
Characterizing SPDY over High Latency Satellite
Channels
Luca Caviglione1,∗, Alberto Gotta2

1Institute of Intelligent Systems for Automation (ISSIA), National Research Council of Italy (CNR)
2Information Science and Technologies Institute (ISTI), National Research Council of Italy (CNR)

Abstract

The increasing complexity of Web contents and the growing diffusion of mobile terminals, which use wireless
and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In
particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex
webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper
characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it
could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To
this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator,
and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in
terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing
architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of
Performance Enhancing Proxies usually deployed to isolate satellite trunks.

Keywords: networking protocol, satellite network, lossy channels, SPDY, HTTP, performance evaluation.

1. Introduction

The Internet is daily used to share personal contents,
and to exchange information in an highly interactive
fashion. Eventually, such paradigms greatly mutated
the Web. To offer a proper degree of dynamism, also
legacy websites have been enriched with sophisticated
features, e.g., the Asynchronous JavaScript and XML
(AJAX) to exchange data between the server and the
client over an indefinitely held HyperText Transfer
Protocol (HTTP) connection. Besides, pages no longer
have clear boundaries, since they embed contents
usually mashed-up from several remote sources [1].
Such features are usually grouped under the Web 2.0
umbrella term, and heavily altering the characteristics
of in-line objects, i.e., those linked against the main
object containing the hypertext [2]. This enriched
vision is not only limited to pages, since full-featured
applications can be accessed from the browser, as
it happens in Software-as-a-Service (SaaS), where a
non-negligible amount of bandwidth and real-time
guarantee are needed to enable data synchronization
and proper feedbacks. As a consequence, the highly
interactive nature of Web 2.0 reduces the accuracy of

∗Corresponding author. E-mail: luca.caviglione@ge.issia.cnr.it

the page-by-page model, as well as the performances of
protocols built on such template.

In parallel, the Internet is not only more interactive,
but also more mobile, leading to a dramatic increase in
the usage of wireless links, e.g., the IEEE 802.11, the
Long Term Evolution (LTE), and satellite channels. The
latter are still the main choice to access to Internet in
rural areas or developing countries. Yet, mobility, high
error rates and delays impose constraints clashing with
the resource consuming nature of the Web 2.0. This is
even truer in the case of satellite communications, often
leading to additional hazards in terms of performances
[3].

In this scenario, the Web 2.0 demands adjustments
in the HTTP. Specifically: i) the increased amount of
in-line objects requires a parallelization of the retrieval
process, and ii) the rising volume of data needs reducing
the protocol overheads. As a partial workaround,
HTTP/1.1 [4] relies on multiple connections, even
if this can lead to additional hazards, such as
increased Round Trip Times (RTTs) to setup/teardown
a connection, bigger delays in the TCP slow-start phase,
and connection rationing phenomena (i.e., the browser
cannot open too many connections over a single server).
Such unwanted effects are further emphasized by delays
characterizing satellites, then imposing to investigate
new mechanisms.

1

Research Article
EAI Endorsed Transactions
on Mobile Communications and Applications

Received on 27 January 2014; accepted on 27 July 2014; published on 28 December 2014

Copyright © 2014 Luca Caviglione and Alberto Gotta, licensed to ICST. This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction i n any medium so long as the original work i s properly cited.

EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

doi:10.4108/mca.2.5.e3

L. Caviglione and A. Gotta

To this aim, SPDY (pronounced "SPeeDY") could be
a very suitable solution to accessing Web 2.0 from
a satellite network, since it is an enhanced HTTP
supporting header/data compression and connections
multiplexing [5]. For instance, when used on wired
links, it can reduce download times in the range of
27-60% [5]. Also, by funneling all the data into a
single TCP flow, it can mitigate the impact of large
RTTs, high packet losses, and it further simplifies the
produced traffic. Nevertheless, Performance Enhancing
Proxies (PEPs) can experience a reduced workload, i.e.,
in terms of states to be handled when serving a vast user
population.

However, when used over 3G cellular networks,
SPDY does not show any clear performance improve-
ments, specially due to the complex cross-layer interac-
tions [6]. Close conclusions are showcased in [7], even
if the Authors underline that in simpler architectures,
the header compression introduced by SPDY enables
benefits. A comparable set of trials has been proposed
in reference [12], where the authors ran experiments on
Chrome for Android, in order to have a draft 2 version of
the protocol. In this case, SPDY outperformed HTTP by
assuring an average reduction of 23% in terms of load-
ing times of pages. As regards possible architectural
enhancements, in reference [8] a protocol and caching
infrastructure to improve performance in multi-domain
and mobile scenarios is proposed. To the author’s best
knowledge, the only prior work characterizing SPDY
over satellite is available in references [9] and [10], both
clearly indicating that SPDY brings relevant benefits.

Therefore, this paper widely extends the work [9],
and its main contributions are: i) to characterize the
main behaviors of SPDY when used over heterogeneous
satellite networks; ii) to showcase the creation of
an ad-hoc/reusable testbed; iii) to provide an earlier
comparison between HTTP and SPDY when used to
access popular sites.

The remainder of the paper is structured as follows:
Section 2 introduces SPDY. Section 3 discusses the
testbed and the measurement methodology, and Section
4 showcases the results of the investigation. Lastly,
Section 5 concludes the paper and proposes future
research directions.

2. From HTTP 1.1 to SPDY
As said, to cope with the additional complexities of
Web 2.0 applications, the HTTP protocol specification
has been partially amended over the years. In details,
in its last incarnation – the HTTP/1.1 [4], it relies on
multiple connections to increase the concurrency of
the process of retrieving objects. Also, HTPP/1.1 uses
pipelining to send multiple requests over a single TCP
connection without waiting for a response. This limits
the offered load in terms of TCP Protocol Data Units

(PDUs), and reduces the Page Loading Time (PLT) over
satellite Internet connections [11]. However, achievable
gains are limited by the protocol specification, since
the server must generate responses in the same order
of requests. Thus, the flow of each connection is ruled
according to a first-in-first-out policy. In turns, this can
lead to Head of Line (HOL) blocking, where the first
packet locks an entire line. Besides, HTTP pipelining is
still optional, and requires to be implemented within
both the client and the server. As today, it is not widely
available into existing browsers.

To prevent similar issues, SPDY introduces an ad-
hoc framing layer (also named session layer) [5] to
multiplex concurrent streams atop a single persistent
TCP connection, as well as any other reliable transport
services. Besides, SPDY offers a settings session-wide
message enabling a proper negotiation of transport
parameters between endpoints, e.g., to report the size
of the Initial Congestion Window (ICW) of the TCP
to the remote server. Furthermore, it is optimized
for HTTP-like request-response conversations, and also
guarantees full backward compatibility with HTTP.
In more details, SPDY offers four major additional
improvements compared to HTTP:

1. multiplexed requests: to increase possible gains,
SPDY does not impose any limits to the number of
concurrent requests that can be sent over a single
connection;

2. prioritized requests: to avoid congestion phenom-
ena due to scarce resources at the network level,
clients can indicate in-line objects to be delivered
first. This can enhance the Quality of Experience
(QoE) of a service, even in presence of incomplete
pages;

3. compressed headers: modern Web applications
force the browser to send a significant amount
of redundant data in the form of HTTP headers.
Since each Web page may require up to 100 sub-
requests, the benefit in term of data reduction
could be relevant;

4. server pushed streams: this feature enables
objects/resources to be pushed in advance from
servers to clients without additional requests.

However, mechanisms 1) – 4) could be partially
voided by HOL blockings at the transport level. This is
even truer when in presence of packet losses triggering
the error recovery strategies of the TCP, which could
invalidate compression and prioritization. For such
reasons, SPDY needs a proper comprehension when
jointly used with error prone links.

For what concerns all the protocol resources (e.g.,
documentation and software), they are provided by
the SPDY Google Developer Group. In addition,

2EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

Characterizing SPDY over High Latency Satellite Channels

performance evaluations in real-world use cases have
been partially performed within the framework of the
Chromium Projects1, which spawned the “Let’s make the
Web faster” initiative2.

3. Description of the Testbed
In order to evaluate the behavior of SPDY over satellite
links, we performed a set of trials using an emulated
satellite environment, as depicted in Figure 1. To
capture all the needed descriptive features and perform
repeated trials, we developed an ad-hoc client, running
on an Intel Core 2 T7400 at 2.16 GHz with Linux
Ubuntu 12.10 64bit OS (kernel 3.2.0.37). To generate
requests, we used an instrumented Google Chrome
browser, which automatically loads URLs, and starts
proper supporting scripts, for instance to capture data
via tcpdump. We point out that we used Google Chrome
since it natively supports SPDY, and offers a very
comprehensive set of debugging features that allow
placing proper hooks to log data in order to reconstruct
timing statistics. To store such temporal traces, we used
the HTTP Archive (HAR) file format, i.e., a JavaScript
Object Notation (JSON) document collecting a variety
of statistics, such as the page size, and timing of objects
as well. Repeated trials have been automatized via
proper shell scripts, and a Node.js module.

Another important component of our testbed is the
SPDY proxy. Also in this case we used the same Linux
version of the client, and it has been developed with
Node.js. The proxy has not been only deployed to
access non-native SPDY sites, but also to increase the
accuracy of our measurements. In fact, many Web
2.0 websites provide contents that dynamically change
over time (e.g., due to advertisements or comments
performed by other users), even in between two
adjacent requests, thus leading to measurements that
cannot be compared. Therefore, the contents used to
investigate SPDY have been cached by using the Web

Page Replay tool. In this manner, we relied on a set
of websites with deterministic behaviors. Moreover,
this approach can also avoid possible additional
noises introduced by the Internet, such as congestion
phenomena at the server side, or in some portions in
the public network.

To emulate the satellite link, we used netem, which
is now part of the native Linux queuing discipline.
It permits to easily superimpose wide area network
characteristics, e.g., the delay and the packet error
rate, over standard routing strategies. Since netem can
only process inbound packets, as a quick workaround,
we created a new Intermediate Functional Block (IFB)

1http://www.chromium.org/chromium-projects
2http://www.chromium.org/spdy/spdy-whitepaper

pseudo device, in order to handle the emulation
discipline also to incoming packets.

The TCP Initial Window (IW) is set to 10 segments by
default, while we disable the TCP Slow-Start Restart

After Idle, as suggested by Google and many past
research works [13] as to improve the responsiveness of
the proxy.

SPDY Proxy Server

Local Home
Gateway

Satellite Internet

Gateway

SPDY Clients

WWW

Satellite Transponder

Figure 1. Reference architecture of the adopted tested. The
satellite link has been emulated with different values of RTT
and packet loss.

To have realistic data, we used a subset of the “top
100 websites" list compiled by Google. To have a small
but composite set of characteristics, we shortlisted the
following sites:

• Reddit and Slashdot: they rely on a limited
amount of large images, but use a variety of small
graphical elements;

• Wikipedia: it uses a simple/text-based layout, also
reducing to the minimum the number of external
dependencies;

• Huffington Post and BBC: they also embed plugins
for video playback and to comment news. Both
exploit a great number of inline objects scattered
across different domains;

• Flickr and Microsoft: they include very large
graphic elements, and plug-ins to implement
carousels, i.e., they are archetypes of pages crafted
for showcasing contents or products.

3.1. Preliminary Tests
As a consequence of the lack of thorough past
investigations on SPDY, we performed an initial round

3EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

http://www.chromium.org/chromium-projects
http://www.chromium.org/spdy/spdy-whitepaper

L. Caviglione and A. Gotta

of tests to better comprehend its core behaviors, as
well as to validate our testbed. Therefore, we emulated
a geostationary (GEO) satellite access, emulated by
imposing the RTT of 520 ms, and by limiting the
bandwidths to 1 Mbit/s and 256 kbit/s, in the forward
link and return link, respectively (see, e.g., [14] for
a discussion on tuning emulated satellite testbeds
starting from real measurements). To have a controlled
environment, in this first run of tests we assumed the
channel as error-free. Each trial has been repeated 20
times.

The first analysis compares HTTP against SPDY in
terms of used transport connections. This metric is a
rough “complexity” indicator, which quantifies the per-
spective reduction of overheads for enhancing/splitting
TCP flows, for instance by using a PEP machine. Table
1 summarizes the number of transport connections
required to download the contents of the selected sites
when using standard HTTP. As reported, the presence
of an extremely high amount of TCP conversations is
mainly due to the content-richness nature of Web 2.0
applications, as well as the need of retrieving a com-
posite set of objects, e.g., plug-ins or multi providers
mash-ups. Yet, Table 1 underlines that not all sites
present such extreme characteristics. This is the case of
Wikipedia, which is mainly delivered through a text-
based layout without any additional service embed-
ded (e.g., advertisements, Facebook plug-ins or location
widgets à-la Google Maps).

Table 1. Number of TCP connections per site when using
standard HTTP. Ranking is performed according to Kb per page
on the wire and to label sites in the rest of the paper.

Rank Site name # of conn. Kb/Page
1 Wikipedia 17 111.13
2 Reddit 41 371.42
3 Flickr 14 499.28
4 Slashdot 50 712.62
5 BBC 88 950.73
6 Microsoft 58 1176.25
7 Huffington Post 173 1481.80

On the contrary, when pages are retrieved through
the SPDY proxy, the amount of required TCP connec-
tions always reduces to four. This is a consequence of
the multiplexing architecture of the protocol. Besides.
we underline that only one connection is strictly related
to SPDY traffic, while others are initiated by the browser
to perform navigation statistics, or to fetch data for
remote services (e.g., to provide users search sugges-
tions/completions). Unfortunately we were not able to
inhibit such process. Yet, we were able to precisely
quantify the resulting overhead as to avoid “noise” in

the collected results. Specifically, despite the adopted
protocol, only one connection generates traffic and pro-
duces less than 100 kbyte of data. The other two connec-
tions simply perform a SYN/FIN exchange, probably to
enable some kind of viewing time profiling. Thus, we
solely focus on the Layer4 connection transfering the
Web page, which can be always correctly identified.

Hence, the adoption of SPDY results into a very
minimal load in terms of the connections to be
managed, also accounting for a reduced complexity.
Since satellite networks often use some kind of
middleboxes (e.g., PEPs) for increasing the throughput
of transport layer protocols, SPDY has to be considered
a very interesting option to shift overheads at the
borders of the network.

To complete the characterization of used sites, Table
2 reports the main features of each selected website,
in order to understand some behaviors of HTTP in
terms of page compositions. We also used the Page Size
intended as Kb per site on the wire as a metric to rank
sites (see, Table 1) to better organize the presentation of
results in Section 4.

4. Characterization of SPDY

In this section, we compare SPDY and HTTP, by
extending the emulated satellite environment pre-
sented. Specifically, we tested the protocols when using
a Wireless LAN (WLAN) access, as to emphasize their
robustness when in presence of errors. Therefore, as
depicted in Figure 1, the client connects to the satellite
gateway through a wireless link. Thus, we characterized
the wireless impairment within the range 0÷1% of the
average packet loss (defined as ploss in the following).
Also, we used two different values for the RTT, ranging
from 520ms to 720ms, as to account for multiple use
platforms. The bandwidth of the satellite link, the used
sites and the usage patterns are the same previously
discussed in Section 3.1.

Since both protocols have the goal of delivering
contents to end users, investigating only the features of
the produced traffic does not allow to precisely infer the
user experience. In this perspective, we will also present
results to better comprehend SPDY at the application
level.

Lastly, for many metrics we will provide average
values without a per-site granularity. This, will enable
to offer a general idea on how SPDY could impact
“globally" when used to browse the Web 2.0. Yet,
to capture some more fine-grained details, we will
compare Wikipedia against Huffington Post, since the
former is content-rich, while the latter is essentially
based on text and without any further multimedia or
third-part plugin.

4EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

Characterizing SPDY over High Latency Satellite Channels

Table 2. Basic Statistics of Websites used as benchmark (average values).

Site Reqs Page Size [Kb] N. Domains Data/Reqs [Kb] Reqs/Host [Kb] Data/Host [Kb]
Wikipedia 18.97 131.36 3.00 6.94 6.32 43.79

Reddit 51.44 757.48 14.72 14.73 3.49 51.45
Flickr 17.37 968.46 4.24 55.79 4.10 228.56

Slashdot 48.76 1590.38 10.84 32.60 4.50 146.73
BBC 85.00 1523.36 12.00 17.92 7.08 126.95

Microsoft 52.43 1356.64 9.56 25.90 5.48 141.89
Huffington Post 110.11 3367.68 32.89 30.58 3.35 102.40

4.1. Analysis of the Packet Size
As a first step, we want to quantify the improvement
of SPDY in terms of the usage of network resources.
Thus, Table 3 and Table 4 showcase the analysis of
the packet sizes for the two reference sites. In all the
trials, SPDY offers a reduced number of tiny PDUs,
if compared against the HTTP. This is one of the
benefits given by the compression of data via the gzip

algorithm. Coherently, the major gains are in the case
of Wikipedia, where the huge amount of text, as well as
a greater content/header ratio account for increased
performances of the gzip.

Therefore, SPDY optimises the PDU size, by com-
pressing HTTP header as well, with the acceptation
that small packets are less frequent than for the HTTP
case. Consequently, the traffic is less fragmented, also
reducing the performance degradation of the TCP when
transporting data over high delay × bandwidth chan-
nels. Such a behavior is even important in the case
of satellite, since fewer packets reflect into less time
spent in accessing the channel. In other words, high-
delay links, even if with ad-hoc MAC protocols, will
not experience loss of performances due to additional
rounds of contention.

4.2. Analysis of Throughput
Another important aspect to characterize the usage of
network resources of SPDY is given by the analysis of
throughput. Yet, such a behavior does not efficiently
capture how users perceive the “speed" at which a page
is delivered. Still, it gives an idea on how the different
protocols react against the high latency of satellite
channels.

Table 5 presents a vis-á-vis comparison of HTTP
and SPDY, when used to retrieve Wikipedia and
Huffington Post in the different scenarios. In all the
cases, both protocols experience higher throughputs
when retrieving the Huffington Post, which is more
content rich than Wikipedia. As a consequence, the
underlying TCP has a longer temporal horizon to
increase the transmission window and exploits the

available resources (in some works such a behavior is
also defined as the ability of the TCP in “filling the
bandwidth pipe"). For the case of HTTP, latencies are
partially compensated via its parallel connection flavor,
while for SPDY, its steady state flow results in slightly
reduced performances. However, as it will be explained
in Section 4.4, the reduced number of TCP connections
offers relevant gains in terms of loading times. When in
presence of errors and high latencies, SPDY performs
worse than HTTP mainly due to its more fragile nature
rooted within the exploitation of a single connection.
Such an aspect will be thoroughly evaluated in Section
4.5.

4.3. Page Loading Time
The Page Loading Time (PLT) is a widely used
performance index, since it enables to partially
understand how users perceive the performances of a
given protocol.

Figure 2 showcases the waterfall graph for the
Wikipedia site. The diagram has been produced by
processing the .har archives collected during our tests.
Specifically, it depicts precise timing statistics for each
in-line object composing the page. Accordingly, the PLT
is the time frame between the request of a page, and
when the very last object is received by the browser (i.e.,
the page is complete).

Thus, the PLT is only a rough indicator, since it
condenses a variety of temporal behaviors into a unique
indicator, and it could fail to precisely represent the
degree of the perceived Quality of Experience (QoE)
perceived. Therefore, to effectively characterize SPDY,
the PLT will be further detailed in Section 4.4, which
presents how objects are delivered.

Figure 3 compares the different values of PLTs (the
95th percentile of the repeated trials averaged over
the entire collection of considered sites) for both the
HTTP and SPDY case. Let us discuss the case without
losses. For the case of RTT=520 ms, SPDY grants
smaller average times compared to HTTP. But, when
the RTT=720 ms, such an enhancement vanishes, with
HTTP performing better. Despite this, in both cases,

5
EAI for Innovation

European Alliance
EAI Endorsed Transactions

on Mobile Communications and Applications
09 - 12 2014 | Volume 2| Issue 5| e3

L. Caviglione and A. Gotta

Table 3. Packet Size Analysis for Huffington Post – HTTP vs SPDY.
Different trials are referred to (RTT [ms], ploss [%]).

HTTP
Number of PDU (520, 0) (520, 1) (720, 0) (720, 1)

Total 2843.0 2864.8 2820.8 2896.2
< 80 bytes 1614.6 1605.6 1603.2 1629.2

80 - 1279 bytes 341.6 359.0 330.0 361.4
1280 - 1500 bytes 885.6 900.2 887.6 906.2

SPDY
Number of PDU (520, 0) (520, 1) (720, 0) (720, 1)

Total 1797.2 1848.5 1804.6 1894.4
< 80 bytes 605.4 722.0 634.0 738.6

80 - 1279 bytes 197.2 149.5 172.4 167.6
1280 - 1500 bytes 995.2 977.0 998.2 988.2

Table 4. Packet Size Analysis for Wikipedia – HTTP vs SPDY.
Different trials are referred to (RTT [ms], ploss [%]).

HTTP
Number of PDU (520, 0) (520, 1) (720, 0) (720, 1)

Total 282.0 289.0 287.8 299.0
< 80 bytes 170.0 175.4 176.8 182.2

80 - 1279 bytes 56.0 57.2 55.6 58.4
1280 - 1500 bytes 56.0 56.4 55.4 57.4

SPDY
Number of PDU (520, 0) (520, 1) (720, 0) (720, 1)

Total 175.0 179.4 177.4 181.8
< 80 bytes 77.6 80.8 78.6 83.6

80 - 1279 bytes 27.4 28.0 34.8 27.2
1280 - 1500 bytes 70.0 70.6 69. 8 71.0

Table 5. Throughput Analysis (in [kbit/s]) for Wikipedia and Huffington Post.
Different trials are referred to (RTT [ms], ploss [%]).

(520, 0) (520, 1) (720, 0) (720, 1)
Protocol HTTP SPDY HTTP SPDY HTTP SPDY HTTP SPDY

Wikipedia 149.40 135.40 89.40 123.80 117.00 111.80 97.00 89.40
Huffington Post 217.75 210.40 193.00 193.25 221.20 213.40 204.00 172.00

SPDY offers a better access to Web 2.0 contents , since
the maximum values of PLTs are always smaller, also
with a minimal range of variability.

For what concerns the case of ploss=1%, HTTP
always exhibits reduced average times, compared to
SPDY. To elaborate better on this point, when RTT=520
ms SPDY assures reduced variabilities, and smaller

maximum time. Instead, when RTT=720 ms, timing
ranges are similar. This behavior is due to the nature
of HTTP of opening multiple parallel connections,
thus enabling to better recover to burst of errors, as
also showcased in terms of throughput. To summarize,
besides from the viewpoint of PLT, SPDY is mainly
impaired by its single-flow nature.

6

EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

Characterizing SPDY over High Latency Satellite Channels

Figure 2. Waterfall diagram for the Wikipedia site.
(Color legend for times: green – connect, purple – wait, and gray – receive).

25# 27# 29# 31# 33# 35# 37# 39# 41#

HTTP#r-_520ms#loss_0%#

SPDY#r-_520ms#loss_0%#

HTTP#r-_720ms#loss_0%#

SPDY#r-_720ms#loss_0%#

PLT(s)

Va
ria

nt
$

AVG#

25# 30# 35# 40# 45# 50# 55# 60#

HTTP#r-_520ms#loss_1%#

SPDY#r-_520ms#loss_1%#

HTTP#r-_720ms#loss_1%#

SPDY#r-_720ms#loss_1%#

PLT(s)

Va
ria

nt
$

AVG#

Figure 3. Average, maximum and minimum PLT values for all the
sites used in the different trials. Values are in seconds.

Figure 4 offers a breakdown of performances in
terms of PLT with a per-site granularity, which have
been numbered according to the ranking of Table 1.
The trends show the area ranging from minimum PLT
values (when RTT=520 ms), and maximum one (when
RTT=720 ms), for both the values of ploss.

For the error free case, the relation “the more bytes to
transfer the more time to take" is not always true, e.g.,
for the Microsoft case (#6) the page design produces a
short PLT, despite of a significant page size. Besides,
in trials with losses, the errors lead to HOL blocking
phenomena at the transport layer. In details, SPDY has
a mixed behavior, since it outperforms HTTP on smaller
sites, but its performance decreases on bigger ones.

4.4. Object Loading Time
As said, the PLT could fail to capture in a compre-
hensive manner the perceived user experience, since it
does not give idea on how objects are received (hence,
rendered) by the browser. Therefore, we characterize

0#

10#

20#

30#

40#

50#

60#

1# 2# 3# 4# 5# 6# 7#

PL
T$
(s
)$

Site$#$

HTTP#ploss_0%#

SPDY#ploss_0%#

0#

10#

20#

30#

40#

50#

60#

70#

80#

1# 2# 3# 4# 5# 6# 7#

PL
T$
(s
)$

Site$#$

HTTP#ploss_1%#

SPDY#ploss_1%#

Figure 4. Per-site average PLT values. Sites have been
numbered according the rank of Table 1 (Wikipedia is 1, and
Huffington Post is 7).

the performance of HTTP and SPDY with a per-object
granularity, defining this metric Object Loading Time
(OLT). To this aim, we introduce three timing parame-
ters:

• connect: is the time required to establish a
new connection with the server, also considering
additional periods if the maximum number of

7EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

L. Caviglione and A. Gotta

concurrent connections has been reached (six for
the case of Google Chrome);

• wait: measures the timeframe between the deliv-
ery of the first HTTP request and the reception of
the related HTTP header;

• receive: quantifies the time for retrieving all the
objects composing the page.

As an example, Figure 2 can be also used to showcase
a detailed breakdown of such times: green is the connect,
purple is the wait, and gray is the receive.

Figure 5 compares HTTP and SPDY according to
such metrics. Especially, when using SPDY, its single-
stream architecture prevents additional connect times.
Due to the delay sensitive three-way handshake of the
TCP, SPDY dramatically reduces the time spent by
the browser waiting for establishing a new connection,
due to the re-use of the same TCP connection toward
the same domain. It must be noted that by using a
proxy (HTTP or SPDY) - a common practice for satellite
scenarios - all the possible domains of a web page are
masked by the proxy itself. The same applies for the
teardown phase, where delays require more time to
recover to rationing phenomena, i.e., the browser hits
the maximum of parallel connections and has to wait
the release of a socket.

As regards the receive time, it depends on how the
available bandwidth is used. While the high delay
heavily impacts over short-lived streams, the consistent
use of a “steady state" TCP connection makes SPDY
outperform again (i.e., via the settings features).

0,0# 0,5# 1,0# 1,5# 2,0# 2,5# 3,0#

HTTP#RTT=520#

SPDY#RTT=520#

HTTP#RTT=720#

SPDY#RTT=720#

Time$[s]$

Va
ria

nt
$

Connect#

Wait#

Receive#

Figure 5. Breakdown of the average OLT on the overall dataset.

Instead, the wait parameter appears to be very critical
for SPDY when used over satellite links. In fact, it
results from the need of multiplexing many traffic flows
into a single SPDY stream, as summarized in Figure
6. This introduces a bottleneck, mainly due to the

lack of a priority-based scheduling policy within the
implementation of the SPDY proxy.

36%$

25%$

39%$

HTTP$

Connect$ Wait$ Receive$

1%$

85%$

14%$

SPDY$

Connect$ Wait$ Receive$

Figure 6. Percentages of the OLTs computed over the entire
dataset.

Figure 6 deals with how OLTs are partitioned when
the ploss = 0%. In details, it clearly indicates that
when using HTTP the three parameters are almost
equally distributed, while for the case of SPDY, the only
further margin of improvement lays within reducing
waiting periods. Therefore, it is highly advised to
implement proper scheduling mechanisms as to avoid
queuing/blocking issues due to serialization. Such an
activity is part of our ongoing research. For the case of
connect, similar outcomes have been collected when the
ploss = 1%, while the wait and receive tend to increase
due to error.

4.5. Worst Case Scenario Test
As presented, the single connection architecture of
SPDY is its main source of fragility. Thus, we now
evaluate its robustness by considering a worst-case
scenario, i.e., a high Bit Error Rate (BER) deployment.
This enables to better conclude whether SPDY can be
used as a standalone workaround when acting without
middleboxes mitigating the effect of an error-prone
hop(s). For this round of tests, we the wireless accesses
with an average packet loss of 6.8%. All the other
parameters remain unchanged from the past round of
tests, excepts websites, as it will be discussed.

Table 6 shows the distributions of load page
failures for each protocol. For what concerns relative
percentages, we experienced that SPDY fails 22 times,
(12.5%), while the HTTP only fails once when retrieving
Flickr (0.57%), confirming that SPDY is weaker than
HTTP in error prone links. To better elaborate on
this point, we discovered that page failures mainly
happen when the browser cannot correctly receive the
index.html (in the sense of the main HTML body).
Therefore, a single connection failure (even in the set-
up phase) could block the page request transaction in
its entirety.

8EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

Characterizing SPDY over High Latency Satellite Channels

Table 6. Failures when retrieving a page with SPDY and a
packet loss = 5%.

Site name # of Failures %
Huffington Post 3 13.6

Digg 6 22.7
BBC 2 9.1

Flickr 5 22.7
Reddit 3 13.6

Wikipedia 3 13.6

Collected traffic traces reveal some duplicated SYN-

ACKs received by the client side, eventually causing
the conversation fail. In this perspective, Figure 7
reports a paradigmatic example. We point out that a
SYN packet is sent twice after the expiration of the
Retransmission Time Out (RTO) which is set to 1s. This
is an outcome of having the average RTT set to 720
ms, as not the unique delay imposed by the network.
In fact, it does not include timings due to internal data
processing/percolation for each element composing the
network, as well as TCP buffering traversal. Thus, the
overall delay could be greater than the RTO threshold.

Figure 7. Example of a failed TCP conversation.

5. Conclusions and Future Work
In this paper we investigated the use of SPDY to
enhance performances when retrieving Web contents
over an heterogeneous wireless scenario composed by
an IEEE 802.11 access and a satellite link, characterized
with different delays and BERs. We also showcased
the creation of an ad-hoc testbed, as well as a basic
understanding of the SPDY protocol compared to HTTP
when jointly used with a satellite link. Hence, we
investigated the effect of the packet loss on the overall

performance, especially in terms of page loading time,
and loading failures. As a result, SPDY is a promising
protocol, since it outperforms HTTP in our tests, while
reducing the complexity in terms of the number of
transport connections.

However, the results clearly indicate that two main
actions are needed to successfully exploit SPDY over
satellites: i) a proper scheduling discipline is needed to
reduce delays in the object delivery phase, and ii) some
countermeasures to errors are highly desirable to cope
with its more fragile nature.

Future work aims at enriching the experimental
results, also by testing SPDY with a more complete
variety of channel conditions. Besides, part of our
ongoing research deals with the creation of a more
precise emulated environment. In particular, to test
SPDY when the satellite links is implemented through
a DAMA systems as the one discussed in reference
[14]. Another relevant part of our ongoing research
is devoted to test SPDY over a real satellite Internet
Service Provider (ISP).

Acknowledgement. This work has been partially funded by
the European Space Agency (ESA) within the framework of
the Satellite Network of Experts (SatNex-III), CoO3, Task3,
ESA Contract no. 23089/10/NL/CLP.

References
[1] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, P. Hye-Young,

“Semantic-Based Mashup of Composite Applications",
IEEE Transactions on Services Computing, vol. 3, no. 1,
pp. 2 – 15, Jan.- March 2010.

[2] L. Caviglione, “Extending HTTP Models to Web
2.0 Applications: The Case of Social Networks",
in Proceedings of the Fourth IEEE International
Conference on Utility and Cloud Computing (UCC),
pp. 361 – 365, Melbourne, Australia, Dec. 2011.

[3] L. Caviglione, “Can Satellites Face Trends? The Case
of Web 2.0", International Workshop on Satellite and
Space Communications (IWSSC‘09), pp. 446 – 450,
Siena, Italy, Sept. 2009.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, T. Berners-Lee, “RFC
2616, Hypertext Transfer Protocol – HTTP/1.1",
Network Working Group, Jun 1999, [onlne]:
http://tools.ietf.org/search/rfc2616. Last
Accessed: Jan 2014.

[5] M. Belshe, R. Peon, “SPDY Protocol", draft-mbelshe-
httpbis-spdy-00, Network Working Group, Feb.
2012, [online]: http://tools.ietf.org/html/draft-
mbelshe-httpbis-spdy-00. Last Accessed: Jan 2014.

[6] J. Erman, V. Gopalakrishnan, R. Jana, K. Ramakrishnan,
“Towards a SPDY’ier Mobile Web", in Proceedings of
the ninth ACM conference on Emerging networking
experiments and technologies, ACM, pp. 303 – 314,
Dec. 2013.

[7] H. Kim, G. Yi, H. Lim, J. Lee, B. Bae, S. Lee,
“Performance Analysis of SPDY Protocol in Wired

9EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

L. Caviglione and A. Gotta

and Mobile Networks", In Ubiquitous Information
Technologies and Applications, pp. 199 – 206, Springer
Berlin Heidelberg, Jan. 2014.

[8] G. Mineki, S. Uemura, T, Hasegawa, “SPDY accelerator
for improving Web access speed", in Proceedings
of the 5th International Conference on Advanced
Communication Technology (ICACT), pp. 540 – 544,
Jan. 2013.

[9] L. Caviglione, A. Cardaci, A. Gotta, N. Tonellotto,
“Performance Evaluation of SPDY over High Latency
Satellite Channels", 5th International Conference on
Personal Satellite Services (PSATS), Toulouse, France,
June 2013.

[10] L. Caviglione, A. Cardaci, N. Celandroni, F. Davoli,
E. Ferro, A. Gotta, “SPDY – a new Paradigm in
Web Technologies: Performance Evaluation with a
Satellite Access Network", 19th Ka and Broadband
Communications, Navigation and Earth Observation
Conference, Florence, Italy, Oct. 2013.

[11] H. F. Nielsen, J. Gettys, A. Baird-Smith, E.
Prud’hommeaux, H. W. Lie, C. Lilley, “Network
performance effects of HTTP/1.1, CSS1, and PNG",

SIGCOMM Computer Communications Review, No.
27, pp. 155 – 156, 1997.

[12] M. Welsh, B. Greenstein, M. Piatek, “SPDY
performance on mobile networks", [online]:
https://developers.google.com/speed/

articles/spdy-for-mobile. Last Accessed: Jan 2014.
[13] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A.

Agarwal, A. Jain, N. Sutin, “An argument for increasing
TCP?s initial congestion window", ACM SIGCOMM
Computer Communications Review, Vol. 40, pp. 27 –
33, 2010.

[14] A. Gotta, F. Potorti, R. Secchi, “An analysis of tcp
startup over an experimental DVB-RCS platform", in
Proceedings of the 2006 International Workshop on
Satellite and Space Communications, pp. 176 – 180,
2006.

[15] P. Barsocchi, A. A. Bertossi, M. C. Pinotti, F.
Potorti, “Allocating data for broadcasting over wireless
channels subject to transmission errors", Wireless
Networks, No. 16, pp. 355 – 365, 2010.

10EAI for Innovation
European Alliance

EAI Endorsed Transactions
on Mobile Communications and Applications

09 - 12 2014 | Volume 2| Issue 5| e3

	Introduction
	From HTTP 1.1 to SPDY
	Description of the Testbed
	Preliminary Tests

	Characterization of SPDY
	Analysis of the Packet Size
	Analysis of Throughput
	Page Loading Time
	Object Loading Time
	Worst Case Scenario Test

	Conclusions and Future Work

