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Abstract

In this paper, we investigate the problem of designing a spectrum scanning strategy to detect an intelligent
Invader who wants to utilize spectrum undetected for his/her unapproved purposes. To deal with this
problem we model the situation as two games, between a Scanner and an Invader, and solve them sequentially.
The first game is formulated to design the optimal (in maxmin sense) scanning algorithm, while the second one
allows one to find the optimal values of the parameters for the algorithm depending on the parameters of the
network. These games provide solutions for two dilemmas that the rivals face. The Invader’s dilemma consists
of the following: the more bandwidth the Invader attempts to use leads to a larger payoff if he is not detected,
but at the same time also increases the probability of being detected and thus fined. Similarly, the Scanner faces
a dilemma: the wider the bandwidth scanned, the higher the probability of detecting the Invader, but at the
expense of increasing the cost of building the scanning system. The equilibrium strategies are found explicitly
and reveal interesting properties. In particular, we have found a discontinuous dependence of the equilibrium
strategies on the network parameters, fine and the type of the Invader’s award. This discontinuity of the fine
means that the network provider has to take into account a human/social factor since some threshold values of
fine could be very sensible for the Invader, while in other situations simply increasing the fine has a minimal
deterrence impact. Also we show how incomplete information about the Invader’s technical characteristics
and reward (e.g. motivated by using different type of application, say, video-streaming or downloading files)
can be incorporated into the scanning strategy to increase its efficiency.
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1. Introduction
Over the last few decades, the increasing demand for
wireless communications has motivated the exploration
for more efficient usage of spectral resources ([1,
2]). In particular, it has been noticed that there are
large portions of spectrum that are severely under-
utilized [3]. Recently, cognitive radio technologies (CR)
have been proposed as a means to intelligently use
such spectrum opportunities by sensing the radio
environment and exploiting available spectrum holes
for secondary usage [4]. In CR systems, secondary
users are allowed to “borrow (or lease)” the usage
of spectrum from primary users (licensed users), as
long as they do not hinder in the proper operation
of the primary users’ communications. Unfortunately,
as we move to make the CR technologies commercial,
which will allow secondary users to access spectrum
owned by primary users, we will face the inevitable risk
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that adversaries will be tempted to use CR technology
for illicit and selfish purposes [5]. If we imagine an
unauthorized user (Invader) attempting to sneak usage
of spectrum without obeying proper regulations or
leasing the usage of the spectrum, the result will be that
both legitimate secondary users and primary users will
face unexpected interference, resulting in significant
performance degradation across the system.

The challenge of enforcing the proper usage of
spectrum requires the notion of a “spectrum policing
agent”, whose primary job is to ensure the proper
usage of spectrum and identify anomalous activities
occurring within the spectrum[5]. As a starting point
to being able to police the usage of spectrum, we
must have the ability to scan spectrum and effectively
identify anomalous activities. Towards this objective,
there have been several research efforts in signal
processing techniques that can be applied to the
spectrum scanning problem. For example, in [6,
7], the authors presented methods for detecting a
desired signal contained within interference. Similarly,
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detection of unknown signals in noise without prior
knowledge of authorized users was studied in [8, 9]. As
another example, in [5], the authors proposed a method
to detect anomalous transmission by making use of
radio propagation characteristics. In [10], the authors
investigated what impact on spectrum scanning can
have information about the over-arching application
that a spectrum thief might try to run, while, in [11], a
stationary bandwidth scanning strategy in a discounted
repeated game was suggested.

However, these pieces of work tend to not examine
the important “interplay” between the two participants
inherent in the problem– the Invader, who is smart
and will attempt to use the spectrum in a manner
to minimize the chance of being detected and fined,
while also striving to maximize the benefit he/she
receives from illicit usage of this spectrum; and the
Scanner, who must be smart and employ a strategy
that strategically maximizes the chance of detecting
and fining the smart Invader, with minimal cost. This
challenge is made more difficult by the complexity
of the underlying scanning problem itself: there will
be large swaths of bandwidth to scan, and the
system costs (e.g., analog-to-digital conversion, and the
computation associated with running signal classifiers)
associated with scanning very wide bandwidth makes
it impossible to scan the full range of spectrum in
a single instance. Consequently, it is important to
understand the strategic dynamics that exist between
the Scanner and the Invader, while also taking into
account the underlying costs and benefits that exist for
each participant as well as information or its lack on the
technical characteristics of the Invader and his object
to intrude into the bandwidth. This paper1 focuses
on finding the optimal scanning strategy by selecting
the scanned (and, similarly, the invaded) bandwidth
that should be employed in spectrum scanning and
examining how incorporating information or the lack
of information about the technical characteristics of
the Invader and his object can improve the scanning
strategy. In order to solve this problem we will apply
a Bayesian approach. Note that Bayesian approaches
have been widely employed in dealing with different
problems in networks, for example, intrusion detection
[13–15], scanning bandwidth [10] and transmission
under incomplete information [16–21]. Finally note
that the optimal scanning problem also relates the
problem of designing security systems. Note that an
extensive literature exists on the construction and
modeling of different aspects of such security systems
for communication and network security [13, 22–29],

1The authors note that a shortened version of this research was
presented at Crowncom 2013 [12], and this paper extends the idea
presented at Crowncom.

security in wireless networks [30, 31] and cyber-security
[14, 16, 32]. In [33], the readers can find a structured
and comprehensive survey of the research contributions
that analyze and solve security and privacy problems in
computer networks via game-theoretic approaches.

The organization of this paper is as follows: in
Section 2, we first define the problem by formulating
two games, which will be solved sequentially in terms
of payoff and cost functions. In the first game, the
Scanner looks for the maxmin scanning algorithm, if
parameters (widths of used bandwidths) of scanning
and intrusion are fixed and known. In the second game
each player, using the first game’s result, which supplies
detection probability, looks for the optimal values of
these parameters. To gain insight into the problem,
in Section 4.1, we outline a linearized model for
detection probability and arrive at the corresponding
best response strategies for each player in Section 4.2.
We then explicitly obtain the equilibrium strategies,
in Section 4.3 and Section 4.4, for cases involving
complete and incomplete knowledge of the Invader’s
technical characteristics (radio’s capabilities). In Section
5, numerical illustrations are supplied. Finally, in
Section 6, discussions and conclusions are supplied,
and, in Appendix, the proofs of the announced results
are offered to close the paper.

2. Formulation of the scanning problem
In this section, we set up our problem formulation. Our
formulation of the spectrum scanning problem involves
two players: the Scanner and the Invader. The Scanner,
who is always present in the system, scans a part of the
band of frequencies that are to be monitored, in order
to prevent illegal usage by a potential Invader of the
primary (Scanner) network’s ownership of this band.
We assume that the amount of bandwidth that needs
to be scanned is much larger than is possible using a
single scan by the Scanner, and hence the Scanner faces
a dilemma: the more bandwidth that is scanned, the
higher the probability of detecting the Invader, but at
the expense of increasing the cost of the RF scanning
system.

We assume that if the Scanner scans a particular
frequency band IS and the Invader uses the band II then
the invasion will be detected with certainty if IS ∩ II ,
∅, and it will not be detected otherwise. Without loss of
generality, we can assume that the size of the protected
frequency band is normalized to 1. The Invader wants
to use spectrum undetected for some illicit purpose. We
consider two scenarios: (a) The reward for the Invader is
related to the width of the frequency band he uses if he
is undetected. If he is detected he will be fined. Thus,
the Invader faces a dilemma: the more bandwidth he
tries to use yields a larger payoff if he is not detected
but also it increases the probability of being detected
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and thus to be fined, (b) The reward for the Invader is
unknown to the Scanner: he only knows whether it is
related to the width of the frequency band the Invader
uses, or not. We formulate this problem as two games,
which will be solved separately in the following two
subsections.

2.1. Formulation of the first game - the scanning
algorithm
In the first game, where we look for a maxmin scanning
algorithm, the Scanner selects the band BS = [tS , tS +
x] ⊆ [0, 1] with a fixed upper bound of frequency
width x to scan i.e. tS ≤ 1 − x. The Invader selects the
band BI = [tI , tI + y] ⊆ [0, 1] with a fixed upper bound
frequency width y to intrude, i.e., tI ≤ 1 − y. Thus,
BS and BI are pure strategies for the Scanner and
the Invader. The Scanner’s payoff v(BS , BI ) is 1 if the
Invader is detected (i.e. [tS , tS + x] ∩ [tI , tI + y] , ∅) and
his payoff is zero otherwise. The goal of the Scanner
is to maximize his payoff, while the Invader wants
to minimize it. Thus, the Scanner and the Invader
play a zero-sum game. The saddle point (equilibrium)
of the game is a couple of strategies (BS∗, BI∗) such
that for each couple of strategies (BS , BI ) the following
inequalities hold [34]:

v(BS , BI∗) ≤ v := v(BS∗, BI∗) ≤ v(BS∗, BI ),

where v is the value of the game. It is clear that the
game does not have a saddle point in the pure strategy if
x + y < 1. To find the saddle point we have to extend the
game by mixed strategies, where we assign a probability
distribution over pure strategies. Then instead of the
payoff v we have its expected value. The game has a
saddle point in mixed strategies, and let P (x, y) be the
value of the game. Then P (x, y) is the maximal detection
probability of the Invader under worst conditions.

2.2. Formulation of the second game - the optimal
parameters of the scanning algorithm
In the second game the rivals knowing their equilib-
rium strategies from the first game as well as detec-
tion probability P (x, y), want to find the equilibrium
frequency widths x and y. We here consider three sub-
scenarios: (a) the Invader’s type is known: namely, it
is known how the reward for the Invader is related to
the width of the frequency band he uses if he is unde-
tected, (b) the technical characteristics of the Invader
are known: namely, it is known which frequency band
is available for him to use, (c) the Invader’s type is
unknown: instead, there is only a chance that the
Invader reward is related to the width in use. Other-
wise, it is not related. Different types of rewards can be
motivated by using different types of applications (say,
file-download or streaming video).

Invader reward is related to the bandwidth used. A strategy
for the Scanner is to scan a width of frequency of
size x ∈ [a, b], and a strategy for the Invader is to
employ a width of frequency of size y ∈ [a, c], where c ≤
b < 1/2. Thus, we assume that the Invader’s technical
characteristics (e.g., radio’s capabilities) are not better
than the Scanner’s ones.

If the Scanner and the Invader use the strategies x and
y, then the payoff to the Invader is the expected reward
(which is a function U (y) of bandwidth y illegally used
by the Invader) minus intrusion expenses (which is a
function CI (y) of bandwidth y) and expected fine F to
pay, i.e.,

vI (x, y) = (1 − P (x, y))U (y) − FP (x, y) − CI (y). (1)

The Scanner wants to detect intrusion taking into
account scanning the expenses and damage caused by
the illegal use of the bandwidth by the Invader. For
detection, he is rewarded by a fine F imposed on
the Invader. Thus, the payoff to the Scanner is the
difference between the expected reward for detection,
and the damage from intrusion into the bandwidth
(which is a function V (y) of bandwidth y illegally used
by the Invader) with the scanning expenses (which is a
function CS (x) of scanned bandwidth x),

vS (x, y) = FP (x, y) − V (y)(1 − P (x, y)) − CS (x). (2)

Note that introducing transmission costs in such a
formulation is common for CDMA [31, 35] and ALOHA
networks ([36, 37]).

Incomplete information of the Invader’s reward and technical
characteristics. In this section we assume that the
Invader’s reward is defined by the reason he intruded
into the bandwidth illegally for, and we consider two
such reasons:

(a) With probability 1 − q0 for the Invader it is just
important to work in the network without being
detected. Thus, if he is not detected his reward
is U which does not depend on the width of
bandwidth employed for the intrusion. Then, of
course, to minimize the probability of detection
he will employ the minimal bandwidth allowed,
thus, his strategy is y = a.

(b) With probability q0 for the Invader the bandwidth
he uses is important. Thus, his reward is the same
as in Section 2.2. We assume that his technical
characteristics can be different, the Invader knows
his characteristics, but the Scanner does not know
them. Under Invader’s technical characteristics
we assume an upper bound on the spectrum
width he can employ. The Scanner knows only this
upper bound on bandwidth as cwith a conditional

probability q(c) ≥ 0 for c ∈ [a, b], i.e.,
∫ b
a
q(c) dc =

1.
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To deal with this situation we are going to apply
a Bayesian approach, namely, we introduce type c ∈
[a, b] for the Invader related to the corresponding
upper bounds (thus, we here deal with a continuum of
Invader’s types). The Invader knows his type, while the
Scanner knows only its distribution. Denote by y(c) ∈
[a, c] the strategy of the Invader of type c. Then his
payoff is given as follows:

vcI (x, y(c)) = (1 − P (x, y(c)))U (y(c))

− FP (x, y(c)) − CI (y(c)).
(3)

The payoff to the Scanner is the expected payoff taking
into account the type of Invader:

vES (x, y) = (1 − q0)vS (x, a) + q0

∫ b

a
q(c)vS (x, y(c)) dc (4)

with vS (x, y(c)) given by Eq. (2).
Here we look for Bayesian equilibrium [34], i.e., for

such couple of strategies (x∗, y∗) that for any (x, y) the
following inequalities hold:

vES (x, y∗) ≤ vES (x∗, y∗),

vcI (x∗, y(c)) ≤ vcI (x∗, y∗(c)), c ∈ supp(q),
(5)

with supp(q) = {c ∈ [a, b] : q(c) > 0}.
We assume that the Scanner and the Invader know (as

in the case with complete information) the parameters
F, CI , CS , V , U , a, b as well as the probabilities q(c)
(c ∈ [a, b]) and q0.

3. Equilibrium strategies for the first game
In the following theorem we give the equilibrium
strategies for the first game (thus, maxmin scanning
algorithm) for fixed bound width of the rivals.

Theorem 1. In the first game with fixed width to scan
x and to invade y, the rivals employ a uniform tiling
behavior. Namely,

(a) Let 1 − (x + y)M ≤ y with

M =
⌊
1/(x + y)

⌋
, (6)

where bξc is the greatest integer less or equal to ξ.
Then the Scanner and the Invader will, with equal
probability 1/M, employ a band of the set A−S and A−I
correspondingly.

(b) Let 1 − (x + y)M > y. Then the Scanner and the
Invader will, with equal probability 1/(M + 1), employ
a band of the set A+S and A+I correspondingly, where

A−S = {[k(x + y) − x, k(x + y)], k = 1, ...,M},
A−I = {[k(x + y) − y − ε(M + 1 − k), k(x + y) − ε(M − k)],

k = 1, ...,M}, 0 < ε < x/M,

A+S = A−S ∪ [1 − x, 1],

A+I = {[(k − 1)(x + y + ε), (k − 1)(x + y + ε) + y],

k = 1, ...,M} ∪ [1 − y, 1], 0 < ε <
1 − y −M(x + y)

M − 1
.

The value of the game (detection probability) P (x, y) is
given as follows:

P (x, y) =

1/M, 1 − (x + y)M ≤ y,
1/(M + 1), 1 − (x + y)M > y.

(7)

4. Equilibrium strategy for the second game
In this section, which is split into five subsections, we
find the equilibrium strategies for the second game
explicitly. First, in Subsection 4.1 we linearize our
model to get an explicit solution, then in Subsection 4.2
the best response strategies are given, and they are
employed in Subsections 4.3 and 4.4 to construct equi-
librium strategies for known and unknown Invader’s
technical characteristics correspondingly.

4.1. Linearized model
In order to get an insight into the problem, we consider
a situation where the detection’s probability P (x, y) for
x, y ∈ [a, b] is approximated by a linear function as
follows:

P (x, y) = x + y. (8)

Thus, Eq. (7) and Eq. (8) coincide for x + y = 1/n, n =
2, 3, ... We assume that the scanning and intrusion cost
as well as the Invader’s and Scanner’s utilities are linear
in the bandwidth involved, i.e., CS (x) = CSx, CI (y) =
CIy, U (y) = Uy, V (y) = V y where CS , CI , U, V > 0.
Then the payoffs to the Invader and the Scanner, if
they use strategies x ∈ [a, b] and y ∈ [a, c] (y(c) ∈ [a, c])
respectively, become:

(i) For the known Invader’s reward:

vI (x, y) = U (1 − x − y)y − F(x + y) − CIy,
vS (x, y) = F(x + y) − V y(1 − x − y) − CSx,

(ii) For the unknown Invader’s reward and technical
characteristics:

vcI (x, y(c)) = U (1 − x − y(c))y(c)

− F(x + y(c)) − CIy(c), for c ∈ supp(q),

vES (x, y) = q0

∫ b

a

[
F(x + y(ξ))

− V y(ξ)(1 − x − y(ξ))
]
q(ξ) dξ

+ (1 − q0)
(
F(x + a) − V a(1 − x − a)

)
− CSx.

Note that linearized payoffs have found extensive
usage for a wide array of problems in wireless networks
[36, 38–41]. Of course, such an approach simplifies
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the original problem and only gives an approximated
solution. Meanwhile, it can also be very useful:
sometimes it allows one to obtain a solution explicitly,
and allows one to look inside of the structure of the
solution as well as the correlation between parameters
of the system.

4.2. The best response strategies
In this section, we give the best response strategies for
the Scanner and the Invader when the Invader’s reward
and technical characteristics are unknown, i.e., such
strategies that BRES (y) = arg maxx v

E
S (x, y) and BRcI (x) =

arg maxy(c) v
c
I (x, y(c)).

Theorem 2. In the second step of the considered
game with unknown Invader’s reward and technical
characteristics the Scanner and the Invader have the
best response strategies BRES (y) and BRcI (x) given as
follows:

BRES (y) =


a, ȳ < Rq0

,

any from [a, b], ȳ = Rq0
,

b, ȳ > Rq0
,

(9)

BRcI (x) =


c, c ≤ L(x),
L(x), a < L(x) < c,
a, L(x) ≤ a

(10)

with

L(x) =
T − x

2
,

T =
U − F − CI

U
,

R =
CS − F
V

,

Rq0
=
CS − F − (1 − q0)V a

q0V
=
R − a(1 − q0)

q0

(11)

and

ȳ =
∫ b

a
q(ξ)y(ξ) dξ.

4.3. Equilibrium strategies: the unknown Invader’s
reward and technical characteristics
The equilibrium for the game exists since the payoff to
the Scanner is linear in x and the payoff to the Invader
of type c is concave in y(c). The equilibrium can be
found by Eq. (5) as a couple of strategies (x, y) which
are the best response to each other, i.e., x = BRES (y) and
y(c) = BRcI (x), c ∈ [a, b] and such a solution always exists
and is unique as shown in the following theorem.

Theorem 3. The considered second game with unknown
Invader’s reward and technical characteristics has
unique Bayesian equilibrium (x, y), and it is given as
follows:

x =


b, Rq0 ≤ BRI (b),

BR−1
I

(
Rq0

)
, BRI (b) < Rq0 < BRI (a),

a, BRI (a) ≤ Rq0 ,

y(c) =


BRcI (b), Rq0 ≤ BRI (b),
BRcI

(
BR−1

I (Rq0 )
)
, BRI (b) < Rq0 < BRI (a),

BRcI (a), BRI (a) ≤ Rq0 ,

(12)

where c ∈ supp(q) with

BRI (x) =
∫ b

a
q(ξ)BRξI (x) dξ (13)

and BR
−1
I (x) is inverse function to BRI (x), i.e.,

BR
−1
I

(
BRI (x)

)
= x.

4.4. Equilibrium strategies: the known Invader’s
technical characteristics and unknown reward
The equilibrium for the second game with complete
information about the technical characteristics of
the Invader and unknown reward can be presented
explicitly as follows:

Theorem 4. Let the Invader’s technical characteristics be
known but his reward can be unknown. This second
game has unique Nash equilibrium, and it is given by
Table 1.

Note that the Scanner’s and Invader’s equilibrium
strategies can have sudden jumps (discontinuities) as
one continuously varies the fine F and probability
q0 that the Invader’s reward related bandwidth used.
It is caused by the fact that Rq0

depends on these
parameters, while L depends only on F. For example,
(i1)-(i6) implies that the Invader’s equilibrium strategy
can jump while probability q0 varies, and (i2) and (i6)
yield about the possibility of such a jump by fine F.
The possibility of jumps for the Scanner’s equilibrium
strategy follows from (i2) and (i5).

5. Numerical illustrations
As a numerical illustration of the scenario with
complete information on the Invader’s technical
characteristics, we consider U = V = 1, a = 0.01, b =
0.3, CS = 0.4, CI = 0.1 and q is the uniform distribution
in [a0, b0] = [a + (b − a)/10, b] = [0.039, 0.3]. Figure 1
demonstrates the Scanner’s equilibrium strategy and
payoff as functions of the fine F ∈ [0.1, 0.4] and the
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Case Condition Condition x y PR PU
i1 Rq0 < a L(b) < a b a a + b 2a
i2 Rq0 < a a ≤ L(b) ≤ c b L(b) b + L(b) b + a
i3 Rq0 < a c < L(b) b c b + c b + a
i4 c < Rq0 L(a) < a a a 2a 2a
i5 c < Rq0 a ≤ L(a) ≤ c a L(a) a + L(a) 2a
i6 c < Rq0 c < L(a) a c a + c 2a

i7 a ≤ Rq0 ≤ c L(b) ≤ Rq0 ≤ L(a) L−1
(
Rq0

)
Rq0 L−1

(
Rq0

)
+ Rq0 L−1

(
Rq0

)
+ a

i8 a ≤ Rq0 ≤ c L(a) ≤ a a a 2a 2a
i9 a ≤ Rq0 ≤ c a < L(a) < Rq0 a L(a) a + L(a) 2a
i10 a ≤ Rq0 ≤ c c < L(b) b c b + c b + a
i11 a ≤ Rq0 ≤ c Rq0 < L(b) < c b L(b) b + L(b) b + a

Table 1. The equilibrium strategies (x, y) with L−1(Rq0
) = T − 2(CS − F − (1 − q0)V )/(q0V ) and PR and PU are detection

probabilities of the Invader with reward related and un-related to the bandwidth used.

probability q0 ∈ [0.01, 0.99] that the Invader’s reward
related to bandwidth used. Increasing fine F and
probability q0 makes the Scanner employ a larger band
and impacts the Scanner’s payoff in a multi-directional
way, namely, it increases F and decreases q0. This is
caused by the fact that the Invader, who wants to
minimize his detection probability, causes less damage
to the network than the one who benefits from using a
larger bandwidth.

Figures 2 and 3 illustrate the Invader’s equilibrium
strategy and payoff if his reward is related to the
bandwidth used for c = a0 and c = b0 respectively. Fig-
ure 4 demonstrates corresponding detection probabili-
ties. The Invader of type c = a0 employs a constant strat-
egy y(c) = a0 independent of the fine F and probability
q0. The Invader’s payoff and detection probability vary
in opposite directions while fine F and probability q0
are increasing, namely, the Invader’s payoff is decreas-
ing, while the detection probability is increasing, since
it also makes the Scanner to employ a larger bandwidth.
What is interesting is that the Invader’s payoff experi-
ences a sudden drop and the detection probability expe-
riences a sudden jump due to the Scanner’s behaviour,
who alters his strategy by a sudden jump at threshold
values. For the Invader with a reward un-related to
the bandwidth used, the payoff and detection behave
similarly but with some shift since such an Invader
also employs a constant strategy y = a (Figure 5). The
Invader of type c = b0 uses a strategy depending on fine
F and probability q0. Increasing fine F and probability
q0 makes the Invader employ a smaller bandwidth and
reduces his payoff. What is interesting that his detection
probability is not monotonous by fine F and probability
q0 and increasing fine F and probability q0 could even
reduce the detection probability. It can be explained
that at the threshold values of fine F and probability
q0 the Scanner already gets the upper band, while
the Invader still does not get to the lower band, and

Figure 1. Equilibrium strategy x (upper) and payoff (bottom) to
the Scanner.

further increasing of the fine and probability leads to
continuous decreasing of the detection probability due
to the smaller bandwidth employed by the Invader.
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Figure 2. Equilibrium strategy y (upper) and payoff (bottom) to
the Invader for c = a0.

6. Discussion

In this paper, we suggest a simple model for designing a
maxmin scanning algorithm for detection of an Invader
with incomplete information about the Invader’s
reward and technical characteristics and we find the
optimal parameters (width of bandwidth to scan)
for this algorithm. We have shown that this optimal
width essentially depends on the network’s and agent’s
characteristics and under some conditions a small
variation of network parameters and fine could lead to
jump changes in the optimal strategies, as well as in the
payoffs of the rivals. This mixture between continuous
and discontinuous behavior of the Invader under the
influence of fine implies that the network provider has
to carefully make a value judgement: some threshold
values of fine could have a huge impact on the Invader,
while in the other situations a small increase will have
a minimal impact on the strategies used. A goal for our

Figure 3. Equilibrium strategy y (upper) and payoff (bottom) to
the Invader for c = b0.

future investigation is to investigate the non-linearized
detection probability. Also, we intend to extend our
model to the case of multi-step scanning algorithms
with learning.
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Appendix A. Proof of Theorem 1

Suppose that the Invader uses a band BI with width
y and the Scanner with equal probability employ a
band from the set A−S (A+S ) for 1 − (x + y)M ≤ y (for
1 − (x + y)M > y). The intervals composing A−S and A+S
are separated from each other by at most y. Thus,
at least one band from A−S for 1 − (x + y)M ≤ y and
from A+S for 1 − (x + y)M > y intersects with BI . Thus,
detection probability is greater or equal to 1/M for
1 − (x + y)M ≤ y and it is is greater or equal to 1/(M + 1)
for 1 − (x + y)M > y.

Suppose that the Scanner uses a band BS with width
x and the Invader with equal probability employ a
band from the set A−I (A+I ) for 1 − (x + y)M ≤ y (for 1 −
(x + y)M > y). The intervals composing A−I and A+I are
separated from each other by more that x. Thus, at most
one band from A−I for 1 − (x + y)M ≤ y and from A+I
for 1 − (x + y)M > y intersects with BS . Thus, detection
probability is less or equal to 1/M for 1 − (x + y)M ≤ y
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and it is is less or equal to 1/(M + 1) for 1 − (x + y)M > y
and the result follows.

Appendix B. Proof of Theorem 2
Note that

vES (x, y) =
(
F − CS + q0V ȳ + (1 − q0)V a

)
x

+ q0

[
(F − V )ȳ + V

∫ b

a
y2(ξ)q(ξ) dξ

]
+ (1 − q0)(F − V + V a)a.

Thus, for a fixed y the payoff vES (x, y) is linear on x.
Thus, BRES (y) = arg maxx v

E
S (x, y) is defined by sign of

F − CS + q0V ȳ + (1 − q0)V a as it is given by Eq. (9).
Note that, the Invader’s payoff has the following form:

vcI (x, y(c)) = (U (1 − x) − F − CI )y(c) −Uy2(c) − xF.

Thus, for a fixed x the payoff vcI (x, y(c)) is a concave
quadratic polynomial on y(c) getting its absolute
maximum at y(c) = (U (1 − x) − F − CI )/(2U ). Thus, the
maximum of vcI (x, y(c)) by y(c) within [a, c] is reached
either on its bounds y(c) = a and y(c) = c or at y(c) =
(U (1 − x) − F − CI )/(2U ) if it belongs to [a, c] as it is
given by Eq. (10).

Appendix C. Proof of Theorem 3
First note that (x, y) is a Nash equilibrium if and
only if it is a solution of equations x = BRES (y) and
y(c) = BRcI (x), c ∈ [a, b] with BRES (y) and BRcI (x) given by
Theorem 2.

By Eq. (11) we have that Eq. (9) in equilibrium point
is equivalent to

x =


a, BRI (x) < Rq0

,

any from [a, b], BRI (x) = Rq0
,

b, BRI (x) > Rq0

(C.1)

with BRI (x) given by Eq. (13).
Note that BRI (x) is non-increasing on x. Thus, if

BRI (a) < Rq0
, then BRI (x) < Rq0

for any x and Eq. (C.1)
yields that x has to be equal to a. If BRI (b) > Rq0

,
then BRI (x) > Rq0

for any x and Eq. (C.1) yields that
x has to be equal to b. If BRI (b) ≤ Rq0

≤ BRI (a) then

x = BR
−1
I

(
Rq0

)
and the result follows.

Appendix D. Proof of Theorem 4
For the situation with complete information of the
Invader’s technical characteristics the best response
strategies turn into

Figure D.1. The Nash equilibrium as an intersection of the best
response curves

BRS (y) =


a, y < Rq0

,

any from [a, b], y = Rq0
,

b, y > Rq0
,

(D.1)

BRI (x) =


a, L(x) ≤ a,
L(x), a < L(x) < c,
c, c ≤ L(x)

=


a, x ≤ T − 2c,
L(x), T − 2c < x < T − 2a,
c, T − 2a ≤ x.

(D.2)

Thus, the equilibrium can be described as an
intersection of the best response curves (Figure D.1).
Such intersection always exists.

Let a > Rq0
. By Eq. (D.1), BRS (y) ≡ b. This, jointly

with Eq. (D.2), implies (i1)-(i3).
Let Rq0

> c. By Eq. (D.1), BRS (y) ≡ a. Then, Eq. (D.2)
implies (i4)-(i6).

Let a ≤ Rq0
≤ c. First note L(x) is linear decreasing

function from L(a) for x = a to L(b) for x = b.

(a) Let L(b) ≤ Rq0
≤ L(a). Then the equation L(x) = Rq0

has the unique root within [a, b]. Thus, Eq. (D.1)
and Eq. (D.2) yield (i7).

(b) Let L(a) ≤ Rq0
. Then, L(x) < Rq0

for x ∈ (a, b]. Thus,
by Eq. (D.2), BRI (x) < c for x ∈ [a, b]. Besides, by
the assumption, the equation L(x) = Rq0

does not
has root in [a, b]. Thus, by Eq. (D.1), BRS (y) ≡ a.
Thus, Eq. (D.2) implies (i8) and (i9).

(c) Let Rq0
< L(b). Then L(x) > Rq0

for x ∈ [a, b). Thus,
by Eq. (D.2), BRI (x) > a for x ∈ [a, b]. Besides, by
the assumption, the equation L(x) = Rq0

does not
has root in [a, b]. Thus, by Eq. (D.1), BRS (y) = b,
and, Eq. (D.2) implies (i10) and (i11).
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