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Abstract

The growing ubiquity and variety of personal connected computational devices – each with a number of
sensors – has created the opportunity for a wide range of crowd-sourced services. A busy professional could
find a restaurant to go to for a quick lunch based on information available from smartphones of other people
already there. Sensors on diners’ smartphones could detect whether their owners are eating, waiting to be
seated, or even heading to a restaurant.

Although the programming required for offering a new service of this sort is significant if done from scratch,
we identify core communication mechanisms underlying such services, and implement them as part of a
middleware, CSSWare. Service designers can then launch novel services over CSSWare by plugging in small
pieces of service-specific code.

This paper describes the multi-origin communication mechanism which we believe to underlie many crowd-
sourced services. It presents our design and prototype Actor-based implementation of CSSWare, a middleware
for crowd-sourced services. We present source code for two realistic crowd-sourced services to illustrate the
ease with which new services can be specified and launched. Finally, we present our experimental results
demonstrating scalability, performance and data-contributor side energy efficiency of the approach.
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1. Introduction
With the growing ubiquity of personal computational
devices, such as smartphones and wearable devices, has
come the ubiquity of sensors on these devices, as well as
the potential for triggering actions virtually anywhere.
This opens up an opportunity to offer a variety of
services which rely on the state of the context in which
devices are located, such as a person or a group of
people carrying the devices, their geographical location,
etc. We broadly refer to these as crowd-sourced services.

Consider a restaurant recommendation service which
samples data collected about experiences of clients
at a number of restaurants in a neighborhood and
ranks them according to the service experienced

∗Corresponding author. Email: jamali@cs.usask.ca

by these clients. The source of the data could be
sensor feeds on clients’ smartphones, used to guess
whether they are waiting, seated, enjoying their
meals, paying or leaving. Consider other services,
such as one for recommending hospital emergency
services to people. Such applications have a pattern of
communication in which contextual data offered by a
number of contributors becomes the basis for a service.
Another class of applications with a similar pattern of
communication is social media applications, such as
Twitter, where crowds contribute to collective messages
by contributing free-form short messages, which are
then available to others in a digestible form.

We refer to this pattern of communication as multi-
origin communication. This is the type of communication
where a group of senders contribute to a group message,
without any of them necessarily taking the lead. Contrast
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this with a single-origin (multi-sender) communication
[1], which is initiated by a single party which solicits
interest from other parties to join together in sending
a particular message. An example of the latter would
be a workplace petition drafted by an individual and
presented to others to sign. In multi-origin (implicitly
also multi-sender) communication, there is no single
party which needs to takes the lead. In other words,
multiple parties may autonomously launch messages
which are then aggregated in order to create a group
message.

It turns out that unlike single-origin multi-sender
messages, multi-origin messages require a setup in
advance. Consider a public square where a number
of citizens spontaneously begin to gather to party
or protest. In this context, the physical space of the
square serves as part of a setup which allows mutual
observation, an opportunity to join in or leave, to
endorse, reject or refine the collective message or
experience over time. The closest electronic equivalent
of such a physical space would be social media services
such as Twitter, which allow people to observe others’
tweets in an aggregate form (which is quite natural
in physical space, but requires filtering and counting
mechanisms in electronic space), endorse them by
adopting hashtags, improve upon the message, and
so on. In general, for a crowd (or mass) -conceived
communication to happen, there is a need for a
mechanism to be in place to coordinate the generation
of the group message by soliciting (or more generally
instigating) individual messages, receiving them, and
then aggregating them into a group message. The
solicitation lays out the rules to be followed for selection
of the potential senders, receiving their messages, and
aggregating them. For example, imagine a multi-stage
communication with the first solicitation being to invite
nominations for topics to have the message on, followed
by a vote to select the topic, followed by a solicitation
of messages, followed by a final vote to agree on an
aggregate message. The communication could be one-
time, periodic, or continual. There may or may not be
a time-out for responding to the solicitation. All these
aspects would be laid out in the original solicitation.

Multi-origin communication serves as the core mech-
anism underlying many such crowd-sourced services
[2]. In other words, key coordination mechanisms can
be provided in a platform over which a class of crowd-
sourced services could be implemented relatively easily.
Here, we present our efforts in realizing that potential
by implementing CSSWare, a middleware for crowd-
sourced services. Having CSSWare as a platform, all
that a service designer needs to do to launch a new
service is to identify a constituency of potential con-
tributors, and to provide a few lines of service-specific
code for specifying the nature of contributions and for
aggregating them when they arrive. Additionally, we

try to (opportunistically) optimize the data contributor
side energy consumption of crowd-sourced services for
the situation where a number of services are being
contributed to simultaneously. An optimizing sampling
scheduler schedules the sampling of sensors based on
the sensing requirements received from services run-
ning concurrently. The scheduler looks for opportuni-
ties for different services to share sensor samples, and
lowers the effective sampling rate for each sensor when
possible.

The rest of paper is organized as follows: Section
2 presents the related work. Section 3 describes our
general approach to supporting crowd-sourced services
using multi-origin communication. Section 4 and 5
present our design and prototype implementation
respectively. Section 6 evaluates the approach in two
ways. First, it illustrates the ease with which new
services can be implemented over our platform. Second,
it presents experimental results showing scalability,
performance and energy efficiency of the approach.
Finally, Section 7 concludes the paper.

2. Related Work
There have been a number of projects – both in
academia and industry – involving crowd-sourced
services. The term crowd-sourced can refer to two
types of services: participatory sensing services and
crowdsensing services. Participatory sensing involves
explicit participation of human beings in possession of
mobile devices, whereas crowdsensing relies on sensor
feeds automatically flowing from devices to servers. We
first present some representative examples of both these
types of crowd-sourced services, and then discuss some
existing frameworks for enabling such services.

2.1. Crowd-Sourced Services
Some of the best examples of participatory sensing
services can be found in services aimed at assisting
automobile drivers. Waze [3] is one of the largest
community-orientated mobile travel applications with
users volunteering information about their driving
experience in real time, by reporting on congestions,
delays, and gasoline prices. These reports then become
the basis for information displayed on other drivers’
maps (on their mobile devices), to help them make
routing decisions.

Similarly, TrafficPulse [4] combines sensor data from
mobile devices with real-time traveler reports from
frequent travelers, and then offers this information to
other drivers in an aggregate form.

Crowd-sourcing has also been found to be useful
in efforts to coordinate rescue efforts following major
disasters, such as the Haitian earthquake in 2010 [5].
Information aggregated from social media (e.g., blogs,
emails, tweets, and facebook status updates) was used
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to overcome challenges created by both the inadequacy
of maps and the change in landscape because of the
devastation.

CrowdHelp [6] uses smartphones to collect direct
feedback from mobile users about their medical
condition, in combination with data coming from
sensors in smartphones. This information is used to
enable swift response to emergencies. For example,
when CrowdHelp is used for emergency reporting,
mobile users submit information relevant to an event
(such as the number of injured people and their state) to
a central server. This information is collected and sent
to the nearest health care facility capable of treating the
injured.

Among crowdsensing services, the real-time traffic
information displayed on Google Maps is arguably the
most widely used one. The service relies on location
data voluntarily made available by users of Google’s
services, which is then aggregated and then visualized
on Google’s Maps to show traffic flow. Since Google’s
acquisition of Waze in 2012, Waze’s participatory
sensing service has now been combined with Google’s
crowdsensing service for providing real-time traffic
flow information.

Crowdsensing has also been used by Uga et al. [7] in
an earthquake warning system, which uses data from
accelerometers present in many modern mobile devices
to detect seismic vibrations. Devices send reports of
likely seismic activity to a server which then aggregates
the reports received to send out warnings.

2.2. Mobile Crowd-Sourced Frameworks
Our work is more closely related to research focused on
supporting crowd-sourced applications. Existing efforts
have taken different approaches to supporting such
applications, focusing on concerns from programmabil-
ity (e.g., Medusa [8] and AutoMan [9]), to privacy (e.g.,
AnonySense [10]), to participatory crowd-sensing (e.g.,
CDAS [11]), and efficient sensor data collection (e.g.,
MECA [12]). We discuss these frameworks below.

Medusa [8] is a programming framework for
crowd-sourced applications. A task (such as video
documentation or citizen journalism) is launched by a
requester, and workers are solicited through Amazon’s
Mechanical Turk (AMT) service.1 These workers –
volunteering smartphone users – then provide raw or
processed data to be used as part of a social or technical
experiment. An XML-based programming language,
MedScript, is used to specify the required task as a
series of several stages, from the initial recruitment

1Mechanical Turk is an online human hiring system which acts
as an intermediary between employers (requesters) and employees
(workers or turkers) to perform short-term computational tasks.
https://www.mturk.com/mturk/

of volunteer workers, to the workers’ (say, for a
video documentation task) recording videos on their
smartphones, summarizing them, and then sending
them back. The stages can involve actions selectable
from a library of executables, which are downloaded
to mobile devices from a cloud server. Because Medusa
requires that tasks pick from a limited set of activities,
it suffers from limited programmability and generality,
and is not applicable to a large class of crowd-sourced
services.

AutoMan [9] is a programming platform for enabling
a function-call like mechanism for requesting human-
beings to carry out tasks involving vision, motion,
natural language understanding, etc. The platform
supports scheduling, pricing and quality control. A
programmer’s interface to AutoMan is a set of function
calls, implemented as an embedded domain-specific
language for the Scala programming language. The
platform also uses Amazon’s Mechanical Turk for hiring
workers to perform these short-term human-based
assignments. Although the way AutoMan supports
interactions with people is interesting, its scope is
limited to that function. For instance, a similar
approach could be used along with our middleware for
applications requiring deliberate human input.

AnonySense [10] is another framework for collecting
and processing sensor data, which pays particular
attention to privacy concerns. AnonySense allows
a requester to launch one of a selected group of
applications with their parameters. The application
then distributes sensing tasks across anonymous
participating mobile devices (referred to as carriers),
and finally aggregates the reports received from the
carriers. Achieving anonymity relies on separating
sensor data from identifying features (such as homes
or workplaces in GPS traces) to obscure individual
identities. Similarly to Medusa, AnonySense has
limitations in programmability and generality because
of its limited focus on collection of sensor data and in-
network processing.

CDAS [11] is an example of participatory crowd-
sensing frameworks. It enables deployment of various
crowd-sensing applications which require human
involvement for simple verification tasks to deliver high
accuracy services. Similar to CDAS, MOSDEN [13] is a
collaborative mobile sensing framework that operates
on smartphones to capture and share sensed data
between multiple distributed applications and users.

The MECA (Mobile Edge Capture and Analysis)
middleware for social sensing applications [12] focuses
on efficient data collection from mobile devices. It
uses a multi-layer architecture to take advantage
of similarities in the data required for different
applications to lower the demand on devices on
which data is being collected. MECA’s focus is
limited to a narrow class of applications, and
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Figure 1. Multi-Origin Communication

does not address wider programmability challenges.
Furthermore, MECA – like other similar frameworks
– uses the smartphone as a dumb data generator,
offloading all processing to the server layer. This
increases communication cost and does not allow
applications to take advantage of data collected while
the mobile device is not connected.

In summary, existing frameworks for crowd-sourced
applications focus on narrow application areas or
specific concerns, making it difficult to utilize them
for a wider class of services. Also, none of them
support concurrent execution of multiple services from
within one service platform, which precludes taking
advantage of opportunities to optimize for shared
sensing requirements.

3. Supporting Crowd-Sourced Services
It turns out that a large class of crowd-sourced services
exhibit a similar pattern of interaction, where members
of a crowd contribute bits of information from their
respective contexts, which are then aggregated to create
useful information for clients. We have identified this
pattern of interaction as multi-origin (multi-sender)
communication, which involves aggregation of the
messages received from a group of senders (referred
here to as the constituency) into a group message to be
sent on behalf of the group to one or more intended
recipients. This is illustrated in Figure 1, where senders
a1 through an autonomously send messages with the
intention of them being sent to a destination in
aggregate form.

Most examples of crowd-sourced services fit the
continual type of multi-origin communication, where
members of the constituency send messages on a
continual basis rather than just once; this would be
useful for a service provided over the web or through
a mobile application where site visitors or application
users seek up-to-date information (say) on restaurant
waiting times in a neighborhood. The one-off type
of interaction soliciting only one message from each
member of the constituency is a special case of this
general case; this would be the type of communication
used to serve one-time requests, such as to hold a
census or an election, or to satisfy a one-off request
to recommend a restaurant with a short waiting time.
For some services, such as the one for restaurant

recommendations, the choice between the continual
and the one-off type of communication would depend
on the frequency of requests, the number of potential
senders of messages, etc. For instance, it would not be
useful to be maintaining up-to-date information about
all restaurants when there are very few requests for
recommendations; however, it would be wasteful to
solicit one-off communications if there were frequent
requests.

From here on, we will refer to continual multi-origin
communication as simply multi-origin communication.

3.1. Multi-Origin Communication
To be precise in our presentation of multi-origin com-
munication, we specify it in terms of the Actor model
[14]. Actors are autonomous concurrently executing
primitive agents (i.e., active objects) which communi-
cate using asynchronous messages.2 We represent the
different parties involved in a multi-origin communica-
tion using actors, and define the required communica-
tion in terms of asynchronous actor messages.

The requester of a multi-origin communication
makes a function call in order to launch the
communication. The call passes two parameters,
the first specifying the potential contributors –
the constituency – to be invited to participate in
the communication, and the second specifying an
aggregation method. As illustrated in Figure 2, an
invocation of this function results in the creation
of a new coordinator actor capable of coordinating
the communication, which is next told to invite the
constituency to participate. The coordinator then sends
invitations to the members of the constituency (the
contributors) to send their messages; when applicable,
it also sends them parameters advising on how to
construct their contributions (such as by tapping into
a set of sensors, or soliciting input from the user),
how often to send them (once or periodically, how
frequently), etc.

As the contributors send their messages, the messages
are aggregated by the coordinator as specified in its
own behavior, to generate group messages on behalf of
the contributors. When a contributor’s message arrives
at the coordinator, it checks whether the message
warrants an update, or whether the interval for which
it was to collect messages has passed. In both cases, it
forwards an aggregate of messages received since the
beginning of the interval to the requester. For example,
a restaurant recommendation service available over
the web would collect periodically sent updates from

2Actors are emerging as the model of choice for large-scale
communication systems. Among others, Twitter and Facebook Chat
have been implemented using Actor systems [15].
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Figure 2. Multi-Origin Communication Setup

various restaurants and offer up-to-date information to
site visitors.

Figure 3 illustrates the execution of a multi-origin
communication using an actor event diagram [14].

A communication is initiated by the
requester by calling the function Comm-

Setup(coordClass,constit,updateCond,interval),
where coordClass is the desired behavior of the
coordinator, constit is the list of prospective
contributors, updateCond specifies the condition in
which the requester should be immediately updated,3

and interval specifies the intervals at which the
coordinator would be notified by the clock.

Once the coordinator has been created, it broadcasts
an announcement to contributors contrib1 through
contribn and then waits to receive messages from them.
Contributors either send updates periodically or when
they observe an interesting event (such as a change in
the level of activity in a restaurant, for example).

Also, the clock actor periodically (i.e., after every
interval period of time) notifies the coordinator of the
passage of an interval, at which time the coordinator
computes a new aggregate.

4. CSSWare Design
Our design of the CSSWare middleware builds on the
mechanism for multi-origin communication described
in the previous section. As illustrated in Figure 4,
the sensing crowd becomes the constituency whose
input is solicited. The service continually aggregates
the feeds arriving from the crowd to create up-to-date
custom views for various types of clients. For example,
if the service were for recommending restaurants,
one interface could be for prospective diners, another
for the restaurant managers making real-time staffing
plans, yet another could be for a vehicular routing
system interested in improving downtown traffic flow
at lunch time.

Figure 5 illustrates how the distributed run-time
system for the middleware is organized with parts
executing on the service platform, on devices of
members of the constituency, as well as client devices.

3This should also lead to resetting of the interval with the clock; this
is not shown in the event diagram to avoid making it too crowded.

interval

aggr

event

event

cond
yes

yes
no

aggr

aggr no

msg

cond

no

aggr

yes

aggr

requester clock

interval

P1

P2

create

coordinator

cond

contrib contrib

msg

msg

event

. . . . . . .

contrib   ......

interval

21 n

CommSetup

invite

Figure 3. Continual Multi-Origin Communication

...

service

. .
 . 

. .

se
ns

in
g 

cr
ow

d
...

.

interface

interface
clients

clients...

Figure 4. Crowd-Sourced Service

In the rest of this section, we discuss these three parts
separately.

4.1. Service Platform Side
The service designer uses the service creation API
to create and launch a new crowd-sourced service.
A set of parameters stating service specifications is
passed through the API. These specifications identify
the contributors to be invited to participate in the
service, the aggregation method to be used, as well as a
description of the feeds solicited from the contributors
in terms of specific events of interest, such as arrival at
a restaurant, being seated at the table, etc.

To launch a new service, the service manager
(see server in Figure 5) creates a new service
coordinator to coordinate the communication between
the contributors and the CSSWare platform, which is
capable of coordinating the communication between
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the contributors and the CSSWare platform. Next, it
sends invitations to the contributors to send their events
– when one is detected – to the coordinator. It also sends
them parameters advising on how to detect events,
construct their messages, and how often to send them
(once or periodically, how frequently, etc.).

Contributor events received by a service coordinator
are handled by its event aggregator, which in turn
reports the events in aggregate form to the CSSWare
platform’s event receptionist. The aggregated events are
then passed on to the service manager, which processes
them to update the service’s state, which is forwarded
to the service interface manager to deliver appropriate
views requested by clients through custom interfaces.

4.2. Contributor Side
To launch a service, the platform’s service manager
sends invitations to contributors to participate in the
service. It also sends them parameters advising on
how to detect events and construct their messages (i.e.,
sensing parameters). Event detection is carried out by
dedicated event detection actors, who generate event
feeds using relevant sensor feeds, which are then sent
to the service coordinator.

An optimizing sampling scheduler schedules the
sampling of each sensor based on the sensing
requirements received from the service coordinator for
each service being served at the time.

Sampling Scheduler

The scheduler attempts to optimize the sampling rate
of each sensor exploiting opportunities for different
services to share sensor samples when possible.

On receiving a new request, the scheduler checks if
the current sampling rate – sufficient for serving all
currently served requests – can also satisfy the new
sampling rate being requested. To ensure that the data

samples are equidistant in time, the scheduler needs to
compute the least common multiple (LCM) of the sensor’s
current sampling rate and the rate being requested,
to determine a rate that would serve both existing
requests and the new request. This, however, presents
a challenge.

Because of the way LCM is defined,4 it is only in
special circumstances that LCM(x, y) is lower than
the sum of x and y, meaning that using the LCM of
two requested sampling rates would rarely be better
than serving them independently. Particularly, the LCM
of two numbers is lower than their sum when the
numbers are equal or one is the multiple of the other.
For this reason, finding a covering sampling rate is
most beneficial when the sampling rates requested
by applications are in such a relationship among
themselves. It turns out that this is possible to achieve
by setting up preferred sampling rates for applications
to pick from – as the Android Sensor API already does
by offering 5Hz, 16Hz, 50Hz, 100Hz with designated
purposes of UI, normal, game, highest, respectively –
so that they are of the form x ∗ 2n, making the LCM of
any two requested sampling rates simply the larger of
the two. In our prototype, we use 10Hz, 20Hz, 40Hz,
80Hz; however, we can easily add a lower rate of 5Hz, or
change the scheme to begin with 12.5Hz so that 100Hz
can be served.

The sensor listener is responsible for sampling sensor
data according to the sampling rate received from the
sampling scheduler. However, because sensor samples
are for all apps, there is a filter to extract the required
samples to be sent to the different apps.

Algorithm 1 shows the steps taken by the scheduler
to find the optimal sampling rate for sensing requests

4LCM(x, y) = (x ∗ y)/GCD(x, y); and LCM(x, y, z) =
LCM(LCM(x, y), z)
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being served at the time. Each sensing request specifies
the sensor s to be sampled and the rate r at which it
should be sampled. When a new request is received, the
scheduler checks if the sensor is already scheduled to
serve other requests. If not, it sets it up to be schedule
from then on. If the sensor is already being scheduled
to serve existing requests, the scheduler determines
the rate of sampling which will be sufficient for also
serving the new request. Assuming that requests are
limited to the preferred sampling rates, this simply
requires comparing the new request with the existing
sampling rate, and picking the larger of the two. In
general, it would require a more complex process
computing LCMs of different numbers of requests to
be served, and checking if serving them independently
would be more efficient than serving them from a
covering rate. Because of the computational complexity
of this method, as well as the low likelihood that the
LCM of requests would be lower than their sum – let
alone the LCM of all requests – our implementation
and experiments assume that requests pick from the
preferred sampling rates of 10Hz, 20Hz, 40Hz and
80Hz.

4.3. Client Side
A service can have various types of clients subscribed to
different views of the service’s state, each provided by
a custom interface. When a client requests subscription
to a particular type of view, the request manager inside
the client app constructs a custom view subscription
request. This request is passed on to the service view
interface, which is transmitted through the service
request API of the CSSWare platform (see Figure 5). The
platform adds the client to a list of subscribers to that
view of the service, and begins sending it all updates.

5. CSSWare Implementation
We have prototyped CSSWare as an actor system. The
implementation has two parts: a server implementing
a crowd-sourced service platform (about 7,500 lines of
code), and a mobile app supporting both client and
contributor functionalities (about 4,600 lines of code).

As shown in Figure 6, our implementation is
built using the CyberOrgs [16] extension of Actor
Architecture (AA) [17], a Java library and runtime
system for distributed actor systems. Crowd-sourced
services run over the CSSWare platform, which runs
over the CyberOrgs runtime system.

For the client and contributor side, we have ported
AA to Android OS for supporting the mobile app.

5.1. Service Platform Side
To launch a new service, first, the requested service’s
meta data (i.e., its title and description) is added

Services ....

Operating System

CyberOrgs Platform

CSSWare Platform

Figure 6. System Design

to the list of published services, which lists active
services visible to contributors. Next, the service
manager creates a service actor which invites potential
contributors to send their events to the service’s
coordinator. It also sends them parameters advising
on how to construct their contribution messages. After
inviting the contributors, a new service view is created
in the service request API in order to serve clients’
requests.

As contributors to a service detect and send events,
the events are aggregated by the coordinator and
reported to the service manager through the event
receptionist (see Figure 5). The service manager collects
aggregated events until a sufficient number of them
have been received (as determined by a sufficiency
condition provided by the service designer in the form
of a function) and then updates the service state,
revising the custom service views available to the
clients.

5.2. Contributor Side
For the contributor (and client) side, we have ported
CyberOrgs to Android OS, and implemented a self-
contained application over it which runs on the
Android OS (ver. 5.1). The current implementation
supports contributions based on feeds from the GPS,
accelerometer, microphone, magnetometer, gyroscope,
pressure, humidity, temperature and light sensors. A set
of high-level sensor events has been pre-implemented
in terms of these (low-level) sensor events – as
executable specifications – which a service designer can
draw from and customize by providing parameters.
These high-level events form the basis for service
events. For each high-level sensor event feed, the list of
required low-level feeds is provided in the form of a list,
where each entry identifies a sensor and specifies the
rate at which it should be sampled. These specifications
are typically only a few lines of code, varying between
7 and 18 lines of code for the triggers used in the
example service prototypes. The code for using high-
level sensor events to generate the service events is
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Algorithm 1 Sampling Rate Request Handling Algorithm

1: procedure Sensor Scheduling(s, r) . sensor name (s) and sampling rate (r)
2: if ¬SamplingScheduler.isSensorFound(s) then
3: SamplingScheduler.add(s, r); . add s to the scheduler
4: SamplingScheduler.createSensorListener(s); . create a new sensor listener actor for s
5: SamplingScheduler.createSensorFilter(s); . setup a sensor filter actor for s
6: else . s is already scheduled
7: if (r > SamplingScheduler.currentRate) then
8: SamplingSchedule.adoptSamplingRate(s, r); . adopt the sampling rate to r
9: end if

10: end if
11: end procedure

typically even shorter. The current prototype does not
have a way for a service designer to add completely new
high-level sensor or service event types; ongoing work
is developing a way to allow that.

As shown in Figure 7, the runtime system executing
on the Android device has two components: the
sampling scheduler and the event detector.

Sampling Scheduler. As described in Section 4.2, the
sampling scheduler sets a sampling rate for each sensor
based on the received sensing parameters. The sched-
uler optimizes sensor sampling feeds by opportunis-
tically sharing them between different service feeds.
It then sends these requirements to individual sensor
listeners, which then sample sensor data at the required
sampling rate.

In [18], we describe further details of this process
and introduce the ShareSens API we have developed
through which the sampling scheduler can be accessed
by any mobile application.

Event Detector. Because the data sampled from a sensor
can be for multiple event feeds, the data is filtered
to extract the sub-feed pertinent to each event feed
being served, and only that sub-feed is forwarded to the
relevant event detection actor. An event detection actor
monitors the sensor feed it receives for event triggers;
when it sees one, it fires the event off to its service
coordinator.

An event detector does not maintain a local record
of the triggered events itself; all events are sent to the
service coordinator.

Because the contributor side of the system will
likely execute on battery-operated mobile devices, it is
important that contributors have the ability to either
develop or adopt simple resource consumption policies
to avoid undesired battery drain. We hope to utilize
the fine-grained resource management features already
present in the CyberOrgs [16] extension of Actor
Architecture which we have used in our prototype. For
now, we have implemented a feature allowing a service
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Figure 7. Contributor Side

designer to specify resource limits after reaching which
the contributor device would stop contributing feeds.

5.3. Client Side
Client side of the platform is implemented as part of
the Android application implementing the contributor
side. When a new service is launched, each client
receives a notification about the launch. Multiple views
are supported through custom interfaces installed by
the service designer. A client interested in subscribing
to a service can examine available views using the
service view interface (see Figure 5), and then use the
service request API to subscribe to the desired view.

There is a collection of four general purpose view
interfaces pre-implemented in the platform, which
average at about 85 lines of code (the largest at
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Table 1. Lines of Code Comparison

Service Standalone CSSWare
Restaurant
Recommendation 6,142 41

Twitter-like Messaging 4,768 46

about 100 and the smallest at 75 lines).5 Although
these interfaces are sufficient for the examples we
have implemented, and for services with similar client
side requirements, additional interfaces would need
to implemented for different types of services. In our
current prototype, there is no way for service designers
to program these interfaces themselves; however, we
plan to provide a way for new (general purpose or
custom) interfaces developed by service designers or
other parties to be installed or added to a repository
from which they could be installed.

6. Evaluation
In this section, we present our evaluation of CSSWare
for both the programmability of new services, as
well as our experimental evaluation for performance,
scalability and energy efficiency.

6.1. Programmability
The main programmability advantage of using CSS-
Ware is in the orders of magnitude lower number of
lines of code required for launching a new service.
As shown in Table 1, the prototype restaurant recom-
mendation service presented in this section required
41 lines of code for the server and contributor side
combined; in comparison, an equivalent standalone
service we implemented required 6,142 lines of code.
A twitter-like messaging service we implemented, sim-
ilarly required 46 lines of code instead of 4,768 lines
for an equivalent standalone service. For reference, the
server and contributor end of the CSSWare platform
required 7,473 and 4,622 lines of code respectively.

Below, we present prototype implementations of
these two qualitatively different services to illustrate the
ease with which new services can be programmed.

Restaurant Recommendation Service. Consider the type
of restaurant recommendation service previously
described in Section 1, where mobile devices of people
visiting restaurants in a neighborhood automatically
send real-time updates about the service they are

5These 350 lines of code are included in the previously mentioned
roughly 4600 lines of code for the Android application’s implementa-
tion.
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Figure 8. Restaurant Recommendation Service

receiving to a service provider, which then aggregates
this information for people searching for restaurants.
We assume that information required for generating
these feeds can be gathered automatically by the
devices by tapping into various sensors to determine
when someone arrives at a restaurant, when they are
waiting to be seated, when they sit down, when they
are served, when they finish eating, and when they
leave. The information could be coarser or finer grained
depending on the device, usage habits, quality of the
behavior detecting software, etc. These updates from
personal mobile devices could then be aggregated by
a service provider to rank restaurants according to
criteria such as the amount of wait time before being
seated, the length of time taken dining (shorter or
longer, as preferred), the total amount of time that the
user could expect to travel to the restaurant, dine, and
be back at work. The ranking could also consider the
server’s meta-knowledge about the number of people
being sent to various restaurants by the service.

Figure 8 shows the service graphically, and Figure 9
presents our code implementing such a service as a
createSensorService() method. First, a number of
service variables are initialized: the list of restaurants
(i.e., their names and coordinates), restaurantList,
a method to be used by the coordinator to aggregate
contributions, aggrMethod, and the default sampling
rate to be used for sensor feeds when a rate
is not explicitly specified, Default_SamplingRate.
aggrMethod is initialized here to a general purpose
method for computing the average; it is to be used
by the coordinator to compute average waiting time.
Other services could use other available aggregation
methods; our prototype provides a selection of them.
There is currently no way for a service designer to add
a new aggregation method, but we plan to provide that
functionality in the future. Although here we hardcode
the restaurants, functionality can be easily added to
the mobile app to allow contributors to add previously
unknown restaurants.
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1 void c r e a t e S e n s o r S e r v i c e ( )
2 {
3 / * i n i t i a l i z e s e r v i c e v a r i a b l e s * /
4 S t r i n g p l a c e L i s t =
5 " Restaurant1 ,52.1269 , −106.7618;
6 Restaurant2 ,52.1156 , −106.5997; . . . " ;
7 int aggrMethod = SvcEnum . average ;
8 int defaultSamplingRate =
9 SensorManager .SENSOR_DELAY_NORMAL;

10

11 / * d e f i n i n g s e n s o r s * /
12 Sensor GPS = new Sensor ( SvcEnum . GPS ,
13 defaultSamplingRate ) ;
14 Sensor a c c e l = new Sensor (
15 SvcEnum . accel , defaultSamplingRate ) ;
16 Sensor gyroscope = new Sensor (
17 SvcEnum . gyroscope , defaultSamplingRate ) ;
18

19 / * d e f i n e a s e r v i c e e v e n t * /
20 ServiceEvent locat ionEvent = new ServiceEvent
21 ( SvcEnum . sensorEvent , new Lis t <Sensor >() {GPS } ,
22 new Lis t <EventParam >() {
23 createParam ( " t r i g g e r " , SvcEnum . enterPlace ) ,
24 createParam ( " t r i g g e r " , SvcEnum . departPlace ) ,
25 createParam ( " p l a c e L i s t " , p l a c e L i s t ) ,
26 createParam ( " updateInterval " , 30) ,
27 createParam ( " output " , SvcEnum . vis i tT ime ) } ) ;
28

29 / * d e f i n e a s e r v i c e e v e n t * /
30 ServiceEvent a c t i v i t y E v e n t =
31 new ServiceEvent ( SvcEnum . sensorEvent ,
32 new Lis t <Sensor >() { accel , gyroscope } ,
33 new Lis t <EventParam >() {
34 createParam ( " t r i g g e r " , SvcEnum . sitDown ) ,
35 createParam ( " t r i g g e r " , SvcEnum . s t i l l ) ,
36 createParam ( " s t i l l T i m e " , 1) ,
37 createParam ( " output " , SvcEnum . waitTime ) } ) ;
38

39 / * c r e a t e and launch t h e s e r v i c e * /
40 CrowdService s e r v i c e = new CrowdService ( t i t l e ,
41 descr ipt ion , new Lis t <ServiceEvent >()
42 { locat ionEvent , a c t i v i t y E v e n t } , aggrMethod ) ;
43 s e r v i c e . launch ( ) ;
44 }

Figure 9. Restaurant Recommendation Service

A sensor is set up for each of the sensor feeds
required for any of the service feeds, following which
the two types of service events are defined. The first,
locationEvent, is defined to require the GPS sensor
feed and is defined in terms of a number of parameters.
The “trigger” parameters identify high-level sensor
events, which become the basis for service events. For
example enterPlace recognizes entering a location (a
restaurant in this service). The “output” parameters
identify the service events to be sent to the coordinator;
here, visitTime computes the difference between
enterPlace and departPlace. Additional parameter
types are parameters that are available to the various
methods; for example, updateInterval is available to
visitTime as a parameter to decide the frequency of
feeds to send to the coordinator.

. . . .
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Figure 10. Twitter-like Messaging Service

Similarly, activityEvent specified a different sensor
feed related to observations of the restaurant client’s
activity. It uses various sensor feeds. The triggers detect
activities of “sitting down” or “being still,” the latter
using the stillTime parameter, which are then used as
the basis for a waitTime service event to be sent to the
coordinator.

Finally, the service is created as an instance of the
CrowdService class, and launched. The constructor
for CrowdService takes as parameters a title, a
description, the list of events (i.e., locationEvent

and activityEvent) and the aggregation method
aggrMethod. Once the service has been created, launch
is called to launch the service, which creates the
coordinator actor to coordinate the communication
between the contributors and the service, which then
invites the contributors to begin sending their event
feeds.

Twitter-like Messaging Service. A service like Twitter
serves a number of purposes, which include trans-
mission of personal, organizational and news updates,
social networking, coordination of collective action, and
sharing or propagation of opinions. Increasingly, it has
also served as a source of information for journalists,
opinion makers, politicians, etc. to acquire a sense of
public sentiment. There are a handful of specific mes-
sage formatting devices (particularly hashtags) which
are created and subsequently adopted by contributors
to indicate relationship with existing messages and con-
versations, and which enable some degree of analysis
of sentiment. Here we show how the mechanisms pre-
sented in this paper can be used to implement a service
which allows users to both contribute their opinions,
and obtain aggregate information helpful in assessing
contributor sentiment.

First, we assume that potentially relevant contribu-
tors are somehow invited to participate in discussions.
Once invited to contribute, a contributor can propose a
message by simply typing it. Because of the nature of
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1 void createMessageService ( )
2 {
3 / * i n i t i a l i z e s e r v i c e v a r i a b l e s * /
4 int defaultSamplingRate =
5 SensorManager .SENSOR_DELAY_NORMAL;
6 int aggrMethod = SvcEnum . msgRanking ;
7

8 / * d e f i n i n g s e n s o r s * /
9 Sensor keyboard = new Sensor

10 ( SvcEnum . keyboard , defaultSamplingRate ) ;
11

12 / * d e f i n e a s e r v i c e e v e n t * /
13 ServiceEvent createDiscEvent =
14 new ServiceEvent ( SvcEnum . msgEvent ,
15 new Lis t <Sensor >() { keyboard } ,
16 new Lis t <EventParam >() {
17 createParam ( " t r i g g e r " , SvcEnum . rcvReq ) ,
18 createParam ( " const i tuency " , d i s c C o n s t i t ) ,
19 createParam ( " updateInterval " , 1) ,
20 createParam ( " output " , SvcEnum . i n v i t e C o n s t i t )

} ) ;
21

22 / * d e f i n e a s e r v i c e e v e n t * /
23 ServiceEvent addMsgEvent =
24 new ServiceEvent ( SvcEnum . msgEvent ,
25 new Lis t <Sensor >() { keyboard } ,
26 new Lis t <EventParam >() {
27 createParam ( " t r i g g e r " , SvcEnum . rcvMsg ) ,
28 createParam ( " message " , msg ) ,
29 createParam ( " output " , SvcEnum . updateList ) } ) ;
30

31 / * d e f i n e a s e r v i c e e v e n t * /
32 ServiceEvent voteEvent =
33 new ServiceEvent ( SvcEnum . msgEvent ,
34 new Lis t <Sensor >() { keyboard } ,
35 new Lis t <EventParam >() {
36 createParam ( " t r i g g e r " , SvcEnum . sendVote ) ,
37 createParam ( " output " , SvcEnum . msgText ) ,
38 createParam ( " output " , SvcEnum . msgWeight ) } ) ;
39

40 / * c r e a t e and launch t h e s e r v i c e * /
41 CrowdService s e r v i c e = new CrowdService ( t i t l e ,
42 descr ipt ion , new Lis t <ServiceEvent >()
43 { voteEvent , createDiscEvent , addMsgEvent } ,
44 aggrMethod ) ;
45 s e r v i c e . launch ( ) ;
46 }

Figure 11. Twitter-like Messaging Service

this service, a contributor of a message is also simul-
taneously a client who gets to see other messages. On
proposing a message, the service shows the contributor
(now also a client) a list of existing messages in the
discussion which contain keywords from the proposed
message (or are similar in a more meaningful way). At
this point, the contributor decides whether to proceed
with contributing their message as a new message to
the discussion or to add support to one of the existing
messages. This decision is made by the contributor by
voting for either their own message or one or more
existing messages, or both, by distribution their 1.0 vote
among them.

Figure 10 shows the service graphically and Figure 11
presents our code implementing it. To define events,
we abstract the observation of a user’s contribution
as an event sensed by the keyboard sensor. We use
three events – msgSentEvent, createDiscEvent and
addMsgEvent – corresponding to the three types of
activities a user can engage in.

Next, the set of events to be reported to the
coordinator is defined. A createDiscEvent fires when
a contributor sends a request to create a new discussion
with the identified constituency discConstit. When
the service receives this request, it assigns a new
discussion ID to identify the discussion topic by,
and creates a dedicated discussion coordinator for
that discussion, and sets up an updateInterval

specifying the lengths of the intervals after which the
service would receive updates from the coordinator.
The coordinator in turn announces the discussion to
contributors (SvcEnum.inviteConstit). Once invited,
the contributors are free to send messages to the
discussion coordinator in the form of asynchronous
messages. An addMsgEvent fires when the service
receives a (msg) from a contributor. This msg is either a
new message drafted by the contributor, or an existing
message previously sent to the service. On receiving a
msg, the discussion coordinator first updates the ranked
message list (SvcEnum.updateList) to reflect the new
message received, and then checks to see if it is time
to aggregate received messages and report back to the
service. When it is time to aggregate,6 it aggregates the
updates and reports them to the server using an update
message, which invokes the corresponding method in
the server. The server’s update method updates the
state of the discussion, and then for every entry in the
list of service subscribers, sends them the view that
they are subscribed to. A voteEvent is reported to
the coordinator when a new message is drafted by the
contributor. A message contains some text (msgText) as
well as the proportion of the contributor’s vote for the
message, msgWeight. Each contributor has a total of 1.0
vote for any discussion, which they are free to distribute
between various messages under that discussion.

Service creation takes as parameters a title,
description, a list of events (i.e., voteEvent, cre-

ateDiscEvent and addMsgEvent) and the selected
aggrMethod.

6.2. Experimental Evaluation
We experimentally evaluated CSSWare in terms of
performance, scalability and energy efficiency. Our
experiments were conducted on a prototype Actor-
based implementation of CSSWare. On the contributor

6If messages are infrequent, a clock is used by the service to interrupt
the coordinator at the end of each interval.
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side, we used a Samsung Galaxy Note II phone with a
1.6GHz quad-core processor and 2GB of RAM running
Android OS ver 5.1. The server ran on a Windows
7 laptop equipped with a 2.6GHz quad-core Intel i7
processor and 8GB of RAM.

We installed instrumentation in the server and
mobile application (i.e., contributor and client) parts
of our prototype restaurant recommendation service
to measure the processor time taken to perform
various tasks. Instrumentation was also added to the
contributor side to measure energy consumption of
sensing.

Performance and Scalability.

Service Platform Processing Demand. To evaluate the
scalability of the server, we measured the resources
required to host a service.

We created and launched a set of instances of
the previously described restaurant recommendation
service with their required frequencies of event
feeds distributed over a normal distribution function.
Specifically, we picked 150 random values with
an average of 6.7, which added up to 1,000. We
created 150 services with the randomly chosen feed
frequency requirements, adding up to a cumulative
feed frequency of 1,000 feeds per second. Each service
received feeds from 10 restaurants. Note that the event
feeds here are feeds of higher level events detected at
the contributor end; these are not the raw data received
at a high frequency from the sensors. In other words, the
average frequency of 6.7 events per second per service
would mean that something interesting is observed at
some contributor device related to the service at the
rate of 6.7 per second. Furthermore, we used a window
size of 20 for recently received feeds for any window,
this is the number of recent feeds which were used
to compute a score for the restaurant. For this local
aggregation, we simply maintained the average wait
time for the restaurant, which required O(1) amount of
time to maintain. These local aggregates for restaurants
fed into the creation of a global aggregate in the form of
a ranked list of the restaurants based on their scores,
which amounted to a single step of insertion sort to
maintain a sorted list, with an O(n) cost.7

Table 2 separately shows the one-time processing
costs involved in creation of a new service as well as
on-going processing costs as each event feed is received
and processed. Creating service and coordinator actors
– the former also including parsing the service’s meta
data (i.e., title and description) and adding the new
service to the published service list – took 13.04ms

7Although this performs well for the small number of restaurants, it
would be more efficient to use a binary search tree to keep a large
number of restaurants sorted.

and 11.67ms on average, respectively. Initializing the
global view for the service required 7.84ms. In terms
of on-going costs, receiving and parsing an incoming
event feed required 7.35ms on average. The cost of
local aggregation to keep track of the average of the
last 20 waiting times for a restaurant was 0.024ms on
average. This aggregation has O(1) complexity. We also
measured costs for O(logn), O(n) and O(n2) complexity
local aggregation functions as shown in the table.
The global aggregation for ranking the 10 restaurants
incurred an average processing cost of 0.95ms.

To put these numbers in some context, given the
8.325ms required per feed on an on-going basis, about
120 event feeds could be processed by a server of our
configuration per second. This could support a single
service where 120 events are being collectively detected
by the contributors every second, or 10 services which
are each receiving about 12 feeds per second on average,
and so on. In a broader context still, assuming 40% of
the population dines out at a meal time,8, assuming the
diners are distributed somewhat evenly over a period of
two hours, and each diner’s device is sending 3 events
over the course of their meal (indicating arrival, seating,
departure) a server of our modest configuration could
process 288,288 diners’ data, equivalently data for a city
of about 720,720 people. In practice, data from a small
fraction of the diners could be used, allowing service for
an order of magnitude higher population.

That said, our global aggregation function assumed
only 10 restaurants. Although this may be reasonable
because individuals requiring restaurant recommenda-
tions are not likely to be close to hundreds of restau-
rants, narrowing down the selection before aggregation
would mean custom global aggregations, each costing
the 0.95ms. However, this custom aggregation could
happen on the client’s own device, without impacting
the server’s scalability. Alternatively, for a truly global
aggregate for a city with (say) 10,000 restaurants, an
O(logn) binary search tree could be used to keep the
restaurants sorted; only the top few would ever need to
be fetched, limiting the fetching cost.

Contributor Processing Demand. On the contributor
side, again, we separately measured the initial cost of
handling a new service’s request for contribution, as
well as the on-going cost of serving the service.

The average total of measured one-time cost was
53.35ms (SD 3.41). The on-going costs measured were
per sensor feed: every time a piece of raw data was
received from a server, its average total processing cost

8Zagat 2014 restaurant survey reported that an average American ate
out or bought 47% of their lunches or dinners

12
EAI Endorsed Transactions on

Mobile Communications and Applications 
12 2016 - 09 2017 | Volume 3 | Issue 11 | e1



An Actor-Based Middleware for Crowd-Sourced Services

Table 2. Average Processing Time at the Server Side in ms

One-Time Per-Service Costs Mean SD
Create a service actor 13.04 2.63
Create a coordinator actor 11.67 1.74
Create a service view 7.84 0.98
Total processing time 32.55 5.35

Per-Event-Feed Costs Mean SD
Process an event feed 7.35 1.11
Local aggregation (O(1) cost) 0.024 0.0021
Local aggregation (O(logn)
cost) 0.078 0.0083

Local aggregation (O(n) cost) 0.280 0.0349
Local aggregation (O(n2) cost) 0.680 0.0987
Global aggregation (10
Restaurants) 0.95 0.17

Total processing time (O(1)
local aggregation) 8.325 1.28

Table 3. Average Processing Time at the Contributor Side in ms

One-Time Per-Service Costs Mean SD
Process a service invitation 32.51 2.32
Initiate service 20.84 1.09
Total processing time 53.35 3.41

Per-Sensor-Feed Costs Mean SD
Schedule samples 2.81 0.45
Filter a sensor feed 4.16 0.49
Detect a service’s event 1.71 0.08
Total processing time 8.68 1.02

amounted to 8.68ms (SD 1.02). A finer breakdown of
this total is presented in in Table 3.

To put this on-going cost in perspective, about 115
sensor feeds per second could be handled on a device
of our configuration (assuming no other computations
executing). If an average service requires as many as 10
data samples per second (from a variety of sensors), 11.5
of such services could be supported; if an average of 1
data sample per second is required per service, a more
likely scenario, 115 services could be simultaneously
contributed to.

Client Processing Demand. For the client side as well, we
measured the one-time processing costs of accessing a
new service, as well as the on-going costs of receiving
updates.

As shown in Table 4, the average total of measured
one-time costs was 35.53ms. The total of measured per-
refresh on-going costs amounted to 60.9ms on average,
with 28.7ms (SD 3.9) for processing the update, and
32.2ms (SD 6.4) for display. In other words, a client

Table 4. Average Processing Time at the Client Side in ms

One-Time Per-Service Costs Mean SD
Parse a service notification 21.32 2.21
Subscribe to a custom view 14.21 1.84
Total processing time 35.53 4.05

Per-View-Update Costs Mean SD
Parse a service update 28.7 3.9
Display a service view 32.2 6.4
Total processing time 60.9 10.3

Table 5. Energy Consumed using ShareSens vs. Standalone
Services in mJ

Sensor Standalone CSSWare
Mean SD Mean SD

Accelerometer 2,646 132.3 1,995 102.6
Gyroscope 14,653 761.4 10,751 645

could be simultaneously subscribed to and receive
updates from 16 services every second. This is not
very meaningful considering that more than half of the
processing cost is for graphically displaying the update,
which is not likely to happen simultaneously for more
than only a few services. If we assume that only one
service’s updates are actually displayed at a time, more
than 30 services could be supported in the background
where interesting updates could lead to notifications,
invitations to display, etc.

Energy Consumption of CSSWare vs. Standalone Services.
Finally, a set of experiments was carried out to
measure the overall improvement achieved in energy
consumption by using CSSWare’s sampling scheduler
on the contributor device. We used the PowerTutor
software [19] for our energy measurements.

To measure the overall improvement in energy
consumption, we made measurements of energy
used by CSSWare and identical standalone services
implemented without using CSSWare. Table 5 shows
the total amount of energy used by each sensor for the
entire experiment duration. As shown in Table 5, the
sampling scheduler improved energy consumption of
accelerometer and gyroscope sensors by up to 24.60%
and 26.63%, respectively. However, the percentage
savings depend entirely on the number of requests
being served, because although the energy used is
roughly linear in the cumulative sampling rate of all
requests for the standalone services, for CSSWare, it
depends almost entirely on the highest frequency being
requested at the time, from which other requests are
also served.
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Overhead Analysis. In order to determine the non-
sensing overhead of CSSWare, we measured the energy
consumed by the contributor device side of the
framework, albeit without the actual sensing. The
average energy consumed was measured to be 70.4 mJ
for the accelerometer, and a similar 79.6 mJ for the
gyroscope sensor. In percentage terms, this was roughly
4% of the total energy consumed in the accelerometer
experiments, and 0.8% for the gyroscope sensor, the
difference explained by the order-of-magnitude larger
overall energy demand of the gyroscope sensor itself.

7. Conclusions
With the growing ubiquity of sensors and mobile
devices, it is more possible than ever to offer innovative
services based on both what the millions of sensors on
people’s devices are sensing, as well as what individuals
are willing to actively contribute. However, the barriers
to offering such services continue to be prohibitive for
most: not only must these services be implemented,
they would inevitably compete for resources on people’s
devices.

We have argued in this paper that many crowd-
sourced services, including prominent social media
services (if we consider their role of helping evolve
collective messages), require similar communication
mechanisms. We focus on one such mechanism –
multi-origin communication – which allows a number
of autonomous participants to contribute messages
which can then be aggregated to create group
messages on behalf of all. We introduced an approach
to supporting crowd-sourced services using multi-
origin communication, and presented our design and
implementation of an Actor-based middleware for
crowd-sourced services as a platform for launching
such services. We illustrate the ease with which new
services can be launched by presenting source code
for prototype implementations for two qualitatively
different types of services, each requiring less than 50
lines of main service specification code, with less than
100 lines of additional relevant code from available
libraries of aggregation functions, feed specifications
and service view interface. Finally, we experimentally
evaluated the scalability of the approach. Most
notably, even our modestly configured server could
potentially provide a restaurant recommender service
to a population of millions; contributor devices
could contribute to tens if not hundreds of services
simultaneously; client devices could monitor tens of
services.

We have additionally addressed the challenge of
satisfying the energy needs of a potentially large
number of services requiring sensor data continuously.
Use of the sampling scheduler takes advantage of the
overlap in sensing requirements of various applications

to achieve significant energy savings when there are
overlapping requirements, with minimal overhead.

In on-going work, we are developing mechanisms for
service designers and third parties to add new service
feed specifications, custom service view interfaces, and
aggregation functions. This will allow a larger variety
of services to be implemented. We are also working
on further simplifying programmability of services
through web-based graphical interfaces. Finally, we
would like to apply our approach for fine-grained
resource coordination to refining the sensor sampling
scheduler, and more generally to manage the resource
demands that a larger number of services may place on
resource-constrained mobile devices.
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