same. Depending on how much of the other
steps are implemented inside the prior engine and what
other libraries were available and used to accomplish
this, one might be facing some additional work though.

Is it possible to create such a VR embodiment
system using Ubi-Interact, taking only the base data
(pose indicators, forces) of the components regarded
as interchangeable (tracking, physics), communicating
these directly with the Ubi-Interact system and the rest
of the computation happening inside modules?

To test this, a scene was implemented using Unity3D.
Fig.4 illustrates the three general stages of 1) getting
out tracking data, 2) combining tracking data and the
physical avatar’s current pose to estimate forces and 3)
a physical avatar reporting its current pose and being
able to receive commands for appling forces.

To speed up development, human animations are
played in a loop in stage 1 instead of relying on real
body tracking data. Key transformations of head, body,
hands and feet are extracted from that animation as IK
target positions. Controlling animation speed also gives
a good idea how fast the system can react to changes
overall. The six IK targets are then published to Ubi-
Interact.

Stage 2 consists of a pose estimator converting the
IK targets of stage 1 to a full body pose. From there a
physics estimator compares the pose estimator’s result
to the current pose of the physical avatar (stage 3) it is
subscribed to, then publishes target linear and angular
velocities for the individual body parts that intend to
move the them towards their target pose and keep them
stable while not moving.

In stage 3 we have the physical avatar that is
continuously publishing current poses for each body
part as well as being subscribed to the target velocities
of stage 2.

EAI Endorsed Transactions on
Mobile Communications and Applications
052021 - 07 2021 | Volume 6 | Issue 19 | e5



Ubi-Interact: A modular approach to connecting systems

Figure 4. VR embodiment stages overview. The 3 stages for the physical embodiment system. 1: user tracking, 2: pose and velocity

computation, 3: physical avatar being moved

Overall the communicated data consisted of the six
IK targets, the avatar’s current poses for each of the 46
bones in it’s body structure and the target velocities for
each bone - each represented by a 6-DoF transformation
or two 3-D vectors respectively. All topics are published
with a frequency of 30Hz.

For calculating the necessary velocities in stage 2,
an idealistic approach using the velocity necessary to
move to a target pose within the next time step of
the physics simulation loop is chosen. When calculated
and executed from within the physics loop, it adds
the exact forces necessary to produce perfect stable
results in every time step, taking into account the
body part’s current velocity. When introducing latency
as will happen with network communication through
Ubi-Interact, it is expected that the physical avatar
will jitter or simple explode as forces overshooting the
target quickly add up to infinity. This is indeed the
result when naively applying the same approach in
the physics estimator of stage 2. With some regulatory
additions to the estimator however the error resulting
from latency can be counteracted. In this case a simple
linear scaling is enough to produce stable results.
In more realistic robotics and teleoperation scenarios
where infinitely fast acceleration is impossible and
momentum is applied to joints, typical solutions like
PD controllers can be applied in an analogous manner
[34].

2 EAI

To allow direct comparisons with the integrated one-
system solution, all parts in this example remained
implemented in Unity3D. This should however exem-
plify that Ubi-Interact can successfully be used to
implement solutions in a modular fashion and combine
them in real-time systems. We could replace stage 1
with input from a WebXR application, adapt an existing
solution producing more accurate results for humanoid
inverse kinematics in stage 2 or use a robotics simulator
in stage 3 next, only having to implement the callbacks
for topic communication and basic API calls for retriev-
ing poses and applying forces.

8. Next Steps
8.1. Introspection and Debugging

The development of a graph visualization & editing tool
has started that will serve as a Session editor. The plan
is to visualize (live) data flow and status of Sessions
and Processing Modules and provide GUI tools to set up
and edit sessions by e.g. dragging connections between
topics and Processing Module input/output.

8.2. Extending node features and lanquages

Of course Ubi-Interact lives with the amount of nodes
available to users. Extending this portfolio as well as
bringing all the newest features to existing nodes will
be a constant effort. Once a node or a Processing Module
for that node has been established, everyone can make
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use of it. Our hope is that a community of users will
be able to benefit from each others’ work here, and the
first adoptions point towards succeeding here. In order
to provide the functionality of Processing Modules in
different languages, one of the first concerns has been
performance. It is mandatory to utilize the full scope
of a programming language, so Processing Modules need
to run in separate processes that communicate with the
current master node through sockets.

This however means constant (de-)serialization of
protobuf messages when communicating with clients
and again when input/output to/from Processing
Modules needs to be transferred. This (un-)packing
of messages could mean a significant performance
overhead. Libraries like Flatbuffers or Cap’n Proto
are very similar to Protocol Buffers in their use of
schema files compiled into different languages. Their
architecture as a flat message buffer with defined access
offsets however gets rid of the (de-)serialization step.
First tests within Javascript with multiple processing
modules that each read and write a random subset of
topic data have shown Flatbuffers to perform 15% + 3%
faster when transmitting smaller messages consisting of
primitive types. Unfortunately it was also discovered
that Flatbuffers takes a serious performance hit under
Javascript when longer byte buffers, e.g. images, are
involved. This issue seems to have been fixed already
for other languages. It would be desirable to provide
the same performance for all languages considered as
continuous steps are taken in this direction.

8.3. Security

So far the application scenarios of Ubi-Interact are
rather risk-free. This is why it is allowed for clients
to provide full specifications of Processing Modules
by stringifying callback functions and sending them
over to the server to be executed. This arbitrary code
execution obviously represents a big security risk in
other scenarios and might need to be restricted for
environments where security is a concern.

Another point is the amount of biometric data
involved in user interactions with the system when we
think about for example involving EMG/EEG. Close
attention will be paid to keep user data sets anonymous
when performing studies. It may be prudent to also
provide secured communication channels.

8.4. Scalability and Utilities

Until now considerations like publishing frequency of
topic data or execution frequency of Processing Modules
has been an effort on the user’s side. To improve
usability and scalability, the aim is to support the user
with sensible defaults, functionality and regulatory
checks in order to prevent or warn about certain parts
of the system taking over too many resources.

O EA

8.5. Time synchronization

The more time-critical the execution of Processing
Modules becomes, the more necessary it becomes to
provide time synchronization mechanisms between
server and clients. Strategies are investigated and
will probably be adapted from Ubitrack and/or
VRPN. Furthermore, future development may provide
channels to couple Ubitrack and Ubi-Interact more
closely to benefit from a combined effort.

9. Conclusions

With Ubi-Interact we hope to provide an open
community system that helps to prototype and develop
scalable and performant applications in the realm of
mixed reality and IoT. An emphasis lies on freedom and
usability for the developer. First user feedback indicates
good acceptance and satisfaction. The widespread
public exploration of the full possibilities of Processing
Modules remains an interesting topic for the future.

All efforts made here are already publicly available
at https://github.com/SandroWeber/ubi-interact and
base dependencies for Javascript can also be found in
the form of NPM packages.
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