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ABSTRACT
Externally controllable molecular communication is expected
to expand the capability of molecular communication by al-
lowing conventional devices placed in the external environ-
ment to control the location and timing of molecular commu-
nication processes taking place in the molecular communica-
tion environment. In this paper, we consider externally con-
trollable mobile bionanosensor networks where an external
device is used to control the mobility of bio-nanomachines.
We first describe a simple model to describe the mobility
of bio-nanomachines. We then show how mutual informa-
tion can be used to evaluate the controllability of mobile
bio-nanomachines.
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1. INTRODUCTION
This paper applies the concept of externally controllable
molecular communication [6] to design externally control-
lable mobile bionanosensor networks. A bionanosensor net-
work considered in this paper consists of a group of mobile
bio-nanomachines that communicate molecularly in the en-
vironment [8, 9, 7] and an external device that controls the
mobility of bio-nanomachines. Promising application areas
of such networks include interactive drug delivery systems
where human physicians use external control to direct drug-
carrying bio-nanomachines to target locations in the body
[2, 3].
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Figure 1: Interaction between an external device
and a bio-nanomachine

Fig. 1 shows an overview of externally controllable mobile
bionanosensor networks where the interaction between an
external device and a bio-nanomachine is highlighted. An
external device is a micro or larger scale conventional device
(e.g., implantable and ingestible medical devices [4]) and it
releases a type of attractant molecule to form a concentra-
tion gradient in the environment. A bio-nanomachine is a
micro-scale device composed of biomaterials and exists in
the molecular communication environment (e.g., in the hu-
man body). A bio-nanomachine has a chemotactic ability to
detect the attractant concentration gradient and changes its
moving direction based on the gradient. In the following, we
first describe a simple stochastic model to describe the mo-
bility of bio-nanomachines (Section 2). We then show how
information theory may apply to evaluate the controllability
of mobile bio-nanomachines (Section 3).

2. MOBILITY MODEL
We assume that an external device chooses a single point
in a two-dimensional environment where a group of bio-
nanomachines exist, releases a type of attractant molecule
from the single point, and forms a concentration gradient in
the environment. We also assume that each bio-nanomachine
moves in a two-dimensional environment based on the mo-
bility model of a chemotactic bacterium [1]. Briefly, each
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bio-nanomachine has two mobility modes: run and tumble
modes. A bio-nanomachine in the run mode keeps its mov-
ing direction while a bio-nanomachine in the tumble mode
changes its moving direction. A bio-nanomachine tends to
move based on the run mode when moving up the attractant
concentration gradient, otherwise it tends to move based on
the tumble mode.

For a given bio-nanomachine in the environment, let X be
the direction of the incoming signal, representing the direc-
tion toward the point where the external device releases a
type of attractant molecule (i.e., the direction of the max-
imum attractant concentration gradient at the location of
the bio-nanomachine). For simplicity in the following, we
assume that the direction X follows U(−π, π). We further
assume that the direction of the incoming signal X is subject
to noise in the environment; as a result, the bio-nanomachine
receives the direction Θ that may follow Gaussian distribu-
tion N (x, σ) wrapped over a range [x− π, x+ π] where σ
represents noise effect.

Depending on the received signal θ, a bio-nanomachine sets
its mobility mode to either the run or tumble mode prob-
abilistically based on the chemotactic index [5]. The bio-
nanomachine then updates its moving direction Y ; in the
run mode, the bio-nanomachine retains its moving direction
Y , and in the tumble mode it changes the moving direc-
tion Y by 2π/81 radian per second in either a clockwise or
counter clockwise direction [1].

3. PRELIMINARY RESULTS
We use mutual information between X and Y to evaluate
the controllability of mobile bio-nanomachines. Mutual in-
formation between X and Y dictates the distinct number
of directions that the external device can choose to which
bio-nanomachines are directed. In numerical experiments,
we use the model described in the previous section, deter-
mine Y after sufficiently long time elapses for a given X,
and compute mutual information between X and Y .

Fig. 2 shows the distribution of the moving direction Y
of a bio-nanomachine when the direction of the incoming
signal X is 0 with noise effect σ varied in {0.1, 0.5, 1.0}.
As shown in the figure, more bio-nanomachines are directed
toward the direction X as σ decreases. Fig. 3 shows the
impact of noise on mutual information between X and Y .
When σ = 0.1, the mutual information is 1.79, meaning that
21.79 ' 3.46 distinct number of directions can be correctly
communicated with the bio-nanomachine. As σ increases,
the mutual information decreases to around 0.09, showing
how controllability decreases as the noise effect increases.

how information theory may apply to analyze the perfor-
mance of bacterium-based bio-nanomachines.
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