JBotSim: a Tool for Fast Prototyping of Distributed
Algorithms in Dynamic Networks:

Arnaud Casteigts
LaBRI, University of Bordeaux

arnaud.casteigts@labri.fr

ABSTRACT

JBOTSIM is a java library that offers basic primitives for proto-
typing, running, and visualizing distributed algorithms in dynamic
networks. With JBOTSIM, one can implement an idea in minutes
and interact with it (e.g., add, move, or delete nodes) while it is
running. JBOTSIM is well suited to prepare live demonstrations of
algorithms to colleagues or students; it can also be used to evaluate
performance at the algorithmic level (number of messages, num-
ber of rounds, etc.). Unlike most simulation tools, JBOTSIM is not
an integrated environment. It is a lightweight library to be used in
java programs. In this paper, I present an overview of its distinctive
features and architecture.

Keywords: Mobile ad hoc networks, Distributed Algorithms, In-
teractive Simulation, Time-Varying Graphs

1. INTRODUCTION

JBotSim is an open source simulation library dedicated to dis-
tributed algorithms in dynamic networks. I developed it with the
purpose in mind to make it possible to implement an algorithmic
idea in minutes and interact with it while it is running (e.g., add,
move, or delete nodes). JBOTSIM can also be used to prepare live
demos of an algorithm and show it to colleagues or students, as
well as to assess the algorithm performance. It is not a competitor
of mainstream tools like NS3 [3], OMNet [7], or The One [6], as it
does not aim to implement real-world networking protocols. Quite
the opposite, JBOTSIM aims to remain technology-insensitive and
to be used at the algorithmic level, in a way closer in spirit to the
ViSiDiA project (a general-purpose platform for distributed algo-
rithms). Unlike ViSiDiA, however, JBOTSIM natively supports
mobility and dynamic networks (as well as wireless communica-
tion). Another major difference with the above tools is that it is a
library rather than a software: its purpose is to be used in other pro-
grams, whether these programs are simple scenarios of full-fledged
software. Finally, JBOTSIM is distributed under the terms of the

* A longer version is available on arXiv (abs/1001.1435).

LGPL licence, which makes it easily extensible by the community.

Whether the algorithms are centralized or distributed, the natu-
ral way of programming in JBOTSIM is event-driven: algorithms
are specified as subroutines to be executed when particular events
occur (appearance or disappearance of a link, arrival of a message,
clock pulse, efc.). Movements of the nodes can be controlled ei-
ther by program or by means of live interaction with the mouse
(adding, deleting, or moving nodes around with left-click, right-
click, or drag and drop, respectively). These movements are typi-
cally performed while the algorithm is running, in order to visualize
it or test its behavior in challenging configurations.

JBotSim comes as a JAR package that can be found on the web-
site [1]. Once in the classpath, one can start using the API. Please
refer to the long version of this paper for more information regard-
ing installation, first steps, or the API. An online javadoc is also
available. Besides its features, the main asset of JBotSim is its sim-
plicity of use. A basic program is shown on Listing 1. It results in
a gray surface where nodes can be added, moved, or deleted using
the mouse.

Listing 1 HelloWorld with JBOTSIM

import jbotsim.Topology;
import jbotsim.ui.JViewer;

public class HelloWorld{
public static void main (String[] args) {
new JViewer (new Topology());
}

2. OVERVIEW

JBOTSIM consists of a small number of classes, the most cen-
tral being Node, Link, and Topology. Nodes may or may not
possess wireless communication capabilities, sensing abilities, or
self-mobility. They may differ in clock frequency, color, commu-
nication range, or any other user-defined property. Links between
the nodes account for potential communication among them. Link
can be directed or undirected, and wired or wireless — in the latter
case, JBOTSIM updates the set of links automatically.

Figure 1: A highway scenario composed of vehicles, road-side
units, and central servers.

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261067



Figures 1 and 2 illustrate two different uses of JBOTSIM. Fig-
ure 1 depicts a highway scenario where three types of nodes are
used: vehicles, road-side units (towers), and central servers. This
scenario is semi-infrastructured: part of the network is wired and
static, the other part is wireless and dynamic. Figure 2 illustrates a
purely ad hoc scenario, where swarms of UAVs and robots strive to
clean a public park collectively. In this scenario, robots can clean
wastes of a certain type (red or blue) only if these are within their
sensing range (depicted by a surrounding circle). UAVs detect the
wastes and provide their location to the robots.

Figure 2: A swarming scenario, whereby mobiles robots and
UAVs collaborate in order to clean a public park.

2.1 Distributed vs. centralized algorithms

JBOTSIM supports the manipulation of centralized or distributed
algorithms (possibly simultaneously). The natural way to imple-
ment a distributed algorithm is by extending the Node class, in
which the desired behavior is implemented. Centralized algorithms
are not constrained to a particular model, they can take the form of
any standard java class (and yet, rely on the API as needed).

Distributed algorithm.

JBOTSIM comes with a default type of node that is implemented
in the Node class. This class provides general features for moving
or exchanging messages, among others. Distributed algorithms are
implemented through extending this class. Listing 2 provides a
basic example in which the nodes are endowed with self-mobility.
In this example the onClock () method is overridden in order to

Listing 2 Extending the Node class

public class MovingNode extends Node {
public MovingNode () {
setDirection (Math.random() = 2+Math.PI);
}
public void onClock () {
move () ;

}

perform some action (here, moving) periodically. The rest of the
code is responsible for setting a random direction at construction
time (in radian).

Once this class is defined, new nodes of this type can be added
to the topology either manually, e.g. using tp.addNode (), or by
telling JBOTSIM that new nodes should, by default, be of this type
(setDefaultNodeModel (MovingNode.class)). Several mod-
els can be registered, in which case JBOTSIM’s GUI displays a
selection list when a node is added.

Centralized algorithms.
There are many reasons why a centralized algorithm can be pre-
ferred over a distributed one. The object of study might be cen-

tralized in itself (e.g. network optimization, scheduling, graph al-
gorithms in general). It may also be simpler to start designing a
distributed algorithm in a centralized way. Centralized algorithms
must not inherit from a given class. They can simply use the API
from their own class. Listing 3 gives an example of a central algo-
rithm that records into a dynamic graph the traces of connectivity
of the nodes (here, in a format close to that of [5])

Listing 3 Example of a mobility trace recorder

public class MyRecorder implements TopologyListener,
ConnectivityListener,
MovementListener({
public MyRecorder (Topology tp) {
tp.addTopologyListener (this) ;
tp.addConnectivityListener (this) ;
tp.addMovementListener (this) ;

// TopologyListener
public void onNodeAdded (Node node) {
println("an_" + node.hashCode () +
" x:" + node.getX() + "_y:" + node.get¥Y());
}
public void onNodeRemoved (Node node) {
println("dn_" + node.hashCode());

}

// ConnectivityListener
public void onLinkAdded (Link link) {
println("ae_" + link.hashCode() + "_" +
link.endpoint (0) + "_" + link.endpoint(1l));
}
public void onLinkRemoved (Link link) {
println("de_" + link.hashCode());
}

// MovementListener
public void onNodeMoved (Node node) {
println("cn_" + node.hashCode () +
" x:" + node.getX() + "_y:" + node.getY());

In fact, most events available to the nodes through overridding
methods (e.g. onClock (), onMessage (), onLinkAdded (),
onSensingIn (), onSelection (), efc.) are also available to
other classes through the corresponding interfaces (ClockListener,
MessageListener, ConnectivityListener, etc.).

2.2 Exchanging messages

The API for messages in JBotSim is simple. Messages are sent
through calling the send () method on the sender node, and they
are received through overriding the onMessage () method or by
scrutinizing the mailbox manually. Listing 4 shows an example

Listing 4 Example of message-based broadcast

public class BroadcastNode extends Node {
boolean informed = false;
@Override
public void onSelection() {
informed = true;
sendAll (new Message ("MY_MESSAGE"));
}

@Override
public void onMessage (Message message) {
if (!informed) {
informed = true;
sendAll (message) ;




MovementListener onMove() onClock() ClockListener
onLinkAdded() Topology onNodeAdded()
ConnectivityListener TopologyListener
onLinkRemoved() Node onNodeRemoved()
MessageListener PropertyListener

onMessage()

Link propertyChanged()

Figure 3: Main sources of events and corresponding interfaces in JBOTSIM.

of broadcast algorithm, where the initial emitter is selected by the
user (middle click in the GUI). Any object can be inserted in a
message (here a String). By default, messages take one time unit to
be transmitted. This can be tuned in a number of ways.

2.3 Working at the graph level

In addition to messaging, JBOTSIM makes it possible to work
at the (more abstract) graph level. Consider an example scenario
where a type of node called SocialNode, dislikes being isolated.
Such a node is happy (green) if it has at least one neighbor, unhappy
(red) otherwise. Listing 5 shows a possible implementation of this
principle at graph level.

Listing 5 Example of graph-based algorithm

public class SocialNode extends Node{
public SocialNode () {
setColor (Color.red);
}
public void onLinkAdded (Link 1) {
setColor (Color.green);
}
public void onLinkRemoved (Link 1) {
if (!hasNeighbors())
setColor (Color.red);

2.4 Interactivity

I designed JBOTSIM with a clear separation in mind between
GUI and underlying logic. As such, JBOTSIM can be used with-
out GUI and works just the same (except for interaction, of course).
Hence, JBOTSIM can be used to perform batch simulations of unat-
tended runs, e.g. to log the effects of varying some parameters.

This being said, one of the most distinctive features of JBOTSIM
remains interactivity, e.g., the ability to challenge the algorithm in
difficult configurations through adding, removing, or moving nodes
during the execution. This approach proves useful to think of a
problem visually and intuitively. It also makes it possible to explain
someone an algorithm through showing its behavior.

The architecture of the viewer is depicted on Figure 4. As one

can see in the figure, the main component is actually the JTopology.

It is noteworthy that this component can be embedded in other con-
tainers than a Jviewer. As a result, JBOTSIM’s GUI can be em-
bedded in other software, such as simulation environments or even
java applets (see the long version for details).

While natural to JBOTSIM’s users, the viewer remains, in all
technical aspects, an independent piece of software. Alternative
viewers could very well be designed with specific uses in mind.

3. CONCLUDING REMARKS

I my view, JBOTSIM is a kernel that focuses on generic features
whose purpose is to be used or extended by others. The current

JViewer
JTopology
removeNode () I — Right click
selectNode () +— Middle click .
| ITeft click MouseListener

addNode ()

1 —{Drag & drop

setLocation ()

onNodeMoved ()

Node |

1

(via MovementListener)

propertyChanged ()

Link | —

(via PropertyListener)

V1Y

Update
visualization

onNodeAdded ()
onNodeRemoved ()

1

Topology —

(via TopologyListener)

———| onLinkadded ()
onLinkRemoved ()

(\'ia ConnectivityListener)

Figure 4: Internals of JBotSim’s GUI

distribution includes an extension package called jbotsimx, in
which more specific features could be found, such as algorithms for
connectivity testing or manipulation of time-varying graphs. Con-
tributions are most welcome, as well as suggestions of improve-
ment and feature requests.

References
[1] JBOTSIM’s website: http://jbotsim.sf.net/.
[2] M. Bauderon and M. Mosbah, “A unified framework for de-

signing, implementing and visualizing distributed algorithms,”
Electr. Notes on TCS, vol. 72, no. 3, pp. 13-24, 2003.

[3] Collective Authors, “The NS-3 network simulator,” http:/
www.nsnam.org/, 2009.

[4] B. Derbel, “A Brief Introduction to ViSiDiA,” USTL, Tech.
Rep., 2007.

[5] A.Dutot, F. Guinand, D. Olivier, and Y. Pigné, “GraphStream:
A Tool for bridging the gap between Complex Systems and
Dynamic Graphs,” In Proc. of EPNACS, 2007.

[6] A. Kerinen, J. Ott, and T. Kérkkéinen, “The one simulator for
dtn protocol evaluation,” in Proc. of SIMUTools, 2009.

[7]1 A. Varga et al., “The OMNeT++ discrete event simulation sys-
tem,” in Proc. of ESM, 2001.



