
Implementation of Cognitive Radio Network Testbed for

Multimedia Communications

Patrick DaSilva1, Anuja Ghising1, Siddharth Patil1 and Honggang Wang1,*

1Department of Electrical and Computer Engineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747-2300,

United States

Abstract

A cognitive radio is a form of wireless communication in which a transceiver can intelligently detect which communication

channels are in use and which are not, and instantly move into vacant channels while avoiding occupied ones. This

intelligently avoids interference amongst users and provides the ability to use up all available bandwidth on the RF spectrum.

There are many ways in which the communication can be demonstrated. This paper examines how we have implemented a

cognitive radio network testbed using software defined radios (SDRs) for multimedia communications, where components

that have been traditionally implemented in hardware are instead implemented by means of software on a personal computer

or embedded system to communicate and transfer a file between each other. We attempt to demonstrate potential use of

SDRs for future multimedia applications.

Keywords: GMSK, GNU Radio, SDR, USRP, VLC, wireless streaming.

Received on 24 August 2018, accepted on 18 September 2018, published on 14 December 2018

Copyright © 2018 Patrick DaSilva et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.10-7-2018.156087

1. Introduction

Cognitive radio (CR) is defined as “a form of wireless

communication in which a transceiver can intelligently

detect which communication channels are in use and which

are not, and instantly move into vacant channels while

avoiding occupied ones [1].” This intelligently avoids

interference amongst users and provides the ability to use

up all available bandwidth on the radio frequency (RF)

spectrum [1]. The most popular way to do this is with a

software defined radio (SDR), defined as a radio

communication system where components traditionally

implemented in hardware are implemented in software on

a processor-based system [2]. Further, the multimedia

communication industry continues to grow rapidly,

especially with the wide deployment of smartphones and

growing interests in multimedia social networks. There is

an urgent need to train the next generation engineers and

scientists in the cross-fields of multimedia and

*Corresponding author. Email: hwang1@umassd.edu

communications. In this paper, we successfully setup a

testbed that supports developing a cognitive radio network

for multimedia communications for the purpose.

Section 2 will discuss the background needed to

complete this project. The network topology of connecting

multiple software defined radios together will be discussed

in Section 3. Section 4 will describe Gaussian Minimum

Shift Keying, the primary modulation scheme used

throughout the project. Sections 5 and 6 will discuss the

two project goals completed and finally Section 7 will

conclude this paper.

2. Background

2.1 Software Defined Radio

Prior to SDR, a radio would need to be implemented for

every protocol each time a new device or standard was

released. For example, cellular, Wi-Fi, and Bluetooth need

EAI Endorsed Transactions
on Mobile Communications and Applications Research Article

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

http://creativecommons.org/licenses/by/3.0/

different processing to extract data, but similar RF

circuitry. With the advent of SDR, each protocol can be

implemented in software, allowing each radio to be

reconfigurable and require less hardware.

An SDR (Fig. 1) is made up of three main components:

the user interface (UI), data engine, and RF front end. The

UI serves as the main interface between the end user and

SDR. Mainly implemented in software, the UI can also be

implemented in hardware. The primary objectives of the UI

are to perform digital signal processing (DSP),

modulation/demodulation, digital filtering, time-domain to

frequency-domain conversions, and controlling of all

hardware and hardware DSP functions. Software

implementations of the UI include GNU Radio, MATLAB,

Redhawk, QtRadio, and SDR#.

ADC: analog to digital converter
ASIC: application-specific integrated circuit

DAC: digital to analog converter
DSP: digital signal processing

FPGA: Field Programmable Gate Array
IF: intermediate frequency

RF: radio frequency
Figure 1. Software defined radio [2].

The data engine section (Digital Front End + Base Band

Processing) is usually implemented using micro-

processors or Field Programmable Gate Arrays (FPGAs).

The data engine sits between the RF frontend and UI

performing multiple necessary functions. These functions

can optionally perform DSP operations on digitized pre-

filtered RF data before outputting the packed data over

USB or Ethernet to the UI. It also handles sample rate

mismatch using digital down-converters (DDC) and digital

up-converters (DUC).

The RF section is a pure analog section apart from the

analog to digital (ADC) and digital to analog (DAC)

converters. This section interfaces sit between the analog

outside world of RF and the rest of the digital radio. The

section contains all front-end protection, filters,

attenuators, transmitter filters, power amplification, and

antenna switching.

2.2 Ettus Research USRP N210

The Ettus Research Universal Software Radio Peripheral

(USRP) N210 (Fig. 2) is an SDR that takes in an analog RF

input, samples it into the digital domain, and sends it across

a User Datagram Protocol (UDP)/IP network interface to

be processed using software. The USRP N210 can operate

from baseband to 6 GHz in the RF spectrum via swappable

daughter boards. The N210 architecture includes a

customizable Xilinx Spartan 3A-DSP FPGA. The 1 Gbit/s

Ethernet interface allows for streaming up to 25 million

samples per second (MS/s) in full-duplex mode to and from

the user interface. With the FPGA, the N210 has the

potential to process up to 100 MS/s.

Figure 2. USRP N210 [3].

The N210 provides the RF frontend and data engine in

a single enclosure. Fig. 3 shows the hardware layout of the

N210, which contains the Ettus Research WBX daughter

board as the analog portion of the RF section. The main

N210 printed circuit board includes the hardware for the

Data Engine Section. The WBX daughter board contains

one transceiver antenna and one receiver antenna allowing

the N210 to be placed in full duplex mode and stream up

25MS/s.

ADC: analog to digital converter
DAC: digital to analog converter

DDC: digital down converter
DUC: digital up converter
PLL: phase-locked loop

VCO: voltage-controlled oscillator
WBX: wide bandwidth transceiver

Figure 3. Hardware layout of USRP N210 [4].

2.3 GNU Radio

GNU Radio is a free and open source software

development toolkit that provides signal processing blocks

to implement software-defined radios and signal-

processing systems. It is a highly modular and flowgraph-

P. DaSilva et al.

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

oriented framework that comes with a comprehensive

library of processing blocks easily combined to make

complex signal processing applications. It enables users to

design, simulate and deploy highly capable real-world

radio systems and is widely used in hobbyist, academic and

commercial environments to support both wireless

communications research and real-world radio systems.

GNU radio is primarily supported on the Linux platform

and when installed, comes with a large variety of tools and

programs which can be used with USRP software defined

radios after installing the USRP Hardware Driver (UHD).

On Linux these programs are typically installed into

/usr/local/bin. A few of the common tools are:

 uhd_fft: It is a very simple spectrum analyser tool

which uses a connected UHD device (i.e., a USRP) to

display the spectrum at a given frequency.

 uhd_rx_cfile: It records an I/Q sample stream using a

connected UHD device. Samples are written to a file

and can be analysed offline later, using either GNU

radio.

 uhd_siggen_gui: It is a simple signal generator and

can create the most common signals (sine, sweep,

square, and noise).

GNU Radio Companion (GRC) is a graphical tool for

creating signal processing flow graphs and generating

flow-graph source code. On Linux systems, GRC is

invoked by using the gnuradio-companion terminal

command. GRC will pop up in its own window. A GNU

Radio block can then be dragged into the main window and

connected by clicking the edges.

Fig. 4 shows our early implementation of transferring a

file via USRP N210 software defined radios. GNU radio

natively supports the Ettus research line of SDRs.

Figure 4. GNU Radio implementation of transferring
a file over two USRP N210s.

Once the flowgraph is created, GRC creates a Python

script from the graph. The Python script allows for manual

manipulation of the block connections which is useful if

the user wants more control over the signal flow. This

provides the entire power and functionality of Python and

its libraries, such as SciPy or NumPy for Python-centric

processing of your signals or your favourite widget library

to create any GUI you wish.

As described in the Guided Tutorials [5], GNU Radio

allows for the easy development of custom out of context

blocks developed in C++ and wrapped in Python. The

blocks can be used in any GNU Radio flowgraph.

3. Connecting Multiple N210s

The first task we set out to do was connecting multiple

Ettus Research USRP N210s to a single server. According

to the Ettus Research N2X0 Series manual [6], multiple

N210 radios can be connected to a single host over a

network so long as each radio has a separate IP. Ettus

Research recommends only connecting one radio per

Ethernet interface and that each interface has its own

subnet with the appropriate subnet mask. It is mentioned

that theoretically a network switch would allow multiple

radios to connect through a single interface so long as each

Ethernet interface has its own subnet, and the

corresponding USRP2 device is assigned an address in that

subnet.

An example of setting up IP addressing for multiple

N210s using separate interfaces is [6]:

 Configuration for USRP2 device 0

 Ethernet interface IPv4 address: 192.168.10.1

 Ethernet interface subnet mask: 255.255.255.0

 USRP2 device IPv4 address: 192.168.10.2

 Configuration for USRP2 device 1

 Ethernet interface IPv4 address: 192.168.20.1

 Ethernet interface subnet mask: 255.255.255.0

 USRP2 device IPv4 address: 192.168.20.2.

This example can be created with either two Ethernet

interfaces on a single computer or with a layer 3 managed

network switch setup with virtual local area networks

(VLANs).

3.1 Network Configurations

To be able to connect multiple users to a testbed of N210

SDRs, two different network configurations were studied,

and a list of pros and cons were generated. The

configurations of interest can be seen in Fig. 5.

Implementation of Cognitive Radio Network Testbed for Multimedia Communications

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

UMASSD: University of Massachusetts Dartmouth
USRP: Universal Software Radio Peripheral

VNC: Virtual Network Computing
Figure 5. N210 network configurations.

Configuration 1 contains a single XRDP host server

(VNC Svr) with two Ethernet interfaces (Interface 1 and

Interface 2). Interface 1 is connected to the University of

Massachusetts (UMASS) Dartmouth network. Interface 1

is a dynamic host configuration protocol (DHCP) to get its

information from UMASS. Interface 2 is setup with a static

IP address for the cognitive radio network. The switch on

the cognitive radio network is configured as a single VLAN

and each N210 has a unique IP address on that VLAN.

Configuration 2 takes advantage of the four Ethernet

interfaces available on the host server. This configuration

contains m XRDP servers connected to the UMASSD

network. Like before, Interface 1 is setup to dynamically

get its IP information from the UMASS network. The

remaining interfaces (2,3,4) are setup with static IP

addresses on different subnets. Connected to each interface

is a single SDR on the same subnet as the interface it is

connected to.

The configuration settings for the host and N210 radios

can be seen in Table 1.

Configuration 1 allows a single host to connect to more

SDRs than Ethernet interfaces available with the use of a

gigabit switch. The downside is all SDR traffic is funnelled

through a single gigabit interface. The effect can be seen

when multiple SDRs are communicating with the host

server. As the sample rate of each radio increases, the

bandwidth limit of the single gigabit interface is achieved

faster, limiting the available bandwidth of each radio.

Configuration 2 overcomes this disadvantage by giving

each SDR its own gigabit path to the host. The downside is

multiple host servers or Ethernet interfaces are required to

the host, increasing the complexity of the network

configuration if additional servers are needed.

Table 1. Comparison of configurations

Configuration 1 Configuration 2

Host Intf 1 IP DHCP DHCP

Host Intf 1
Subnet

N/A N/A

Host Intf 2 IP 10.10.1.254 10.10.2.1

Host Intf 2
Subnet

255.255.255.0 255.255.255.0

Host Intf 3 IP Off 10.10.3.1

Host Intf 3
Subnet

Off 255.255.255.0

Host Intf 4 IP Off 10.10.4.1

Host Intf 4
Subnet

Off 255.255.255.0

USRP 1 IP 10.10.1.2 10.10.2.2

USRP 2 IP 10.10.1.3 10.10.3.2

USRP 3 IP 10.10.1.4 10.10.4.2

DHCP: dynamic host configuration protocol

After some preliminary testing with both configurations,

Configuration 1 was picked. On Configuration 1, a single

SDR could achieve 30 MS/s before the host became

unresponsive. Two and three SDRs could achieve a

simultaneous sample rate of 15 MS/s and 10 MS/s

respectively before dropped packets were experienced.

For our application, it was estimated the SDR sample

rate would not need to go above 1 MS/s and therefore

Configuration 1 was chosen. Configuration 1 also allows

additional SDRs to be added to the testbed without much

additional configuration but to setup the SDR static IP.

3.2 Final Hardware Configuration

Our final hardware configuration for this project utilized

three of the Ettus Research USRP N210 main data engine,

WBX 50-2200 MHz Rx/Tx daughter board RF section, and

the LP0965 Log Periodic PCB antenna. Even though we

only needed 2 SDRs to communicate, we chose to utilize 3

to allow users to explore GNU Radio and the N210 in

depth. Our final implementation can be seen in Fig. 6.

Figure 6. Final radio hardware configuration.

4. Gaussian Minimum Shift Keying
Modulation

Gaussian Minimum Shift Keying (GMSK) is a form of

modulation used in a variety of digital radio

communications. The most widely used application known

to use GMSK is GSM cellular technology used worldwide.

GMSK modulation is based on Minimum Shift Keying

(MSK) which is a form of Continuous-Phase Frequency-

Shift Keying (CPFSK). The problem with standard Phase

Shift Keying (PSK) is that its sidebands extend out from

the carrier interfering with adjacent digital

communications. The PSK sidebands extend out from the

carrier because of phase discontinuities in the modulated

signal. MSK and therefore GMSK can be used to overcome

P. DaSilva et al.

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

these phase discontinuities. GMSK reduces its bandwidth

usage by passing the MSK modulated signal through a

gaussian low pass filter prior to applying it to the carrier.

Typically, GMSK is implemented using hardware

components in a radio designed for a specific application.

Hardware components must be picked carefully because

GMSK requires great precision to work properly. With

software defined radios, or more precisely, with GNU

Radio and other software front ends, developers can utilize

tried and true software implementations of GMSK. In GNU

radio, this is as easy as dropping the GMSK Mod and

GMSK Demod to transmit and receive a GMSK modulated

signal. An application of GMSK digital communication

can be seen in Fig. 4.

For both tasks set forth in this project, we used GMSK

to send digital signals. In all our research, GMSK was the

common modulation scheme users chose [7]–[10]. The

other modulation scheme found in our research [11] and

[12] was Binary Phase Shift Keying (BPSK) and

Quadrature Phase Shift Keying (QPSK).

5. Continuous File Transfer

To be able to transmit and receive a file’s contents between

two USRPs, the GNU Radio flowgraph (Fig. 7) was

constructed. The primary data path followed a similar

structure as found in the research [7]–[10] with the

exception that the file sink block was set to repeat.

Figure 7. GRC flowgraph of text file transfer.

5.1 Data Transmission Flow

Data transmission starts with a file source block which

reads raw data values from a specified file; in this case the

file name is read from a parameter block, in binary format

and placed on the data bus. A packet encoder block then

encodes each set of bytes into a packet of a given payload

length with a header. These packets are then transferred to

the GMSK mod block, a hierarchical block for GMSK

modulation. The input is the byte stream and the output is

a complex modulated signal at baseband. To avoid

saturating the USRP input, the baseband signal is fed

through a multiply const where all the complex values are

halved. The USRP sink block reads the incoming stream,

shifts it from baseband to the specified centre frequency,

and finally transmits the stream over the air through the

USRP specified by its IP address.

5.2 Data Receiver Flow

On the receiving end, the wireless transmission is sampled

by the N210 and samples are fed over the network to the

USRP source block. The block commands the radio

specified by its IP address to be tuned to the correct centre

frequency. The incoming stream is output as complex

values at baseband. The complex stream is fed through a

low pass filter block where all frequencies above 100 kHz

are filtered out. From here on out, the stream is just fed

through the inverse of the transmitting flow. The complex

values are passed to a GMSK demod block, a hierarchical

block for GMSK demodulation. The input is the complex

modulated signal at baseband. The output is a stream of bits

packed 1 bit per byte (the least significant bit). The packet

decoder then checks the header information for packet

payload length and reconstructs the data output. Finally,

the raw data stream is written to a file in the file sink block

specified by a parameter.

5.3 Changing Parameters from Command
Line

For the file transfer blocks, we have defined a few

parameter blocks. A parameter block represents a

parameter to the flowgraph. A parameter can be used to

pass command line arguments into a top block or

instantiated hierarchical block.

Parameters blocks need a label, value, and type to be

defined. The label presents a descriptive label when using

the help from the python command line. To use the

parameter ID as the label, leave this blank. The value is the

default value for the parameter. The type is the data type of

the resulting variable used in the flowgraph.

The parameter value cannot depend on any variables.

When type is not None, this parameter also becomes a

command line option of the form: -[short_id] --[id] [value].

The short ID field may be left blank. In this case,

parameters can be fed from the command line as seen in

Fig. 8.

Implementation of Cognitive Radio Network Testbed for Multimedia Communications

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

Figure 8. Changing the parameters from the
command line.

5.4 File Transfer Plots

As shown in Figs. 9 and 10, the constellation diagrams

recognize the reduction in signal amplitude prior to

transmitting after modulation.

Figure 9. Transmitter GMSK constellation plot.

Figure 10. Receiver constellation plot.

Figs. 11 and 12 show the frequency plots at the

transmitter and receiver ends while the file is being

transferred.

Figure 11. Transmitter GMSK frequency plot.

Figure 12. Receiver frequency plot.

6. Audio-Visual Media Streaming

Audio-visual media streaming can be implemented with

GNU Radio and VLC using UDP (Fig. 13). VLC’s primary

job is to transcode the audio/video on either ends while

GNU Radio takes care of wireless transmission with

USRP. Gstreamer and mplayer could have been used for

transcoding instead [8]–[10], but VLC was easier to setup

and the research showed that VLC had not been used by a

lot of people. A Linux pipe instead of UDP would have

been used to send data into GNU Radio from Gstreamer or

mplayer and opened in GNU Radio using the file source

and sink blocks instead of UDP.

Both the continuous file transfer and the audio-visual

media streaming are fundamentally the same, with the

exception that file transfer uses a file sink/source whereas

the audio/visual media streaming uses a UDP sink/source

in conjunction with VLC to be able to transcode the media

properly. The main difference between transmitting a file

and a video is a video takes up more bandwidth.

P. DaSilva et al.

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

Figure 13. GRC Flowgraph of audio-visual media
streaming.

6.1 Host Machine Steps

On the host machine, first we launched the GNU Radio

Python script making sure to set the parameter vlcClient

(Fig. 14) to the IP address of the client destined to receive

the unicast stream. Then we launched VLC and set it up to

stream over the network using UDP. To direct the network

stream to GNU Radio, we set the IP address to 127.0.0.1

port 1234. When transcoding the media, in this case an

MP4 video file, we reduced the audio and video bitrate. For

this project, the audio codec was set to MPEG at a bitrate

of 48kB/s, 2 channels, and a 48kHz sample rate. The video

codec was set to H-264, bitrate to 120 kB/s, and a frame

rate to 15 frames per second.

Figure 14. Audio-visual media streaming command
line options.

6.2 Client Machine Steps

On the client machine or mobile phone, we set VLC to open

a local UDP network stream on port 1235 with the URL

udp://@:1235 and the stream began playing.

Upon experiencing video packet drop, we continued to

reduce the audio and video codec bitrates. The low bitrates

can be attributed to multiple reasons, including the host

server’s available resources and the capability of the

GMSK implementation in GNU Radio.

6.3 Audio-Visual Media Streaming Plots

Transmitting wireless video can cause an enormous

amount of delay attributed to many factors. This delay can

be seen when overlaying the received and the transmitted

data on top one another. If no delay was present, there

would only be one line. This can be seen in Fig. 15.

Figure 15. Media transmission and receive data.

7. Discussion on Applications

This testbed could be used for testing multimedia over

wireless network applications. One application is a QoE-

driven cross-layer design for CR multimedia networks. A

case study of cross-layer approach has been conducted in

our previous work [13], [14] for second users (SUs) that

have different QoE requirements. In multimedia

communications, there are many types of traffic, such as

voice, image, and video (i.e., variable bitrate (VBR),

constant bitrate (CBR), etc.). Some of them (e.g., voice and

CBR video) are delay-sensitive, while others may not be

sensitive to delay. The delay and multimedia quality can be

regarded as the most important QoE requirements in these

applications. In wireless CR systems, the frequent channel

switching may seriously cause the transmission delay. Our

studies in [13] show that sub-bands with smaller switching

probability are allocated to the SUs that carry delay-

sensitive multimedia traffic to improve the QoE of these

SUs. We assume that there are totally k types of SUs, and

are sorted from type-1 with the highest priority to type-k

with the lowest priority. The type-k SUs carry non delay-

sensitive multimedia traffic which is more tolerant of

frequent channel switching. The channel allocation scheme

needs to maintain a well-organized queuing model under

different events including the arrival/leaving of any kinds

of PUs or SUs. The evaluation in the case study was based

on wireless fading channel models and used only a few

video clips. There are challenges in capturing the dynamics

of channels and behaviour of video events in complex

wireless video systems. The testbed will serve as a perfect

platform for the validation. The other applications could

include “Personalized Health Monitoring for Multimedia

eHealth”. This application is to provide the means of

applying CR technologies for the multimedia eHealth to

mitigate the communication interferences mentioned

above. The potential research objectives are to: 1)

determine effective learning strategies for MBANs that

allow dynamic selection of spectrum frequencies and

transmission power, and, therefore mitigate interference to

PU receivers, and 2) provide reliable end-to-end

multimedia health data delivery in a CR network

Implementation of Cognitive Radio Network Testbed for Multimedia Communications

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

environment. The success of the project requires a

qualitative CR testbed in an integrated CR communication

infrastructure for multimedia eHealth transmission,

algorithm design, protocol analysis and development, and

experimental data set analysis. The third application could

be “Networked Distributed Source Coding (DSC) for

Multimedia Sensor Networks”. For DSC to be widely used

in wireless multimedia sensor networks, significant

research challenges still remain and are itemized below: 1)

It is difficult to accurately estimate the spatial and temporal

correlation in wireless multimedia sensor environments

when multimedia data exchange between two correlated

sensors is very difficult in real applications; 2) The lack of

a framework for modelling multimedia transmission

quality for DSC makes it hard to find the trade-offs

between the achieved quality and the resulting energy

consumption; 3) Various rate allocations of DSC lead to

different levels of decoding errors in addition to the

transmission errors caused by the wireless channel. To

address the problems, we consider a multimedia

transmission quality maximization problem with the

energy consumption bound. In this optimization

framework, resource allocation control parameters such as

Automatic Repeat Request (ARQ), power and modulation

interact with DSC control to achieve the overall high QoE

and resource efficient multimedia delivery. Thus,

allocating lower rate and more retry transmissions to side

information packets and higher rate and less retry

transmissions to those unimportant packets including value

information can achieve an ideal unequal resource

protection paradigm. The variable coding rates can be

adjusted with the corresponding correlations among

multiple correlated nodes. However, it is difficult to adjust

major resource control parameters such as ARQ, power and

modulation interacting with DSC control to achieve the

overall high QoE multimedia delivery in current

multimedia sensor settings. The proposed testbed can

provide capability of the software defined radio (USRP),

where the resource control can be easily implemented.

8. Conclusions

We successfully continuously transmitted and received the

contents of a text file. Also, we were able to complete our

stretch goal of streaming audio-visual media utilizing the

same flowgraph in GNU Radio.

Since the USRPs (transmitter and the receiver) do not

synchronize instantaneously, the file source block in the

file transfer is set to repeat the contents of the file being

read. This allows all the input file contents to be transferred

at the cost of it repeating at the output file.

A follow-on approach to transferring a file would be to

work on synchronizing the two radios so the file need only

be sent once like [11]. An improvement to this would be

send information prior to the transfer to allow the receiver

to save the file under the correct filename and extension.

Another takeaway was with the media streaming. As

expected video streaming takes much more bandwidth than

audio streaming. There are multiple reasons for this

including quality of the video and audio being streamed

simultaneously taking up more bandwidth.

When video files are streamed, the video may lag, which

is an expected outcome of streaming anything wirelessly.

The ultimate way to stream anything using this

implementation is to have the transmitting USRP and GNU

Radio transmit flowgraph on its own host computer. This

allows the host to only worry about prepping the video

stream for wireless transmission without the overhead of

also receiving the transmission and packaging it onto the

network. Multicast can also work with this implementation

so long as the receiving network has a broadcast IP address

setup. We believe the proposed testbed will potentially

benefit the research community for the study of various

multimedia applications over networks.

Acknowledgements.
The equipment used in the proposal is supported by NSF MRI

grant (award# 1429120).

References

[1] M. Rouse, "Tech Target: Cognitive Radio Definition,"

November 2008. [Online]. Available:

http://searchnetworking.techtarget.com/definition/cognitiv

e-radio.

[2] "Wikipedia: Software-defined radio," 30 September 2017.

[Online]. Available:

https://en.wikipedia.org/wiki/Software-defined_radio.

[3] Ettus Research. [Online]. Available:

https://www.ettus.com/. [Accessed 8 December 2017].

[4] “About USRP Bandwidths and Sampling Rates,” Ettus

Knowledge Base, 16 May 2016. [Online]. Available:

https://kb.ettus.com/About_USRP_Bandwidths_and_Samp

ling_Rates. [Accessed 8 December 2017].

[5] GNU Radio, "Guided GNU Radio Tutorials," 5 July 2017.

[Online]. Available:

https://wiki.gnuradio.org/index.php/Guided_Tutorials.

[Accessed 7 December 2017].

[6] Ettus Research, "USRP Hardware Driver and USRP

Manual," [Online]. Available:

http://files.ettus.com/manual/page_usrp2.html.

[7] Z. Chen and J. Xu, "Cross-layer wireless video testbed,"

[Online]. Available:

http://www.wu.ece.ufl.edu/projects/wirelessVideo/project/

H264_USRP/index.htm. [Accessed 8 December 2017].

[8] A. M. Iype and S. C. D., "Video Transmission Using

USRP," 16 September 2016. [Online]. Available:

http://academic.csuohio.edu/yuc/mobile/mcproj/z_Shashan

ka_Asha.pdf. [Accessed 8 December 2017].

[9] S. Nimmi, V. Saranya and Theerthadas, "Real-time video

streaming using GStreamer in GNU Radio platform," in

2014 International Conference on Green Computing

Communication and Electrical Engineering (ICGCCEE),

Coimbatore, India, 2014.

[10] A. Singh, S. Rani and S. Kakkar, "Video Transmission

through GMSK using GNU Radio," in IJCA Proceedings on

International Conference on Advances in Emerging

Technology, 2016.

[11] S. Jordan and B. Patel, "Image transfer and Software

Defined Radio using USRP and GNU Radio," 19 December

P. DaSilva et al.

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

2016. [Online]. Available:

http://academic.csuohio.edu/yuc/mobile/mcproj/3d-

GNU%20Radio_Steve%20&%20Bhaumil.pdf. [Accessed

8 December 2017].

[12] G. Kaur, A. Thakur and H. Kaur, "Implementation of File

Transfer with GNU-RADIO Tool on SDR Platform," in

International Conference on Soft Computing Applications

in Wireless Communication - SCAWC 2017, Punjab, India,

2017.

[13] T. Jiang, H. Wang, and S. Leng, “Channel allocation and

reallocation for cognitive radio networks,” Wireless

Communications and Mobile Computing, vol. 13, no. 12,

pp. 1073-1081, 2013.

[14] T. Jiang, H. Wang, A V. Vasi: QoE-Driven Channel

Allocation Schemes for Multimedia Transmission of

Priority-Based Secondary Users over Cognitive Radio

Networks. IEEE Journal on Selected Areas in

Communications30(7): 1215-1224 (2012)

Implementation of Cognitive Radio Network Testbed for Multimedia Communications

EAI Endorsed Transactions on
Mobile Communications and Applications

 07 2018 - 12 2018 | Volume 4 | Issue 15 | e2

