
CIDRarchy: CIDR-based ns-3 Routing Protocol for Large
Scale Network Simulation

Pedro Moreira da Silva
pmms@inesctec.pt

Jaime Dias
jdias@inesctec.pt

Manuel Ricardo
mricardo@inesctec.pt

INESC TEC, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal

ABSTRACT
ns-3 is the successor of ns-2, the most popular network sim-
ulator. Network simulators such as ns-3 play an important
role on understanding, designing, and building Internet sys-
tems. But simulations are only as good as their models, and
the simulation of large scale Internet systems using accurate
and complex models is a challenging task. ns-3 simulates
realistically the network stack but the scale and complexity
of the Internet topology is, from our point of view, limited
by the IP forwarding operations.

This work proposes CIDRarchy, an IPv4 routing protocol
for ns-3 that uses CIDR as the base to create an hierarchi-
cal Internet-like network topology that enables (1) IP for-
warding with constant time complexity and automatic IPv4
address assignment, and (2) the implementation of an ns-3
helper to ease network topology creation. We implemented
CIDRarchy, evaluated its performance, and obtained sim-
ulation time reduction over existing ns-3 routing protocols
implementations that can reach over one order of magnitude.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development-
Modeling methodologies; I.6.m [Simulation and Model-
ing]: Miscellaneous

General Terms
Simulation, Large Scale, Networks

Keywords
ns-3, CIDR, Routing, Forwarding

1. INTRODUCTION
ns-3 [1] is a free and open-source discrete-event network

simulator for Internet systems, mainly targeted for research
and educational use. Despite being the successor of ns-2,
which is the most popular network simulator for research [9],

ns-3 is a replacement rather than an extension of ns-2 as its
core was rewritten to improve upon ns-2 limitations.

Simulation plays a vital role on designing, building, un-
derstanding, and thoroughly evaluating large scale Internet
systems. Large scale Internet systems, in particular those
based on Peer-to-Peer (P2P) architecture, such as BitTor-
rent [4], usually involve thousands or even millions of peers.
For systems on such a scale, with heterogeneous peers (e.g.
heterogeneous Internet access, CPU, memory, and storage
resources), it becomes impracticable to test accurately the
designed protocols either analytically or using real, large
scale implementations. Small scale tests, although feasible,
may not be enough as some issues may only arise at the scale
of thousands of peers or more [3].

Simulations are only as good as their models, and the
simulation of large scale networks using accurate and com-
plex models is a complex task. When simulating large scale
Internet systems, two important models are required: the
Internet topology, and the network stack and its protocols.
Simulators are usually forced to trade off simulation accu-
racy for scale [5] because it is hard to evaluate Internet sys-
tems over a large and complex Internet topology while using
complex and realistic network stacks, and its protocols.

An Internet topology model is a conceptual two-level hi-
erarchical network that connects hosts, routers, and au-
tonomous systems (ASes) to each other in a way that mimics
the Internet topology. Given that Internet systems simu-
lation typically does not consider inter-domain (AS-level)
topology and its routing, this work targets the intra-domain
topology and its routing. We refer the reader to [8] for
further reading regarding AS-level topology. We follow the
model provided in [2] that presents a conceptual intra-domain
network topology model closely related to a real communica-
tion network of an Internet Service Provider (ISP). Figure 1
illustrates such model, and depicts the hierarchical structure
of such communication networks, which typically consist on
access, aggregation, and core sections. The network termi-
nation represents hosts.

ns-3 simulates realistically the network stack but the scale
and complexity of the Internet topology is limited by the IP
forwarding of existing ns-3 routing protocols implementa-
tions. Several solutions were proposed to improve ns-3 per-
formance, e.g., resorting to parallel [12] and distributed [10]
computing, and avoiding redundant computations [7], but
the IP forwarding remains an open issue for large scale net-
works. ns-3 provides several routing protocols both for infra-
structured and ad-hoc networks, the latter being the main
subject of research in this area. The two main ns-3 routing

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261082

Figure 1: Intra-domain network topology (source: [2]).

protocols for infra-structured networks, Ipv4GlobalRouting
and Ipv4NixVectorRouting, perform IP forwarding table
lookup in linear and logarithmic time complexities, respec-
tively. Additionally, ns-3 does not provide a straightforward
way to construct a topology with asymmetric links, as In-
ternet access usually is.

This work proposes the use of Classless Inter-Domain Rout-
ing (CIDR)[6] as the base to create an hierarchical Internet-
like network topology that enables automatic IPv4 address
assignment and IP forwarding with constant time complex-
ity, i.e., it does not depend on the IP forwarding table size.
Thus, the two main contributions of this work are (1) the
implementation of a CIDR-based constant time ns-3 IPv4
routing protocol, and automatic IPv4 address assignment,
and (2) the implementation of an ns-3 helper to ease net-
work topology creation (with asymmetric links), and to en-
able large scale network simulation.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the main ns-3 routing protocols for infra-
structured networks. Section 3 depicts the implementation
of an ns-3 helper to ease Internet-like network topology cre-
ation. Section 4 describes the implementation of a CIDR-
based constant time ns-3 IPv4 routing protocol for Internet
systems simulation, which we name CIDRarchy, paired with
automatic IPv4 address assignment to nodes. Section 5 pro-
vides examples of usage for topology creation, and CIDRar-
chy install. On Section 6 a performance comparison between
CIDRarchy, other routing protocols is provided. Section 7
provides the main conclusions.

2. NS-3 MAIN ROUTING PROTOCOLS FOR
INFRA-STRUCTURED NETWORKS

ns-3 simulated nodes are interconnected by one or more
NetDevices communicating over their respective channels.
Packets flow through these channels and, as they traverse
the network stack, the actual packet formats are provided
to each layer, mimicking real networks. The network stack is
configurable per node and, at node creation, it only includes
the layers below the IP layer.
InternetStackHelper helper provides a simple interface

to install the IP stack, and to set the routing protocol that
is to be used. Custom routing protocols can also be de-
fined by deriving from Ipv4RoutingProtocol class or from
Ipv6RoutingProtocol class, and must implement, at least,
RouteInput and RouteOutput methods. RouteInput method
returns a boolean indicating whether it takes responsibility

for forwarding or delivering the packet; if so, one of four
callbacks, with self-descriptive names, can be invoked to for-
ward or deliver the packet: UnicastForwardCallback, Mul-
ticastForwardCallback, LocalDeliverCallback, and Er-

rorCallback. RouteOutput method is used by transport
protocols for retrieving the route (Ipv4Route object) for out-
going packets, if any.

ns-3 provides already several routing protocols both for
infra-structured and ad-hoc networks. Typical Internet sys-
tems consider only infra-structured networks. Therefore,
next we only present the routing protocols provided by ns-3
for infra-structured networks: Ipv4ListRouting, Ipv4Stati-
cRouting, Ipv4GlobalRouting and Ipv4NixVectorRouting

routing protocols.

2.1 Ipv4ListRouting
Ipv4ListRouting is a meta routing protocol that serves

the sole purpose of combining different routing protocols
in a prioritized list. Routing protocols are invoked in or-
der until an incoming packet is handled (RouteInput) or
a route is returned for an outgoing packet (RouteOutput).
I.e., the next routing protocol on the list is invoked only
if previous routing protocol either does not handle the in-
coming packet or does not provide a route for the outgoing
packet. The InternetStackHelper helper installs by default
an Ipv4ListRouting enclosing both Ipv4StaticRouting and
Ipv4GlobalRouting, having Ipv4GlobalRouting higher pri-
ority than Ipv4Stati-cRouting.

2.2 Ipv4StaticRouting
Ipv4StaticRouting provides a basic set of methods for

setting static unicast and multicast routes. Though it can be
used as a standalone routing protocol, Ipv4StaticRouting
was designed to be inserted into an Ipv4ListRouting to
complement other routing protocols. Ipv4StaticRouting is
usually used as a lower priority routing protocol for setting
default routes.

2.3 Ipv4GlobalRouting
Ipv4GlobalRouting is the actual default routing protocol

installed by InternetStackHelper helper. It walks the sim-
ulation topology, and populates node’s routing tables with
the routes returned by a shortest path algorithm. Ipv4Glo-

balRoutingHelper helper provides two class methods, Popu-
lateRoutingTables and RecomputeRoutingTables, to pop-
ulate the routing tables from scratch, and to update routing
tables, respectively. Thus, Ipv4GlobalRouting is easy to
use and, given that both methods can be executed any time
during simulation, also supports run-time topology changes.

2.4 Ipv4NixVectorRouting
Ipv4NixVectorRouting routing protocol [11] is a more ef-

ficient version of global routing that stores source routes in
packets headers. The source node adds a set of bits to packet
headers that indicate the interface that is to be used at each
node to reach destination. The number of bits read by each
node is the amount of bits required to represent all its in-
terfaces, being its value the interface index within the node.
Ipv4NixVectorRouting enables run-time topology changes
by recomputing the source routes and flushing caches either
implicitly, when interface changes occur, or explicitly, by
invoking FlushGlobalNixRoutingCache class method.

Figure 2: Example of a topology created using Asymmet-

ricHierarchicalTopologyHelper. Routers are represented
as empty circles; hosts are represented as filled circles.

3. NS-3 HELPER FOR TOPOLOGY CRE-
ATION

This section presents the implementation of a novel ns-3
helper, which we name AsymmetricHierarchicalTopology-

Helper, that enables the creation of topologies akin to the
model of ISP networks provided in [2]. All links between
nodes are created using PointToPointChannels so that up-
link and downlink bitrates, delay, and maximum transmis-
sion unit (MTU) can be configured per link (uplink and
downlink bitrates are configured by setting the transmis-
sion bitrate of endpoints’ PointToPointNetDevices). We
describe how the access network is created, explain how the
hosts connect to it, and depict how star, tree, and mesh
network topologies can be created using AsymmetricHier-

archicalTopologyHelper.
Following the referred network model, AsymmetricHier-

archicalTopologyHelper helper enforces a node hierarchy
per levels, in which links can only be created between nodes
at the same level or at adjacent levels. Routers have only a
single link to the router on the level above (parent router),
except for core routers (first level) which have none, and
there can be only one direct link between any pair of routers.
Core routers form a fully connected mesh network so that
packets are always forwarded through the minimum hop
count route. Additionally, routers either connect hosts (ac-
cess routers) or connect other routers (aggregation and core
routers). Hosts access the network through a single link to
an access router, and do not establish any other link with
any other network node. Figure 2 depicts an example of a
network topology that can be constructed using Asymmet-

ricHierarchicalTopologyHelper helper.
Depending on the required level of accuracy, the ISP net-

work can be instantiated as a star network, a tree network or
a mesh network. Star network topology can be created using
AsymmetricHierarchicalTopologyHelper helper by defin-
ing a single router to which all hosts connect to, i.e., there is
a single level of routers with only one router. A tree topol-
ogy can be obtained by creating one router at the first level,
and adding additional levels with routers as required. Fi-
nally, a mesh topology can be obtained either implicitly, by
creating several routers at the first level, or explicitly, by
creating links between routers at the same level.

4. CIDRARCHY: CIDR-BASED CONSTANT
TIME NS-3 IPV4 ROUTING PROTOCOL

This section presents CIDRarchy routing protocol, a novel

Figure 3: Hierarchy used for setting the subnetwork man-
aged by each router (represented as empty circles).

CIDR-based ns-3 IPv4 routing protocol with constant time
complexity. We start by describing how routers manage
CIDR prefixes and assign IPv4 addresses to hosts, detail
how the algorithm takes the forwarding decisions, and end
discussing its implementation. We refer to nodes that have
the same parent router as its children, and as siblings of each
other.

CIDRarchy routing protocol requires a strict hierarchical
assignment of the subnetworks managed by each router to
achieve constant time complexity: the subnetworks man-
aged by sibling routers have equal length prefix, and are
aggregated in a single CIDR prefix at parent router. Thus,
e.g., a router having three children routers, managing the
subnetwork 27.2.13.0/24, would assign the subnetworks
27.2.13.0/26, 27.2.13.64/26, and 27.2.13.128/26 to its
child routers. This procedure is applied recursively from
top to bottom, first by assigning equal CIDR prefixes to
each core router, and then by treating each subnetwork as
a tree topology: discarding the links between routers at the
same level, each subnetwork becomes a tree. Figure 3 il-
lustrates this approach. Access routers sequentially assign
IPv4 addresses to hosts within the subnetwork they manage.

The IP packet forwarding decisions taken by CIDRarchy
routing protocol can be seen as CIDR prefix adjustments to
select an adjacent router that is one hop closer to destina-
tion host: the prefix widens (parent link) until the destina-
tion host is part of the subnetwork managed by the router,
it narrows once it does (child link). Except for core routers,
which have no parent link, links to routers at the same level
are a shortcut to avoid going up and down the hierarchy.
The index of the link to the child node is given by the bits
that are part of child’s subnetwork prefix but not of parent
router’s subnetwork prefix. For instance, a router manag-
ing the subnetwork 27.2.13.0/24, that needs to forward
a packet to host 27.2.13.66, will select child with index
1 (the router managing subnetwork 27.2.13.64/26). The
same rationale is applied to routers at the same level, se-
lecting the longest subnetwork prefix as the base (smallest
subnetwork), and handling subnetworks with shorter prefix
(larger subnetwork) as multiple subnetworks of equal size.

Given that the common behavior of ISP networks is for
routers to never generate nor receive packets, and that the
access network is static, we implemented CIDRarchy routing
protocol in the Ipv4CidrarchyRouting class without deriv-
ing it from Ipv4RoutingProtocol class. Ipv4L3Protocol,
the class that implements the IP layer, introduces a con-
siderable overhead (1) in the way it processes the routes
(Ipv4Route) passed by RouteInput and RouteOutput meth-

ods, and (2) in the way it checks if an IP packet is for local
delivery (IsDestinationAddress method). Ipv4Route ob-
ject contains the egress NetDevice but not the Ipv4Inter-

face. For this reason, Ipv4L3Protocol iterates over the
node’s list of Ipv4Interfaces to perform a reverse lookup,
which introduces overhead that varies with the interface list
size. Given that every node is a potential host, when des-
tination address differs from the one of ingress interface, by
default, IsDestinationAddress iterates over the same list
to check if there is a match with the destination address.
Therefore, we chose to implement CIDRarchy through a call-
back registration at PointToPointNetDevice, using SetRe-

ceiveCallback method, and by snooping the IPv4 header
to perform the IP packet forwarding.

The Ipv4CidrarchyHelper helper provides an Install

method that receives, besides the network prefix, three node
lists as input to perform all network setup operations: core
routers, routers, and hosts lists. The list of core routers
is required to bootstrap the assignment of the subnetwork
managed by each router. The list of routers is required to
complete network access setup. The list of hosts enables
to automatically assign IPv4 addresses to them. CIDRar-
chy supports addition of hosts in run-time as long as there
are IPv4 addresses available. Hosts can be added during
run-time using the class methods CreateHost and CreateN-

Hosts, which take the same parameters as their counterparts
of class AsymmetricHierarchicalTopologyHelper.

5. EXAMPLES OF USAGE
This section provides examples of how AsymmetricHier-

archicalTopologyHelper can be used to create topologies,
and how CIDRarchy can be installed. The topologies cre-
ated in this section are those that are used for comparing
CIDRarchy with Ipv4GlobalRouting, and Ipv4NixVector-

Routing in the next section. We first present the topology
creation examples, and then the CIDRarchy install example.

5.1 Topology Creation
The topology creation examples show how a star topol-

ogy, a balanced tree, an unbalanced tree, and a mesh topol-
ogy can be created using AsymmetricHierarchicalTopolo-

gyHelper. Listing 1 provides the example for star topology
creation, and depicts how default link parameters can be set
and how routers and hosts can be created.

Listing 1: Star Topology Creation

AsymmetricHierarchicalTopologyHelper helper ;

// downlink , upl ink , l i n k delay , and MTU
helper . SetRouterLinkDefaults (

" 100 Gbps " , " 100 Gbps " , "5 us " , 1500
) ;
helper . SetHostLinkDefaults (

" 30 Mbps " , "3 Mbps " , "5 ms " , 1500
) ;

Ptr<Node> root = helper . CreateRouter (0) ;
helper . CreateNHosts (1000 , root) ;

Listing 2 encloses the code for creating a balanced tree
topology with two router levels and two branches (left and
right). We omit the AsymmetricHierarchicalTopology-

Helper declaration, and show that link creation functions
can also receive the link parameters as arguments.

Listing 2: Balanced Tree Topology Creation

Ptr<Node> root = helper . CreateRouter (0) ;
Ptr<Node> left = helper . CreateRouter (

root , " 100 Gbps " , " 100 Gbps " , "5 us " , 1500
) ;
Ptr<Node> right = helper . CreateRouter (root) ;

NodeContainer leftHosts = helper . CreateNHosts (
500 , left , " 30 Mbps " , "3 Mbps " , "5 ms " , 1500

) ;
NodeContainer rightHosts = helper . CreateNHosts (

500 , right , " 30 Mbps " , "3 Mbps " , "5 ms " , 1500
) ;

The code for creating an unbalanced tree topology with
two levels of routers, two branches, and only two hosts on
the right branch is depicted in Listing 3. This code also
shows multiple router creation, and single host creation.

Listing 3: Unbalanced Tree Topology Creation

Ptr<Node> root = helper . CreateRouter (0) ;
NodeContainer access = helper . CreateNRouters (

root , " 100 Gbps " , " 100 Gbps " , "5 us " , 1500
) ;

NodeContainer leftHosts =
helper . CreateNHosts (998 , access . Get (0)) ;

NodeContainer rightHosts ;

rightHosts . Add (helper . CreateHost (
access . Get (1) , " 30 Mbps " , "3 Mbps " , "5 ms " , 1500

)) ;
rightHosts . Add (

helper . CreateHost (access . Get (1))
) ;

Listing 4 depicts the code used for creating a mesh topol-
ogy with five core routers, two access routers per core router
(10 access routers in total), and the same number of hosts
per access router. Figure 4 illustrates all four topologies.

Listing 4: Mesh Topology Creation

NodeContainer core = helper . CreateNRouters (5 , 0) ;
NodeContainer access ;

for (uint32_t i = 0 ; i < core . GetN () ; ++i)
access . Add (helper . CreateNRouters (2 , core . Get (i))) ;

for (uint32_t i = 0 ; i < access . GetN () ; ++i)
helper . CreateNHosts (10 , access . Get (i)) ;

5.2 CIDRarchy Routing Protocol Install
Installing CIDRarchy routing protocol on nodes is as sim-

ple as invoking the Install method provided by Ipv4Cidrar-

chyHelper. The method takes a list of core routers, a list
of routers, a list of hosts, a network prefix, and its length as
shown in Listing 5.

Listing 5: CIDRarchy Install

NodeContainer core = helper . GetCoreRouterNodes () ;
NodeContainer routers = helper . GetRouterNodes () ;
NodeContainer hosts = helper . GetHostNodes () ;
Ipv4CidrarchyHelper cidr ;
Ipv4Address netwAddr = " 10.0.0.0 " ;

cidr . Install (core , routers , hosts , netwAddr , 16) ;

The Install method fails if the subnetwork managed by
any router is empty, i.e., contains less than two IPv4 ad-
dresses (/31 prefix).

SS
DD

...

(a) star

…

SS

...

DD

(b) balanced tree

…

SS

DD

(c) unbalanced tree

...
...

...DD

...

...

...

...

......

...

SS

(d) mesh

Figure 4: Topologies used for performance comparison. The nodes S, and D are the hosts used to install OnOffApplication
and PacketSink applications, respectively.

6. RESULTS
In this section we compare CIDRarchy, Ipv4GlobalRout-

ing, and Ipv4NixVectorRouting routing protocols with re-
spect to their performance and scalability, with the main
objective of evaluating the impact of the IP forwarding func-
tionality on simulation time. For that purpose, first we mea-
sured the time required to simulate the transmission of a sin-
gle traffic flow consisting of 150000 packets, each packet hav-
ing a size of 1000 bytes, from a node running OnOffAppli-

cation application (host S) to a node running PacketSink

application (host D), using an increasing number of hosts.
Then, in a second study and in order estimate the overhead
of ns-3 routing protocols bootstrap operations, we used a
balanced tree topology with 1500 hosts on each branch (3000
hosts total) and measured the time required to simulate the
transmission of multiple flows of 1500 packets, each packet
having a size of 1000 bytes, from nodes on the left branch
to nodes on the right branch, using an increasing number of
flows. The results for single and multiple flows studies are
shown, respectively, on Figures 5 and 6, and are the average
of 5 simulation runs on an Intel Xeon E5-2650@2GHz CPU,
running on Ubuntu 14.04, using ns-3.22 version.

For single flow scenarios, depicted on Figure 5, CIDRar-
chy presents similar simulation times as the number of hosts
increases from 100 to 3000; the slight increase can be ex-
plained by the additional computations required for network
creation. On the other hand, despite the amount of pack-
ets exchanged remains the same, Ipv4GlobalRouting and
Ipv4NixVectorRouting show a significant increase on sim-
ulation times as the number of hosts increases. CIDRar-
chy simulation time increases slightly as the hop count in-
creases showing best results for the star scenario (Figure 5a),
which has a hop count of 2. Ipv4GlobalRouting and Ipv4-

NixVectorRouting simulation times decrease in the mesh
scenario (Figure 5d), which has hop count of 5. This behav-
ior shows that the performance of both routing protocols
varies across different topologies, and also that IP forward-
ing has a significant impact on simulation time: simulation
times of mesh scenario are three or four times lower than for
other scenarios albeit having higher hop count. On all four
scenarios, the simulation times of CIDRarchy routing pro-
tocol are much lower than those of other routing protocols,
and the gains can reach over one order of magnitude.

Figure 6 shows the average simulation time per flow as
the number of simulated flows increases, which is obtained
by dividing the total simulation time by the number of trans-
mitted flows. The average simulation time per flow remains
nearly constant for both CIDRarchy and Ipv4NixVector-

Routing, while it decreases for Ipv4GlobalRouting from

1.80

1.43

0.78 0.82

0.05 0.03
0.0

0.5

1.0

1.5

2.0

0 200 400 600

Si
m

u
la

ti
o

n
 T

im
e

p
er

 F
lo

w

(m
s)

Flows

Global NixVector CIDRarchy

Figure 6: Simulation time per flow required by CIDRar-
chy, Ipv4GlobalRouting and Ipv4NixVectorRouting rout-
ing protocols to transmit flows of 1500 packets, each having
a size of 1000 bytes, using OnOffApplication (left branch)
and PacketSink (right branch) applications, in a balanced
tree topology with 1500 hosts in each branch (3000 hosts
total), for an increasing number of flows.

1.80 ms per flow (50 flows) until it stabilizes at around 1.43
ms per flow (250 flows). This shows that the initial cost
of populating the Ipv4GlobalRouting routing tables is not
negligible when considering short simulations. Despite con-
sidering only scenarios where each host communicates with
no more than one host, which enables Ipv4NixVectorRout-

ing to perform IP forwarding having only a single entry
on its routing table and not to incur on any penalty that
may arise from on-demand route calculation, CIDRarchy
still outperforms it by at least one order of magnitude no
matter the number of flows simulated.

7. CONCLUSIONS
CIDRarchy routing protocol enables ns-3 to simulate large

Internet networks by reducing greatly the time spent in IPv4
forwarding. We implemented and evaluated the proposed
routing protocol in ns-3 simulator, and demonstrated that
the simulation time gains over existing routing protocols can
reach over one order of magnitude. For instance, a simula-
tion taking one month may be complete in less than four
days using our proposed CIDRarchy. We provide also an
helper that enables complex topology creation with a few
lines of code. The implementation provided supports the
addition of hosts during simulation time.

8. ACKNOWLEDGMENTS
The authors express their gratitude to the BEST CASE

project (”NORTE-07-0124-FEDER-000056”, ”NORTE-07-01

207.02

77.65

5.58
0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Hosts

Global NixVector CIDRarchy

(a) star topology

178.17

82.03

6.45
0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Hosts

Global NixVector CIDRarchy

(b) balanced tree topology

227.67

67.10

6.09
0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Hosts

Global NixVector CIDRarchy

(c) unbalanced tree topology

62.84

21.61

7.210

50

100

150

200

0 500 1000 1500 2000 2500 3000

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Hosts

Global NixVector CIDRarchy

(d) mesh topology

Figure 5: Simulation time required by CIDRarchy, Ipv4GlobalRouting and Ipv4NixVectorRouting routing protocols to
transmit 150000 packets, each packet having a size of 1000 bytes, using OnOffApplication and PacketSink applications, in
star, balanced tree, unbalanced tree, and mesh scenarios with an increasing number of hosts.

24-FEDER-000058”and ”NORTE-07-0124-FEDER-000060”)
financed by the North Portugal Regional Operational Pro-
gramme (ON.2 – O Novo Norte), under the National Strate-
gic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF).

This work was financed by the FCT – Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) within project UID/EEA/50014/2013, and
under the fellowship SFRH/BD/69388/2010.

9. REFERENCES
[1] The ns-3 network simulator. http://www.nsnam.org/.

[2] A. Betker, I. Gamrath, D. Kosiankowski, C. Lange,
H. Lehmann, F. Pfeuffer, F. Simon, and A. Werner.
Comprehensive topology and traffic model of a
nationwide telecommunication network. Optical
Communications and Networking, IEEE/OSA Journal
of, 6(11):1038–1047, November 2014.

[3] L. Cheng, N. Hutchinson, and M. Ito. P2PNet: A
simulation architecture for large-scale P2P systems. In
H. Labiod and M. Badra, editors, New Technologies,
Mobility and Security, pages 567–581. Springer
Netherlands, 2007.

[4] B. Cohen. Incentives build robustness in BitTorrent,
2003.

[5] K. Eger, T. Hoßfeld, A. Binzenhöfer, and
G. Kunzmann. Efficient simulation of large-scale P2P
networks: Packet-level vs. flow-level simulations. In
Proceedings of the Second Workshop on Use of P2P,
GRID and Agents for the Development of Content
Networks, UPGRADE ’07, pages 9–16, New York, NY,
USA, 2007. ACM.

[6] V. Fuller and T. Li. Classless Inter-domain Routing

(CIDR): The Internet address assignment and
aggregation plan, August 2006. RFC4632.

[7] K. Harrigan and G. Riley. Simulation speedup of ns-3
using checkpoint and restore. In Proceedings of the
2014 Workshop on ns-3, WNS3 ’14, pages 7:1–7:7,
New York, NY, USA, 2014. ACM.

[8] Y. He, G. Siganos, and M. Faloutsos. Internet
topology. In R. A. Meyers, editor, Encyclopedia of
Complexity and Systems Science, pages 4930–4947.
Springer New York, 2009.

[9] S. Khan, B. Aziz, S. Najeeb, A. Ahmed, M. Usman,
and S. Ullah. Reliability of network simulators and
simulation based research. In Personal Indoor and
Mobile Radio Communications (PIMRC), 2013 IEEE
24th International Symposium on, pages 180–185, Sept
2013.

[10] J. Pelkey and G. Riley. Distributed simulation with
mpi in ns-3. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques,
SIMUTools ’11, pages 410–414, ICST, Brussels,
Belgium, 2011. ICST.

[11] G. F. Riley, M. H. Ammar, and R. Fujimoto. Stateless
routing in network simulations. In in Proceedings of
the Eighth International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems, 2000.

[12] B. P. Swenson and G. F. Riley. Simulating large
topologies in ns-3 using BRITE and CUDA driven
global routing. In Proceedings of the 6th International
ICST Conference on Simulation Tools and Techniques,
SimuTools ’13, pages 159–166, ICST, Brussels,
Belgium, 2013. ICST.

