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Abstract

Multiuser massive multiple-input multiple-output systems have the potential to increase the data rate.
However, with a large base station (BS) antenna, the non-square channel matrix restricts the zero-forcing
(ZF) precoder rotations to obtain the best optimal solution with the per-antenna power allocation. In this
paper, we propose the beamforming and lattice reduction (LR) approach to restrain the channel matrix and
transform the lattice of the channel vectors to be near orthogonal. Numerical results show that the LR-based
ZF precoder outperforms other ZF precoder schemes, such as, the norm approximation of the beamforming
matrix. In particular, the sum rate of the proposed optimal ZF precoder requires a small number of BS antenna.
Subsequently, with the strong line of sight (LoS) channel, the optimal power allocations in the subchannels
depend on the dominance of the users in order to achieve substantial multiplexing and diversity gains.
Specifically, the Ricean channel gain with the water-filling allocation at high SNR is non-negligible.
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1. Introduction
The unprecedented demand in services and appli-
cations calls for a radical melioration in the evolv-
ing wireless networks. To meet this demand, next-
generation communication systems e.g. LTE-Advanced
have started incorporating MIMO systems to improve
on the network capacity [1, 2]. In recent times, the ben-
efit of multiplexing and diversity gains in MIMO [3] has
been extended to the multi-user MIMO (MU-MIMO)
system where base stations equipped with multiple
antennas serve multiple users simultaneously. Such
that, random channel vectors for the different users
are near orthogonal, this makes MU massive MIMO
robust to the propagation environments as compared
to the conventional MIMO [4, 5]. Additionally, MU
massive MIMO can resist the effect of ill-conditioned
propagation (insufficient scattering), e.g. LoS paths [4].
MU massive MIMO robustness to LoS propagation is
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realized through: proper scheduling on the same time-
frequency resource, this is made possible by precod-
ing and detection schemes [6], and channel-dependent
scheduling, which enables multiuser interference par-
ticularly from other served users to be canceled, where
the multiple transmit antenna induces large channel
fluctuations [7, 8].

However, in a typical urban wireless network, the
MU massive MIMO channels have both LoS channel
and non-paltry scattering channel. In this paper, we
primarily concentrate on Ricean channel (combination
of LoS and scattering channels) in actualizing efficient
beamforming for the MU massive MIMO system. One
vital point is that LoS channel directs signal energy
in a selected angular direction to specific terminals.
By physical beamforming, the antenna element sets
the beam signals to focus on a particular direction
in order to avoid interference from other directions
[9, 10]. As introduced in [11], the optimal beam subset
and orthogonal random beamforming with user beam
selection achieved diversity gain and multiplexing gain.
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Unfortunately most related literature [12–17] have
focused on Rayleigh fading channel 1 in substantiating
beamforming, this falls short of investigating the fading
power variations of specular or LoS component, which
is a cardinal component for the millimeter wave
(mmWave) communication in 5G networks [18].

Although the overall performance of MU massive
MIMO requires efficient multi-user interference (MUI)
elimination, the transmit precoding is a strategy to
study. Linear precoding such as zero forcing (ZF),
minimum mean square error (MMSE) is often used
for the interference control. The ZF precoder is more
efficient for multiuser interference (MUI) suppression,
that is, with the singular value decomposition (SVD)
and block diagonalization (BD), the ZF precoder can
search domains of MU massive MIMO transmission
over entire nullspace of other users [12, 13, 19].
Afterwards, the optimal ZF precoder is maximized
under two conditions: by transmitting on the right
eigenchannel (the parallel non-interfering subchannels)
and by power allocations through optimization on each
non-interfering subchannel [20] - [22]. In [13, 23],
square and non-square channel matrices are studied,
respectively, under sum power constraint. Nevertheless,
the optimal ZF precoder under per-antenna power
allocation obtains higher sum rate than sum power
allocation in [14, 24]. This is attributed to efficiently
transmit power through per-antenna, as a result,
bounds the allocated power to each of the power
amplifiers (PA), which limits the independent linearity
of the PA [25]. Thus, the associated hardware serves
each antenna effectively as compared to the sum power
allocation where power is arbitrarily distributed. The
per-antenna power allocation also provides the required
power for the antenna beamforming [26, 27]. However,
by assuming rank-one optimal precoder solution with
the norm approximation, the sum power allocation
outperformed the per-antenna power allocation in [28],
since the norm approximation allows equal power
allocation on the channel. This limitation in per-
antenna power is however resolved in this paper with
the proposed beamforming approach.

Moreover, MU massive MIMO system with large
non-square channel matrix where the BS antennas
M are more than the combined user antennas K
and users N (i.e. M ≥ NK), the antenna beamforming
vectors are less orthogonal. This limits the matrix norm
approximation in accessing all the diagonal elements.
To improve on the MU massive MIMO channel matrix,
Lattice Reduction (LR) technique is incorporated in
[12] to constraint the channel matrix dimension. By

1Note that this current journal paper extends the conference version
in [17], the cases of Ricean Channel, Norm approximation and
Optimal power Allocation are included.

utilizing the complex Lenstra, Lenstra and Lovasz
(CLLL) algorithm in the LR [29], the basis of the
channel vectors can be transformed. This ameliorates
the orthogonality of basis vectors. As shown in [15],
the sum rate of precoder can achieve the maximum
diversity gain with the transceiver. In this paper, we
employ the LR to transform the precoder vectors, such
that, the channel vectors can be used to focalize the
beamforming.

The goal of this work is to analyze the performance of
MU massive MIMO downlink system with non-square
channel matrix under Ricean channel. We design the
optimal ZF precoder and adopt the per-antenna power
allocation at the BS. Further, we incorporate the LR
to transform the channel lattice of the precoder, and
then evaluate the sum rate of the optimal ZF precoder
with beamforming in the downlink MU massive MIMO
systems. The sum rate of the MU massive MIMO
systems under per-antenna power allocation is a great
contribution.

The rest of the paper is outlined as: Section 2 designs
the system model of the MU massive MIMO system
over Ricean Fading channel, then Section 3 presents the
Optimal ZF Precoder and the optimization Designs and
the numerical results and Discussions are provided in
Section 4. Finally, Section 5 draws the conclusions of the
study.

2. System Model

We consider a downlink MU massive MIMO system
with a BS equipped with M-array antennas, and N
users, where each user is equipped with K (K ≥ 1)
antennas. Assuming the MU massive MIMO channel
between the BS and nth user is modeled with Ricean
channel, the Ricean channel matrix Hn ∈ CK×M is
decomposed into deterministic LoS channel matrix
HL,n, which has arbitrary rank mean [30] and scattering
channel matrix HS,n. The Ricean channel matrix is
written as [18, 30]

Hn = ΛL,nHL,n + ΛS,nHS,n, (1)

where ΛL,n ∈ CK×K and ΛS,n ∈ CK×K are diagonal
matrices for LoS and scattering channels, respectively,

with entries ΛL,n = diag
{√

κ
κ+1

}
, ΛS,n = diag

{√
1
κ+1

}
and κ ∈ [0,∞] as the Ricean factor2. The diagonal
channel elements easily support the per-antenna power
allocation. Therefore, the K × 1 received signal vector of

2 Defined as the normalized power of the specular and scattered
components
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nth user is modeled as

yn = Hnx + zn
=

(
ΛL,nHL,n + ΛS,nHS,n

)
x + zn

=

√ κ
κ + 1

hH
L,n +

√
1

κ + 1
hH
S,n

 x + zn, (2)

where hL,n ∈ CM×1 = [1 ej
2πd
λ sin(θn), ....., ej

2πd
λ (M−1) sin(θn)]T

and hS,n ∈ CM×1 are column vectors of HL,n and HS,n,
respectively, zn ∈ CK×1 is the (i.i.d) complex Gaussian
noise vector and x ∈ CM×1 is the transmitted signal
vector. Henceforth, the transmitted signal vector can be
formulated as

x =
N∑
n=1

Tnsn, (3)

where Tn ∈ CM×K is the precoder matrix and sn ∈ CK×1

denotes transmit data vector, thus E
[(
snsH

n

)]
= IK . In

this case, the total power PT radiated from the BS
antenna array is written as

E
[(
xxH

)]
=

 N∑
n=1

tr(TnT
H
n )

 ≤ PT , (4)

and the power radiated by each BS antenna element
from the precoder is as

E
[(
xxH

)]
ii

=

 N∑
n=1

tr(TnT
H
n )


ii

≤ pi ∀i = 1, ...,M (5)

where pi is power of ith transmit antenna. From (3), the
nth user received signal yn can be expanded by the help
of the precoded transmitted signal as [17]

yn = HnTnsn +
N∑
j=1
j,n

HnTjsj + zn

︸              ︷︷              ︸
, (6)

where the underlined term denotes the interference
plus noise. Note that the desired signal, interference
signals and noise are uncorrelated. It is significant
to adopt a model that removes the interference and
then use water-filling to control the noise. In (6), the
BS transmits to different user terminals, as a result,
each user terminal receives all the transmitted signals,
the user terminal, therefore, has to extract the desired
signal sn and avoid interference.

3. Optimal ZF Precoder Design
We assume the transmitters have perfect CSI for
transmit precoding, the estimation of the nth user
effective channel HnTn is obtained by precoding the
pilots of Tn. This is used to mitigate the nth user

downlink multiuser interference (MUI) in (6). To avoid
MUI, we enforce the multiuser ZF condition on the
interference in (6) as

HnTj = 0 for j , n. (7)

Remark 1. The suppression of the inter-user interference by
ZF condition further reduces as the number of antennas at
the BS increases, in this sense, the loss in the desired signal
gain reduces as the user channels become more orthogonal.

Moreover, (7) completely zeros the interference
component in (6). By invoking condition (7) into (6), we
arrive at

yn = HnTnsn + zn. (8)

Now, the columns of HnTn correspond to the singular
values of the the non-interference. That is, the condition
(7) forced Tn to be located in the nullspace of H̄n =(
HH

1 ,H
H
2 ,H

H
n−1 HH

n+1, ...,H
H
N

)H
from reception by the

nth user against other users transmissions. Here, BD
is required to eigendecompose the MU massive MIMO
channel into multiple parallel subchannels. Assuming
the M ≥ NK regime, the singular value decomposition
(SVD) is performed as [31]

H̄n = Un Σn V
H
n , (9)

where Un and Vn are (N − 1)K × (N − 1)K and (M ×M)
unitary matrices respectively, Σn is (N − 1)K ×M
component of diagonal matrix consisting of the ordered
singular values.

Figure 1. System design with the precoding and beamforming

For rank
(
H̄n

)
= (N − 1)K , columns of H̄n can be

constructed in Vn for the precoder Tn. This enables the
transmitted signal to correspond to the received signal.
To model the matrix space of the orthonormal basis that
maps the transmit precoder Tn to the channel H̄n, we
decompose the aggregated transmit precoder matrix. By
applying QR decomposition on the precoder matrix Tn
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as
Tn = V̄nV̂n, (10)

where V̄n ∈ CM×m is the orthonormal basis matrix,
with m = M − (N − 1)K as columns conditioned on
Tn, and upper triangular matrix V̂n ∈ Cm×K denotes
arbitrary matrix of the power constraint over the Tn,
this assumes computation of the diagonal elements.
Then, plugging (9) and (10) into (8), the information
signal transmitted through the eigenchannels can be
received. Accordingly, the estimated received signal for
the nth user is expressed as

ŝn = UH
n yn = UH

nUn Σn V
H
n V̄nV̂nsn + z̃n, (11)

where z̃n = UH
n zn is the additive Gaussian noise and

the Un Σn VH
n V̄nV̂nU

H
n provides the parallelized

non-interfering SU-MIMO channels. In MU massive
MIMO systems, the parallelized channels provide
several independent parallel subchannels within the
eigenstructure to enhance the multiplexing gain. On
the other hand, in order for the precoder to be
optimal, the subchannels must be properly aligned with
the precoder rotation Tn= V̄nV̂n, so as to extract the
transmitted power. The channel in (11) over the V̂n
often assumes water-filling to provide the equivalent
power to the parallelized eigenchannels.

3.1. Optimal ZF Precoder Optimization
To construct the Tn= V̄nV̂n precoder rotations, we set
the power rotation around V̂n as V̂nV̂H

n = Θn (m ×m),
whereby Θn is a positive semi-definite (PSD) matrix
and its rank is lower than M. However, the sum rate
maximization problem with the per-antenna power
allocation is formulated as

max
Θn

imize Cn (Pn) =
N∑
n=1

log det (I + BPn)

subject to

 N∑
n=1

tr
∣∣∣∣V̄nΘnV̄

H
n

∣∣∣∣
ii

≤ pi ∀i = 1, ...,M

Θn � 0 n = 1, ...., N

rank (Θn) ≤ K , (12)

where Pn =
∣∣∣∣Un Σn VnV̄nΘnV̄H

nV
H
n Σ

H
nU

H
n

∣∣∣∣ and B is any
arbitrary matrix in the objective function. We observe
that under the per-antenna power allocation, the sum
rate maximization is over the diagonal entries of Θn.
As a consequence of the M ≥ NK (non-square) regime,
the dimensions of the V̄n(M ×m) become larger than
V̂n(m × K), this makes the optimization problem in
(12) difficult or impossible to achieve best optimal
solution. That is because the domain search for the
optimization in (12) limits the span of the diagonal [.]ii
in choosing the Θn entries. Hence the rotations around

the nullspace in
(
V̄nV̂n

)
results in rank deficiency

since the rank(Θn) = M − (N − 1)K is lower than M.
Nonetheless, assuming the matrix is square (M = NK),
the precoder is easily optimized under sum power
allocation [23] since the matrix diagonalization is not
required. To resolve the precoder rotation problem,
matrix determinant maximisation solution is discussed
in [13], besides, we propose a new beamforming
focalization approach (Figure 1) with the channel
matrix in next subsection.

3.2. Optimal SVD-ZF with Beamforming (BF)
Hereafter, we modify the previous approach under per-
antenna power allocation, by designing an optimum
transmission strategy. That is, beamforming approach
to resize the matrix dimension and facilitate cohesion
for the channel matrix between the transmit and receive
antennas. We define the (N − 1)K ×m channel matrix as

Xn = ΣnVnV̄n, (13)

as a result, define the beamforming matrix Wn ∈
CM × (N−1)K by

Wn = V̄nX
†
n, (14)

where X†n = XH
n

(
XnXH

n

)−1
is the Moore-Penrose inverse

of the channel matrix Xn with the precoder and V̄n
is defined by Vn in (9). It is worthnoting that the
beamforming Wn taps only a single eigenmode of the
channel Xn since the channel matrix (N − 1)K ×m is
rank deficient. By dropping the Un matrix in the sequel
and capitalizing on Pn = Σn VnV̄nΘnV̄H

nV
H
n Σ

H
n and (13),

we recompute PSD matrix Θn = V̂nV̂H
n as

Θn=
(
ΣnVnV̄n

)†
Pn

(
V̄H
nV

H
n Σ

H
n

)†
=

(
X†n

)
Pn

(
X†n

)H
. (15)

Subsequently, by substituting (15) into (14), the optimal
SVD-ZF with beamforming (BF) can be obtained.
Therefore, the optimization problem in (12) is rewritten
as

max
Pn

imize Cn (Pn) =
N∑
n=1

log det (I + BPn)

subject to
N∑
n=1

tr
∣∣∣WnPnW

H
n

∣∣∣
ii
≤ pi ∀i = 1, ..M

Pn � 0,Wn � 0

rank (Wn) = rank (Pn) ≤ K . (16)

Note that the optimal solution always has rank(Pn) ≥ 1
for K ≥ 1 with the user terminals. In the same line
of discussion, rank relaxation approach is considered
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in [32]. Intuitively, assuming the Wn � 0 satisfies
M∑
i=1
|Wn|ii � 0 for pi ≥ 0, the beamforming channel

matrix align the mapping of the transmit antennas
onto the receive antennas, then the beam pattern
focus directly in the optimal direction. Then the
beamforming matrix (Wn) becomes suboptimal as the
channel (Xn) turns orthogonal, thus maximizes the
achievable sum rate for n user.

Optimal Power Allocation. As the parallel channels
have different channel quality, optimal allocation
power over the parallel channels is performed
by the water-filling. From (9), the Ricean channel
Σn (N − 1)K ×M have non-negative entries, with
diagonal elements in the descending order in

the form
(√

κ
κ+1 λL,max(k,i) +

√
1
κ+1 λS,max(k,i)

)
≥(√

κ
κ+1 λL,min(k,i) +

√
1
κ+1 λS,min(k,i)

)
. Thus, the water-

filling power allocation over the channel is given
as

pl =

ν − 1(
κ
κ+1 λ

2
L,l + 1

κ+1 λ
2
S,l

)
+

1 ≤ l ≤ ∆Hn (17)

where pl is the power used to transmit the information,
ν is the parameter chosen to fulfill the water-fill level

with the power allocation
∑∆Hn
l=1 pl = pi ∀i , ∆Hn is the

number of positive singular values pl in the water-
filled sub-streams and (x)+ is given as max(x, 0). The
per-antenna power allocation provides single measure
that reflects on the individual power for each antenna
[26]. Allocating power to each eigenchannel with water-
filling achieves the optimality in the channel sum
rate. In the case of per-antenna power allocation with
strong LoS channel (κ ≥ 1), the optimal solution is not
proved to be globally optimal [27]. This is attributed
to the similarity between the channel paths, where the
collinearity between channels is ([0 1]) [33]. Reducing
the channel collinearity (κ ≥ 1) improves the channel
sum rate.

3.3. Optimal SVD-ZF with norm beamforming
approximation
To evaluate the inequality constraint (16) in the fixed
point pi which is accomplished in the undetermined
|Pn|ii , we let eigenvector of the Pn be pn = (k, 1)
for 1 ≤ k ≤ K . Besides, the beamforming vector wn =(
w1,k , .., wM,k

)
with entry (i, k) forms the Hermitian

matrix Wn as the k-dimensional volume of the
parallelepiped forms the vectors over the M antennas.
From Shur’s inequality [31], the beamforming vector
coefficient is |wn|2 ≤

(
wH
nwn

)
, thus the bounds of the

optimization is
[
pn |wn|2

]
ii

for the ith transmit antenna.

Hence, the norm approximation of the inequality
constraint in (16) with |wn|2 = 1 is a convex problem
and is solvable with at least one optimal value [21]. We
adopt the norm approximation for the power allocation
follows:

Proposition 1. Suppose ‖·‖q and ‖·‖r are norms on CM

and CK , respectively, where 1 ≤ q, r ≤ ∞ we define the
operator norm of Wn ∈ CM × K , then the corresponding
norm of the mapping Wn is as

‖Wn‖q,r
= max

pn

{
‖Wnpn‖q : ‖pn‖r ≤ 1, pn ∈ CK

}
(a)
= max

pn

{√∥∥∥[|Wnpn|]2
∥∥∥
q/2

: ‖pn‖r ≤ 1
}

(b)
= max

pn


((
Wnpnp

H
nW

H
n

) q
2

) 1
q

:
√∥∥∥∥(pnpH

n

)∥∥∥∥ r
2

≤ 1


= max

pn∈CK

{∥∥∥∥(Wn

(
pnp

H
n

)
WH
n

)∥∥∥∥ q
2

:
∥∥∥∥(pnpH

n

)∥∥∥∥ r
2

≤ 1
}

= max
Pn

{∥∥∥∥(WnPnW
H
n

)∥∥∥∥ q
2

: ‖(Pn)‖ r
2
≤ 1

}
≤ max

Pn

{∥∥∥∥tr
(
WnPnW

H
n

)∥∥∥∥ q
2

:
∥∥∥∥tr

(
pnp

H
n

)∥∥∥∥ r
2

≤ 1, Pn � 0
}
,

(18)

where step (a) and step (b) follow from ‖z‖d =√∥∥∥[|z|]2
∥∥∥ d

2
=

√∥∥∥(zzH)
∥∥∥ d

2
, it can be concluded that the

pnpH
n is symmetric PSD [21], so the maximization

only increases by the optimal value with q, r ∈ [1,∞).
To this end, the (16) is convex w.r.t inequality (18)
where 1 ≤ q ≤ 2 ≤ r ≤ ∞, thus the optimal solution
has rank(pn) ≥ 2, as k ≥ 2 user antennas by the

convex constraint
∥∥∥∥tr

(
pnpH

n

)∥∥∥∥ r
2

. Subsequently, the best

transmission strategy is to employ the water-filling to
allocate power on the channel with high gain.

However, the bounds of ‖Wn‖q,r is not tight
under large M BS antenna in the (M ≥ NK) regime,
assuming the maximum rank(Wn) = (N − 1)K and
V̄n ∈ CM×m for m = M − (N − 1)K obtains the singular
value. In this case, the beamforming Wn consists of
long wn row vectors. And, the maximum number
of uncoupled equivalent beamforming is (N − 1)K <
M, with remaining M − (N − 1)K transmit antennas
become redundant with no receive antennas. This
allows off diagonal elements to appear in the main
diagonal Pn. To validate this reason in the zero-noise
MU-MIMO system, the expected received signal in (11)
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can be rewritten as

ŷn = UH
nUn Σn V

H
n V̄nV̂nsn

(a)
= Σn V

H
n V̄nV̂nsn

(b)
= XnV̂nsn
(c)
= WH

n V̄nV̂nsn
= WH

n Tnsn, (19)

where step(a) follows UH
nUn = IK , step (b) is from

Xn = Σn VH
n V̄n and step (c) obtains from change of

variable in (14). From (8) and (19), the quality of
the beamforming Wn is determined by finding the
Frobenius (error) norm of the received signals, i.e.
‖yn − ŷn‖2. The result is shown in Figure 2 with
M − K (increase M while K is fixed). With large BS
antennas, the steering beamforming Wn in (19) may
not point directly to the direction of the nth user
but towards other users, as in (6) and (8). Hence,
the nth user receives a small part of the transmit
power. To resolve this problem, the massive MIMO
matrix dimension constrained is discussed in [15], this
involves the user antennas, channel matrix Xn and
V̄n precoder power matrix. In the next subsection, we
determine the tightness of Wn by reducing the basis
of wn consisting of short vectors. Intuitively, the short
vectors correspond to the subchannels that actually
participate in the information signal transmission and
beamforming.

3.4. Optimal SVD-ZF with Lattice Reduction based
BF

In this subsection, the precoder Tn = [t1, t2, ...tM ]
transmits to the users with the lattice reduction based
beamforming. Lattice reduction (LR) incorporated
with the complex LLL (Lenstra, Lenstra and Lovasz)
algorithm [12] is efficient in transforming the columns
of the Wn beamforming matrix. The algorithm is
designed with the Gram-Schmidt Orthogonalization
(GSO) to project channel Xn and orthonomal basis
matrix V̄n to be more orthogonal. To transform
beamform matrix Wn (14), we decompose the complex
lattice of Tn by

T∗n = V̄∗nV̂
∗
n (20)

where V̄∗n ∈ CM×m denotes a unimodular transforma-
tion matrix with complex integers. Ordinarily, the GSO
is initiated by setting column vectors of V̂∗n and V̄∗n

as v̂∗n = [v∗1,k , v
∗
2,k , ...v

∗
M,k] and ξ∗i =

〈
vi,k ,v

∗
i,k

〉∥∥∥v∗i,k∥∥∥2 , respectively,

whereby the GSO coefficient ξ∗i is the vector collinearity
[0 1] used to determine the similarity between two

channel vectors and bound the orthogonality defect3.
Thus, evaluates the vector subspaces and the correlation
of the vector distance. In this case, the dimension span
in vector space of the channel basis is to eliminate
vectors that are linear combinations of other vectors.
In (20), each column vector of T∗n is t∗i=

(
ξ∗i v
∗
i,k

)
for

1 < k ≤ K and 1 ≤ i ≤M, and orthonormal basis for the
ith BS antenna and the kth user antenna is given by [29]

t∗M = t∗M −
k−1∑
i=1

ξ∗i v
∗
i,k for 1 ≤ i < k ≤M (21)

Consequently, the LR process
∣∣∣v∗1,k ∣∣∣, ...,

∣∣∣v∗k−1,k

∣∣∣
approaches zero if ξ∗i = 0, thus t∗M is almost orthogonal
in the subspace span t∗1, ..., t

∗
M−1 to accomplish linearly

independent vectors. Therefore, the lattice basis is
reduced in size if

∣∣∣ξ∗i ∣∣∣ ≤ 1/2 [15], by∣∣∣v∗i,k ∣∣∣ =
1
2

∣∣∣v∗i,i ∣∣∣ for 1 ≤ i < k ≤M (22)

where the reduced basis ensures off-diagonal ele-
ments of the channel vectors are almost half the diag-
onal elements. This however does not guarantee min-
imum basis for the lattice. The general size-reduced
basis using Lovasz condition [29] is achieved by sub-

tracting a suitable linear combination
(
ρ −

∣∣∣ξ∗k−1

∣∣∣2) in

the consecutive basis v∗k,k and v∗k−1,k−1, and is written as∥∥∥v∗k,k∥∥∥2
+

∥∥∥ξ∗k−1,v
∗
k−1,k−1

∥∥∥2 ≥ ρ
∥∥∥v∗k−1,k−1

∥∥∥2
, 2 ≤ k ≤M,

(23)
where the reduction basis ρ = 3

4 is standard value
( 1

4 < ρ < 1) in achieving a better performance in (22)
for large matrices. Note that the new shorter basis
v∗k,k + ξ∗k−1,v

∗
k−1,k−1 is the transformation of vk,k onto the

orthogonal vector space, similarly v∗k−1,k−1 is component
of vk−1,k−1 beam vector basis. Again, the v̂∗n is near
orthogonal and shorter projection of v̂n. As such,
the reduced vector t∗n = ξ∗nv

∗
M,k of T∗n = V̄∗nV̂

∗
n, is used

for beamforming W∗n = V̄∗n (X∗n)†, whereby channel
(X∗n)† is more orthogonal and shorter as compared
to the beamforming Wn (14). The implementation
of the CLLL algorithm requires QR decomposition
(i.e. householder Reflections) as W∗n = QR, where Q =
V̄∗n is (M ×m) matrix and R = (X∗n)† is (m × (N − 1)K)
upper triangular matrix. This follows the iteration over
polynomial time, which is presented in the algorithm in
Table 1.

The CLLL algorithm swaps pairs of vk,k and vk−1,k−1
for v∗k,k and v∗k−1,k−1 as the size-reduction steps proceed.
Finally, from (16), the optimal precoder achieves the

3The orthogonality defect is used to measure the orthogonality of the
basis vectors
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Table 1. CLLL Algorithm Procedure
—————————————————————

1. Initialize the GSO for v1,k , .., vi,k ,
calculate v∗1,k , .., v

∗
i,k and coefficients ξ∗i

2. Form size reduction for the pairs vk,k and vk−1,k−1
and update ξ∗k−1

3. Use Lovasz condition for the pair v∗k,k and v∗k−1,k−1
and update ξ∗k−1

4. Else go to step 2.
—————————————————————

maximum sum rate as C∗n = max
W∗n

Cn(Pn) with reduced

basis of the transformed beamforming.
To test the quality of the proposed beamforming W∗n,

(20) is considered, then the expected received signal in
(11) is rewritten as

ŷ∗n = UH
nUn Σn V

H
n V̄
∗
nV̂
∗
nsn

= X∗nV̂
∗
nsn

= W∗Hn V̄∗nV̂
∗
nsn (24)

Similarly, the quality of beamforming W∗n is determined
by the Frobenius (error) norm of the received signal
as ‖yn − ŷ∗n‖2. Figure 2 shows the absolute received
error for (19) and (24). The proposed optimal SVD-ZF-
LR precoder achieve good gain since the beamforming
channels are near orthogonal, hence diversity gain (M −
K) compensate the Ricean channel correlation or vector
collinearity. Thus, the large BS antennas generate larger
DoFs and support the beamforming focalization.
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Figure 2. Frobenius norm of the received signals with the
(M − K) diversity order

Proposition 2. Considering (M ≥ NK) with fixed user
antenna 1 < k ≤ K for all N users, then channel Σn
depends on user selection (N − 1)K , with M →∞, N →

∞ and M � N , then 0 < k ≤ M
N < ∞ has constant k

values by

k ≤ M
N

(25)

Therefore, the per-antenna power allocation in the
eigenchannels is as optimal as the water-filling in
achieving maximum channel capacity in the M ≥ Nk
regime.

4. Numerical Analysis and Discussions
In this section, numerical analysis and discussions are
provided to validate the performance of per-antenna
power allocation for MU massive MIMO. We analyze
the impact of the channel correlation from the Ricean
fading channel. The theoretical tightness of the study
is simulated with Monte Carlo of 10000 realizations.
The precoder is constructed from the V̄n (M ×m),
where m = M − (N − 1)K , the LR standard basis is ρ = 3

4
and Ricean factor κ is varied. The figures compare
schemes such as direct SVD-ZF-BF (16), SVD-ZF-BF
with BF ‖Wn‖ and the proposed LR-based SVD-ZF-
BF, all the schemes are analyzed with the per-antenna
power allocation. In Figure 3, the plot demonstrates that
the per-antenna power allocation (5 efficiently utilizes
the transmit power than the total power allocation
(4) power. Therefore, per-antenna power allocation can
enhance the beamforming energy.

0 10 20 30 40 50 60 70 80 90 100
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100

101
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]

Total power

Per-antenna power

Figure 3. Compares the power utilization of the sum power and
per-antenna power allocations

Now, Figure 4 and Figure 5 show the sum rate with
the SNR for all the schemes with Ricean factor κ = 0
and κ = 10, respectively. Clearly, the LR-based SVD-
ZF-BF achieves higher sum rate as (N ) users selection
increases, this validate tightness of orthogonal channel
with the distinct pairs vk,k and vk−1,k−1. And the Ricean
channel gain with water-filling power allocation at high
SNR is non-negligible. However, the direct SVD-ZF-BF
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improves with user selections whilst SVD-ZF-BF with
BF ‖Wn‖ performed poorly. The poor performance is
due to the absolute value and rank-one assumption of
in Wn, which constrained the orthogonal beamforming
in the beam subset. The overall sum rate of our
LR-based SVD-ZF-BF scheme improved the precoder
performance than in [13, 14]. Conversely, the sum rate
reduces as κ increases, although the LR-based SVD-
ZF-BF performance improved the sum rate gap as the
κ = 10. Implying that the lattice reduction supported
the dominate LoS channel in achieving the diversity
gain and multiplexing gain.
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Figure 4. Sum Rate versus the SNR values, with M = 128 and
K antennas =2
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Figure 5. Sum Rate versus the SNR values, with M = 128 and
K antennas =2

Then, the sum rate as a function of BS antennas
M are presented in Figure 6, and Figure 7. It can
be observed that the sum rate increase with M for

the LR-based SVD-ZF-BF and SVD-ZF-BF, this argues
the channel gain from M ≥ NK . In particular, as M
turns large, the sum rate becomes stable suggesting
the limited (saturation) gain due to the spread over
the large HnTn [13]. So far, the rate gain by the LR-
based SVD-ZF-BF is due to the elimination of vectors
which are linear combinations of others vectors. We also
observe that the sum rate reduces as κ increase, this
is due to fewer LoS channels among different channel
vectors, thus enable diversity reduction in (M −NK).
Again, LR-based SVD-ZF-BF effectively improved the
sum rate gap in κ = 10, especially, when the number
of BS antenna is small. With small BS antennas and
low transmit power, the proposed optimal ZF precoder
with LR-based SVD outperform the other schemes. This
can be attributed to the beamforming focalization by
the distinct lattice vectors and the larger DoFs. Hence
lattice reduction compensates the channel correlation
without adding more BS antennas. On the other hand,
the sum rate of SVD-ZF-BF with BF ‖Wn‖ scheme is
constant regardless of channel randomness, that is the
norm matrix restricts the beamforming vectors.
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Figure 6. Sum Rate versus the number of BS antenna (M), with
N users =16 and K =2

And, Figure 8 plots the sum rate against the number
of users N , i.e. selection of the SU-MIMO channels. The
number of users increases with SNR gain, as a result,
increases the sum rate in all schemes. Obviously, the
proposed LR-based SVD-ZF-BF shows a high gain in
the equivalent selection of SU-MIMO channels with
the orthogonal basis, but norm approximation ‖Wn‖
obtained less gain, this justifies our argument that 1 <
NK ≤ rank (Wn) is not tight for norm approximation
(less orthogonal), which the norm squared suffers from
such an assumption. Moreover, the strong LoS channel
induces the subchannels with similar channel paths,
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Figure 8. Sum Rate with number of Users (N), with M = 128
and K =2

which minimize the singular values, as a result, the
Ricean-ness is same as in the Figure 4 and Figure 5.

Finally, the sum rate is compared with the K
antennas, i.e k ≤ M

N < ∞ ( as 1 ≤ k ≤ K) are presented in
Figure 9 and Figure 10. These results depict the impact
of the multiplexing gain and diversity gain (M −NK).
As M = (N − 1)K grows larger, the sum rate due to
(25) turns to the dominance of M −N + 1 channels,
which increases power allocation in the eigenchannels.
However, increase in transmit antenna M results in
an increase in the multiplexing gain Σn and (N − 1)K ,
and compensate the increase in the optimal power
allocation in the proposed LR-based SVD-ZF-BF. This
indicates that with large K , the beamforming channels
are projected onto the orthogonal projection since the
channel vectors of the nth user are near-orthogonal.
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Figure 9. Sum rate versus the 0 < k ≤ M
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Therefore, the water-filling power allocation to the
eigenchannel is optimal in the sum rate. These results
are consistent with Figure 6 and Figure 7 with the
1
kM = N . It is also observed that the sum rate increases
with user antennas for all schemes, but as κ increases,
the sum rate of the SVD-ZF-BF reduces drastically. In
summary, the closeness of the user antennas lead to
channel correlation and few LoS paths, however, the
proposed optimal precoder withstands this severity in
the Ricean channel. Admittedly, in [32], the received
power is carried by the few LoS channel paths, which
limit the performance.
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5. Conclusion

In this paper, we discuss the optimal ZF precoder
over Ricean channel with the per-antenna power
allocation in the downlink MU massive MIMO system.
By considering non-square massive MIMO channel
matrix, a beamforming approach is designed to align
the channel matrix to the optimal ZF precoder with the
per-antenna power allocation. Further, lattice reduction
is introduced to transform the lattice basis of the
beamforming channel matrix. Optimal ZF precoder
with LR-based beamforming guaranteed higher sum
rate (multiplexing and diversity gains) as compared
with other precoding schemes e.g. norm approximation
beamforming. The numerical results show that the
optimal power allocation in the subchannels depends
on the number of users to achieve multiplexing and
diversity gains. Conversely, the severity of the Ricean
channel reduces the sum rate. The theoretical analysis
accomplishes practical results for optimal ZF precoder
with per-antenna power allocations in MU massive
MIMO systems.
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