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Abstract 

INTRODUCTION: In everyday households, fruits are often stored for too long, forgotten, or discarded early due to 
uncertainty about their freshness, leading to avoidable waste, unnecessary cost, and suboptimal dietary habits. A reliable and 
user-centered fresh produce assessment tool can help people establish a healthier and more sustainable lifestyle. The existing 
freshness assessment systems are mainly designed for industrial or laboratory environments and rarely meet the privacy, 
stability and cost requirements of family digital health products. 
OBJECTIVES: This study aims to design and evaluate an edge-AI system that jointly recognizes fruit category and ordinal 
freshness stage in real kitchens, providing a reproducible benchmark for household-oriented freshness sensing rather than a 
one-off engineering prototype. 
METHODS: We develop the Fruit Freshness Identification System (FFIS), a lightweight multi-task detector built on 
YOLO11n with a BiFPN neck, ACmix hybrid attention, and an IoU-based localization loss reweighted for partial occlusion. 
A kitchen-scene dataset is collected and stratified by household, countertop material, lighting, and clutter. The system is 
trained with an ordinal regression head for freshness staging and evaluated on COCO-style detection metrics, stage-wise 
classification metrics, and edge-device throughput and energy consumption. 
RESULTS: On the FFIS-Fruit test split, FFIS achieves an mAP@0.5:0.95 of 62.4 ± 0.4, mAP@0.5 of 94.1 ± 0.3, and recall 
of 90.8 ± 0.3, outperforming lightweight YOLO baselines as well as a two-stage detector-plus-classifier pipeline. Warm-
LED and glossy-countertop subsets show consistent gains in high-reflection scenarios. On-device experiments reach ~55 
FPS (INT8) on Jetson Orin Nano and ~10 FPS on Raspberry Pi 5 under a unified evaluation protocol. 
CONCLUSION: FFIS provides a household-oriented, privacy-preserving reference implementation for kitchen fruit 
monitoring, demonstrating that single-pass multi-task detection can meet domestic deployment constraints on low-cost 
hardware. Rather than directly claiming reductions in household food waste, the findings establish a technical foundation 
for integrating freshness signals into downstream digital-health workflows such as waste-aware reminders and dietary 
planning. 
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1. Introduction Food waste is a growing global concern, and household 
disposal accounts for a substantial share of overall losses [1]. 
Fruits are often discarded prematurely because of improper 
storage or misjudged freshness, which not only creates 
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environmental and economic waste but also disrupts meal 
planning and dietary habits [2]. Such avoidable disposal is 
closely related to household diet models, and can be mitigated 
by healthy-diet-oriented green design approaches that 
explicitly account for environmental impact and sustainable 
development [3]. Household kitchens—where most food 
handling occurs—pose unique challenges for fresh-food 
management: subtle visual cues (e.g., color and texture) are 
hard to interpret under varying lighting, countertop 
reflections, clutter, and partial occlusions. These factors make 
it difficult for consumers to decide whether fruits are still 
suitable for consumption, leading to unnecessary waste. From 
a digital-health perspective, preventing premature disposal 
supports proactive, user-centered dietary management in 
everyday homes. 

Existing freshness-assessment approaches are largely 
industrial or laboratory-oriented and require controlled 
conditions that are impractical for everyday households. 
Consumer applications typically offer coarse labels (e.g., 
“ripe”/“unripe”) and lack reliable, fine-grained cues that are 
robust to real-kitchen environments, leaving users uncertain 
and encouraging premature disposal. 

1.1 Motivation and positioning within digital 
health 

Global health services are shifting from treatment to 
prevention and from hospital-centric to user-centered 
models[4]. Within this agenda, dietary behaviors and 
domestic food handling are modifiable factors with outsized 
impact but remain poorly instrumented in everyday homes. 
We therefore frame kitchen fruit monitoring as a digital-
health product component: an edge-AI capability that 
passively senses fruit status and provides timely signals for 
downstream workflows—e.g., waste-aware reminders, 
nutrition dashboards, or IoT prompts in smart kitchens. To 
make these downstream dashboards and reminders usable 
across different household groups, inclusive design principles 
should be adopted to address diverse user needs and equity, 
which can further improve user satisfaction through 
interdisciplinary collaboration [5].Unlike lab-centric vision 
models, our focus is on product constraints crucial to digital 
health: privacy-preserving on-device inference, data 
minimization, robustness to kitchen-specific artefacts 
(glare/occlusion), and a reproducible evaluation protocol that 
supports real-world deployment. 

This paper presents the Fruit Freshness Identification 
System (FFIS), a vision-based, edge-first system that detects 
both fruit class and ordinal freshness stage in typical kitchen 
settings. FFIS is privacy-preserving and runs in real time on 
inexpensive on-device hardware, addressing the practical 
challenges of variable illumination, specular reflections, 
clutter, and occlusions. 

Our work focuses on a single-pass multi-task detector 
(YOLO11n + BiFPN + ACmix with an improved IoU-based 
localization loss), a kitchen-specific dataset with a unified 
evaluation protocol, and on-device deployment evidence 
demonstrating real-time or near-real-time performance. 

This work is positioned as a digital-health–oriented, 
household reference implementation for domestic fruit 
monitoring, rather than a radically new detection paradigm. 
In home digital health ecosystems, everyday dietary choices 
and food-handling behaviors are key modifiable factors; 
however, they are often limited by incomplete, moment-to-
moment awareness of food status. By estimating fruit 
category and ordinal freshness stage from real kitchen scenes, 
our system provides a practical decision-support signal for 
consumer-facing applications (e.g., consumption 
prioritization, storage guidance, and waste-aware meal 
planning), while preserving privacy through on-device 
inference. We emphasize that visual freshness stages are a 
proxy influenced by storage conditions 
(temperature/humidity) and individual variability; therefore, 
we frame the contribution as an enabling sensing module for 
digital-health products rather than a direct predictor of time-
to-spoilage or clinical outcomes. 

Our main contributions are four-fold: 

• Household-specific formulation and dataset. We
formulate kitchen fruit monitoring as a single-pass
multi-task problem, jointly predicting fruit category and
ordinal freshness stage under domestic artefacts such as
mixed illumination, glossy countertops, and clutter. We
release a kitchen-scene dataset with household- and
countertop-stratified splits to support reproducible
evaluation in realistic consumer settings.

• Lightweight multi-task detector for edge devices.
Building on YOLO11n, we adopt a BiFPN neck and two
decoupled heads (category and freshness stage) with a
shared box regression branch. The design targets product 
constraints—latency, memory footprint, and power—
required by always-on home devices, rather than
maximizing accuracy at any cost.

• Kitchen-aware robustness and loss design. We integrate
ACmix hybrid attention and an IoU-based localization
loss reweighted for partially occluded fruits, and we
analyze their impact through ablations and stratified
robustness experiments on high-reflection and cluttered
subsets.

• Reproducible edge-deployment evidence. We provide a
unified export and evaluation pipeline for Jetson Orin
Nano and Raspberry Pi 5, reporting throughput, module
power, and energy-per-frame, together with scripts and
split indices to facilitate independent reproduction and
downstream product transfer.

The rest of the paper is organized as follows. Section 2 
reviews related work on fruit recognition and freshness-stage 
estimation; Section 3 presents the methodology and system 
design of FFIS; Section 4 describes the experimental setup 
and results; and Section 5 discusses findings, limitations, and 
future directions. 

2. Related Work

2.1 Fruit Category Recognition
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Fruit category recognition aims to assign an identity (e.g., 
banana, persimmon) to each fruit instance. Early approaches 
based on hand-crafted color/shape/texture descriptors were 
sensitive to background clutter and illumination changes, 
which limits their applicability in household kitchens. With 
deep learning, convolutional neural networks and YOLO-
family one-stage detectors have substantially improved 
category recognition and detection performance in practice 
[6][7][8]. In the fruit domain, detector-based pipelines have 
shown strong performance, although robustness can still 
degrade under occlusion and illumination shifts [9]. 

However, much of the prior literature is evaluated in 
comparatively constrained settings, while everyday kitchens 
feature mixed illumination, specular reflections, clutter, and 
frequent partial occlusions, leading to a pronounced domain 
gap [9]. This setting differs markedly from everyday 
kitchens, which feature mixed illumination, specular 
countertop reflections, heavy clutter, and frequent partial 
occlusions. These factors create a pronounced domain gap 
and motivate our design of a single-pass detector that 
performs category detection together with freshness-stage 
classification under a unified pipeline tailored to household 
environments. 

2.2 Freshness-Stage Estimation 

Fruit freshness assessment is essential for food-quality 
management and consumer decision support. Traditional 
approaches often rely on physicochemical sensing (e.g., 
firmness, gas/chemical indicators) or controlled imaging 
setups, which can be costly or inconvenient for daily 
household use. Recent progress in computer vision and deep 
learning has enabled non-destructive freshness recognition 
from RGB images by learning surface cues such as color 
shift, speckling/blemishes, and texture deterioration, and has 
been summarized in broader food-freshness detection 
surveys. [10] For example, attention-augmented CNN 
backbones have been explored for fruit freshness 
classification/detection to better capture global appearance 
cues. [11] 

However, freshness is inherently an ordinal concept in 
many household settings (e.g., unripe → ripe → overripe), 
and treating stages as flat categorical labels may ignore rank 
structure and exacerbate boundary errors. Rank-consistent 
ordinal regression frameworks (e.g., CORAL/CORN) 
provide a principled way to exploit ordering constraints and 
improve consistency for adjacent stages. [12][13] 

2.3 Multi-task Learning and Lightweight 
Models 

To reduce latency and error accumulation from cascaded 
pipelines (e.g., detector → crop → stage classifier), multi-
task learning (MTL) has been increasingly adopted to jointly 
learn related outputs under shared representations. For 
example, recent multi-task architectures simultaneously 
predict freshness and produce type, showing that shared 

feature learning can improve overall performance and 
simplify deployment.[14] 

For real-time household applications, model design must 
balance accuracy with edge constraints (latency, memory, 
and power). Lightweight detection backbones and efficient 
feature aggregation are commonly used strategies; for 
instance, BiFPN provides an efficient multi-scale fusion 
mechanism for object detection. [15] 

2.4 Challenges in Household Kitchen Fruit 
Recognition 

Compared with agricultural fields or retail inspection lines, 
household kitchens introduce distinct visual confounders: 
mixed illumination (daylight and warm LED), 
glossy/reflective countertops, background clutter, frequent 
partial occlusions, and large viewpoint variance. These 
factors can degrade both localization and stage recognition, 
and they also create strong domain shift if models are trained 
on cleaner datasets. Classic fruit detection studies already 
highlight illumination variation and occlusion as major 
failure modes even outside kitchens.[9] 

In addition, household-oriented systems often require 
privacy-preserving and low-maintenance operation, 
motivating on-device inference and avoiding raw-image 
uploads—constraints that are rarely addressed in lab-only 
freshness studies. 

2.5 Limitations of Existing Methods 

Despite progress, existing freshness-recognition literature 
still shows several limitations when translated to household 
deployment: 

• Dataset–deployment mismatch. Many studies evaluate 
in controlled or semi-controlled environments, while 
real kitchens contain reflections, clutter, and occlusions 
that are underrepresented in benchmarks. 

• Stage definition and boundary ambiguity. A large 
portion of work uses binary “fresh/rotten” labels or 
coarse classes, which do not reflect ordinal household 
decision needs; boundary cases (e.g., early speckling) 
remain challenging and require consistent protocols. 
[12][13] 

• Insufficient evidence for productization. Many papers 
report accuracy but omit reproducible splits, robustness 
stratification, and edge-device metrics (throughput, 
power, energy-per-frame), which are important for 
digital-health/product innovation contexts.[16][17] 

• Limited attention to on-device privacy. Practical 
household adoption often depends on local processing 
and user control, but privacy-by-design is not 
consistently treated as a first-class requirement. 

2.6 Innovations and Improvements in This 
Study 
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To address the above gaps, this study presents FFIS as a 
kitchen-scene, privacy-preserving, single-pass multi-task 
system that jointly detects fruit category and ordinal freshness 
stage under household artefacts (mixed illumination, glossy 
reflections, clutter, and occlusions). 

First, we construct a household-oriented dataset and 
protocol with household- and countertop-stratified splits to 
reduce scene leakage and support reproducible evaluation. 
Second, we adopt an edge-friendly detector design using 
efficient multi-scale feature fusion (BiFPN) [15] and 
integrate hybrid attention mechanisms (ACmix) to improve 
robustness in challenging scenes. [18] Third, for freshness-
stage learning we explicitly model the ordinal nature of 
freshness using rank-consistent ordinal regression ideas 
(CORAL/CORN) to improve boundary consistency. [12][13] 

Finally, we align the system with digital-health/product 
innovation needs by emphasizing on-device operation, 
robustness, energy efficiency, and transferability-capabilities 
often highlighted as necessary for real-world digital 
interventions and waste-reduction-oriented workflows. 
[10][16][17] 

3. Methodology and System Design

3.1 Problem Definition and Notation 

Let D = {(x_i, B_i, y_i)}  denote the kitchen-scene dataset, 
where x_i is an image, B_i are ground-truth boxes with class 
labels and y_iϵ{0, … , K} is the ordinal freshness stage. Our 
goal is single-stage multi-task inference: detect fruit class and 
estimate its ordinal freshness stage in one forward pass under 
edge constraints (latency, power, memory). 

3.2 Architecture Overview 

Goal. We design an intelligent, edge-first vision system that 
performs single-pass, real-time (or near real-time) detection 
of fruit category and freshness stage in household kitchens 
[6][7][8]. 

Architecture. The framework is a multi-task detector built 
on a lightweight YOLO11n backbone with a BiFPN 
neck[15]. It uses two decoupled prediction heads that share 
features—(i) a category head and (ii) a freshness-stage 
head—together with a box-regression branch trained with an 
improved IoU-based localization loss. A single forward pass 
jointly outputs category logits, freshness-stage logits, and 
bounding boxes[12]. 

Processing pipeline: 

• Data acquisition: capture fruit images in real time.
• Image processing: denoise/enhance if needed before

inference.
• Object detection: run YOLO11n to jointly detect fruit

class and ordinal freshness stage.
• Result output: structured outputs (class, stage,

confidence, timestamp).

Design requirements for digital health. We target (R1) 
privacy (no raw-image upload), (R2) on-device real-time 
inference, (R3) robustness to kitchen artefacts, (R4) low 
energy/cost for household devices, and (R5) reproducibility 
for product transfer. FFIS addresses them via a single-pass 
multi-task detector, edge-friendly training/inference, and a 
unified protocol[19][20][12]. 

An overview of the end-to-end workflow is shown in 
Figure 1. 

Figure 1. FFIS system processing workflow. 
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Terminology. We use category (not “species”) and freshness 
stage (not “grade”/“ripeness”) throughout the paper. 

We adopt a reweighted IoU for box regression and focal-
style objectives for classification; details are given in Sec. 3.4. 

3.3 Multi-Task Head 

3.3.1 Backbone and Neck 
We adopt YOLO11n as the backbone and integrate a BiFPN 
(bidirectional feature pyramid) neck for efficient multi-scale 
feature fusion [15]. This balances accuracy and speed and is 
well suited to edge deployment in kitchens. 

The detector uses a shared box regression branch and two 
parallel classification heads, one for fruit category and one for 
freshness stage. This single-pass multi-task design improves 
sample efficiency and avoids the latency/error amplification 
of cascaded detection-then-classification. 

To cope with fine-grained textures and specular highlights 
in kitchens, we insert ACmix in the prediction head[18]. By 
mixing depth-wise convolution and self-attention, ACmix 
enhances local-global feature interaction and suppresses 
reflection-induced false positives with negligible overhead. 
Ablations in Sec. 4.4 show consistent gains. 

3.3.2 Mitigating task interference in the multi-task 
head. 
A potential concern with single-pass multi-task detection is 
negative transfer: gradients from the freshness-stage head 
might distort the shared features needed for category 
recognition, or vice versa. In FFIS we mitigate this effect in 
three ways. First, the backbone and BiFPN neck are shared, 
but the prediction heads are decoupled into three branches—
box regression, category logits, and ordinal freshness logits—
so that task-specific layers can adjust to different label 
granularities. Second, the loss weights for box regression, 
category classification, and ordinal freshness prediction in 
Eq. (A.1) are tuned such that the freshness head contributes a 
comparable but not dominant gradient magnitude, avoiding 
over-fitting to subtle stage boundaries at the expense of 
detection stability. Third, the ordinal formulation used in Eq. 
(A.4) encourages monotonic stage scores and thus smoother 
gradients around ambiguous boundary cases (e.g., ripe vs. 
overripe), which empirically reduces oscillations in both 
classification and localization on cluttered kitchen scenes. 

3.4 Loss Functions and Task Coupling 

For the freshness-stage head, we adopt a cumulative ordinal 
formulation inspired by rank-consistent ordinal regression 
methods [12][13], enabling stage-aware classification that 
respects the natural order of fruit ripeness. 
Overall objective: 

 𝐿𝐿 = 𝜆𝜆det(𝐿𝐿cls + 𝐿𝐿box) + 𝜆𝜆ord𝐿𝐿ordinal             (1) 

We use a reweighted IoU: 

Lbox = w(IoU) ⋅ LIoU, w(IoU) = (1 − IoU)α            (2) 

Classification: 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = −𝛼𝛼(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑡𝑡        (3) 

Ordinal staging: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1
𝐾𝐾
∑ 𝐵𝐵𝐾𝐾
𝑘𝑘=1 𝐶𝐶𝐶𝐶(1[𝑦𝑦 > 𝑘𝑘],𝜎𝜎(𝑧𝑧𝑘𝑘))         (4) 

• (A.1)where λ_box, λ_cls, λ_ord ≥ 0; α = 0.25, γ = 2.
• (A.2)We instantiate L_IoU as DIoU [20]; ablations with

GIoU are in Table 5 [19].
• (A.3)For the category head we use focal loss with the

same α and γ.
• (A.4)For ordinal staging we adopt CORAL [12] with

K−1 classifiers, with pₖ = σ(zₖ).

3.5 Implementation Details (Training) 

3.5.1 Augmentation Strategy 
We adopt kitchen-specific augmentations—brightness/ 
contrast jitter, random cropping, horizontal flip, synthetic 
shadows, and gamma correction—to model illumination 
shifts and improve robustness(Table 1). 

Table 1. Training hyperparameters (defaults unless 
noted). 

Hyperparameter Value 
Image size (train/eval) 640 × 640 
Batch size (global) 16 
Max epochs 200 
Optimizer SGD 
Initial learning rate 0.01 
Momentum 0.937 
Weight decay 5.00E-04 
LR schedule Cosine decay 
AMP Enabled 
EMA Enabled 
Label smoothing 0.05 
Normalization [0, 1] 

Augmentations 

Brightness/contrast jitter; 
gamma correction; synthetic 
shadows; random 
perspective; horizontal flip; 
mosaic/mixup disabled 

Early stopping 
patience (epochs) 100 

3.5.2 Summary 
We propose a YOLO11n-based multi-task framework that 
jointly performs fruit category recognition and freshness 
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stage classification for real-time kitchen scenarios. With a 
lightweight design and targeted augmentations, the system 
delivers robust performance under challenging illumination, 
reflections, and occlusions—offering a practical foundation 
for reducing household fruit waste. 

4. Experiments and Results

This paper focuses exclusively on vision-only multi-task 
detection (category + freshness stage). 

4.1 Dataset and Protocol 

4.1.1 Dataset & Stratification 
FFIS-Fruit targets household kitchens with variability in 
illumination (daylight vs. warm-LED), countertop finishes 
(glossy vs. matte), and clutter/occlusion. To prevent leakage 
across similar scenes, we adopt household- and countertop-
stratified partitions: a 20% hold-out test set is first sampled at 

the household level; the remaining households are split into 
train/val (e.g., 80/20). Exact split indices and seeds {0,1,2} 
are released for reproducibility. Figure 2 shows 
representative examples, and Table 2 summarizes factors and 
levels used in robustness analyses. 

Why these fruits and stages. We focus on banana and 
persimmon because they are common in households and 
exhibit visually observable progression patterns (e.g., color 
shift, speckling/blemishes, and surface texture changes) that 
align with typical domestic freshness cues. Importantly, our 
kitchen scenes capture key deployment challenges—mixed 
illumination, glossy/reflective surfaces, clutter, and partial 
occlusions—which are largely fruit-agnostic. We therefore 
position the current taxonomy as a reproducible baseline for 
household freshness sensing, while acknowledging that 
expanding to broader fruit types and defect modes (e.g., mold, 
bruising, internal damage) is an important next step. 

The test split contains 1,564 instances across Banana 
{Unripe 230, Ripe 310, Overripe 190} and Persimmon {Ripe 
520, Overripe 314}, with stratification by 
household/countertop to prevent leakage.

Figure 2. Representative detections across stages and lighting. 
Data source: authors’ dataset (custom) 
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Table 2. Factor matrix for FFIS-Fruit experimentation. Temperature, lighting, and clutter are environmental 
covariates used for robustness analysis and are not fed to the model. 

Factor Levels Role Used as model input 

Fruit category Banana; Persimmon Task label Yes 

Freshness stage 
Banana: Unripe / Ripe / 
Overripe; Persimmon: Ripe / 
Overripe 

Task label Yes 

Ambient temperature (°C) 12; 20; 28 Environmental covariate No 

Lighting Daylight; Warm LED Environmental covariate No 

Scene clutter Low; Medium; High Environmental covariate No 

4.1.2 Annotation & Protocol 
Images are annotated with category bounding boxes and 
ordinal freshness stages under a written protocol. Freshness-
stage rubric: We define stages using observable kitchen-scene 
cues. For banana, unripe corresponds to predominantly 
green/yellow-green peel, ripe to yellow peel with limited 
speckling, and overripe to pronounced browning/speckling 
and visible surface deterioration (e.g., shrinkage/softening 
cues). For persimmon, ripe exhibits relatively uniform 
coloration with intact surface appearance, whereas overripe 
shows noticeable darkening/blemishes and surface texture 
changes. Quality control: Each instance is labeled by one 
annotator and independently reviewed by a second annotator; 
borderline cases (e.g., early speckling) are resolved via 
adjudication to obtain the final label, with cross-scene spot 
checks for consistency across households and lighting 
conditions. In practice, these stages are intended for consumer 

decision support (e.g., prioritizing consumption when ripe 
and prompt consumption/processing when overripe). Inter-
annotator agreement (planned). Each instance is labeled by a 
primary annotator and independently reviewed by a second 
annotator; borderline cases are resolved via adjudication to 
produce the final label. While this two-pass procedure 
reduces labeling noise, we did not retain a complete set of 
pre-adjudication dual labels in the current revision and 
therefore do not report inter-annotator agreement statistics 
(e.g., weighted Cohen’s κ / Krippendorff′s α) at this time. 
We will include these agreement measures in an extended 
dataset release together with the annotation protocol and split 
indices.We do not directly infer remaining shelf-life (“days 
left”) without environmental context such as temperature and 
humidity. The dataset schema (files, splits, and class 
taxonomy) is shown in Figure. 3. 

Figure 3. Dataset YAML schema (splits and class taxonomy).
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4.1.3 Preprocessing & Augmentation 
Preprocessing. We letterbox images to 640×640 and 
normalize pixel values to [0,1]. 

Augmentation. Kitchen-oriented augmentations include 
brightness/contrast jitter, gamma correction, synthetic 
shadows, random perspective, and horizontal flip; 
mosaic/mixup are disabled to preserve scene realism. 
Training hyper-parameters and schedule follow Sec. 3.5. 

4.1.4 Metrics & Reporting 
Detection is evaluated by COCO mAP@0.5:0.95 (primary), 
with mAP@0.5 and recall as references[21]. Ordinal staging 
uses macro-F1 and accuracy. Unless noted, scores are mean 
± sd over three seeds (0/1/2) on the same test split, with 95% 
bootstrap CIs (10,000 image-level resamples)[22]. 
Significance is assessed using a paired, two-sided 
permutation test over images (N = 2,000; α = 0.05)[23].  

4.2 Baselines and Implementation 

4.2.1 Baselines and Inference Protocol 
We compare FFIS against widely used lightweight YOLO 
baselines trained under the same schedule and augmentations 
(Sec. 3.6). Representative YOLO-family papers [6][7][8]; see 
Table 3 for staging metrics and Table 4 for 
detection.YOLO11 is referenced via the Ultralytics YOLO 
release record (v8.3.0), which documents the YOLO11 
update in the project’s citation metadata. 

Inputs are letterboxed to 640×640, batch = 1, no TTA. We 
use class-agnostic NMS (IoU = 0.60, score = 0.25). 
Checkpoints are selected by best validation mAP@0.5:0.95. 
Models are exported PyTorch → ONNX → TensorRT (Orin 
Nano, INT8/FP16)[24] and ONNX Runtime (Raspberry Pi 
5)[25]. Throughput/latency are reported in Sec. 4.5 under the 
unified inference settings (Sec. 4.2); runs use fixed clocks, a 
50-frame warm-up, and median-of-5 reporting.

Table 3. Freshness-stage classification on FFIS-Fruit 
(test split; 3 seeds; mean ± sd). 

Model Macro-F1 (%) Accuracy (%) 
YOLOv5n[4] 88.2 ±0.4 90.1 ±0.3 
YOLOv8n[5] 89.1 ±0.3 91.0 ±0.3 
YOLO11n-
plain[6] 88.6 ±0.3 90.4 ±0.3 

FFIS (ours) 90.7 ±0.3 92.4 ±0.3 

Additional baselines. Beyond YOLO baselines, we include 
a two-stage pipeline (detector → crop → MobileNet 
classifier) and a non-YOLO lightweight detector (NanoDet-
Plus). These help quantify the benefit of single-pass multi-
tasking under identical training/inference settings. Summary 
numbers are provided in Appendix A.1. 

These baselines quantify the value of single-pass multi-
tasking versus two-stage pipelines and non-YOLO 
lightweight detectors under identical training/inference 
settings. 

4.3 Main Results 

Overall performance. Under the unified evaluation protocol 
(Sec. 4.1–4.2), our model surpasses YOLOv5n, YOLOv8n, 
and YOLO11n-plain on the FFIS-Fruit test split. It achieves 
mAP@0.5:0.95 = 62.4 ± 0.4, mAP@0.5 = 94.1 ± 0.3, and 
recall = 90.8 ± 0.3 (mean ± sd over 3 seeds), yielding a +3.4 
mAP@0.5:0.95 improvement over the strongest baseline 
YOLOv8n (59.0 ± 0.4) (Table 4). 

Beyond YOLO baselines, a two-stage pipeline (detector → 
crop → MobileNet) and a lightweight anchor-free detector 
(NanoDet-Plus) under the same training/inference settings 
trail our model in both mAP@0.5:0.95 and recall (see 
Appendix A.1), confirming the advantage of single-pass 
multi-tasking under kitchen artefacts. 

Error analysis. Residual errors concentrate near freshness-
stage boundaries (e.g., ripe vs. overripe), while cross-
category confusions are rare, suggesting that the single-pass 
multi-task formulation largely decouples fruit category 
recognition from freshness-stage estimation (Figure4, 
Figure5). This boundary-dominated error pattern is expected 
for ordinal staging and motivates future work on uncertainty 
handling and temporal smoothing. 

Table 4. Model comparison on FFIS-Fruit (test split; 
mean ± sd over 3 seeds) under the unified evaluation 

protocol (Sec. 4.1–4.2). 

Model mAP@0.5:0.95 
(%) 

mAP@0.5 
(%) Recall (%) 

YOLOv5n 57.6 ± 0.4 90.1 ± 0.3 86.5 ± 0.5 
YOLOv8n 59.0 ± 0.4 91.2 ± 0.3 87.1 ± 0.5 
YOLO11n-
plain 58.4 ± 0.4 90.7 ± 0.3 86.2 ± 0.5 

FFIS (ours) 62.4 ± 0.4 94.1 ± 0.3 90.8 ± 0.3 
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Figure 4. Precision–Recall curves by class (macro average included). 
Data source: authors’ test set (custom) 

Figure 5. Normalized confusion matrix across category and freshness. 
Data source: authors’ test set (custom).

For completeness, we also evaluated two-stage classifiers 
(MobileNetV2-based) and lightweight anchor-free detectors 
(NanoDet-Plus). Both approaches showed substantially lower 
accuracy and recall under real-kitchen illumination and 
clutter, so their detailed results are provided in Appendix A.1 
but are not used as primary baselines. 

4.4 Ablation Studies 

We report mAP@0.5:0.95 (primary), mAP@0.5, and recall 
(mean ± sd over three runs) under the unified protocol (Sec. 

4.1–4.2). Table 4 provides the across-model comparison, 
whereas Table 5 isolates the contribution of each component 
in FFIS (BiFPN, ACmix, and IoU-series loss), together with 
model complexity (parameters and FLOPs). We use 
mAP@0.5:0.95 as the primary metric because it is less 
sensitive to operating-point choices than single-threshold 
metrics. 

Note on the YOLO11n-plain baseline across tables. The 
YOLO11n-plain baseline in Table 5 was re-trained in 
independent runs (different random seeds/checkpoints) under 
the same dataset split and evaluation protocol. While 
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mAP@0.5:0.95 remains consistent with Table 4, single-
threshold metrics (mAP@0.5 and recall) can vary more 
across runs because they are more sensitive to the chosen 
operating point (e.g., confidence/NMS settings) and score 
calibration. Therefore, we use Table 4 for the main model-to-

model comparison and Table 5 primarily to assess relative 
gains within the same ablation suite. 

Figure 6 illustrates stable convergence under the unified 
training schedule

Table 5. Ablation study on FFIS-Fruit (test split; mean ± sd over 3 runs) under the unified protocol (Sec. 4.1–4.2). 
Primary metric: mAP@0.5:0.95. Complexity is reported as parameters and FLOPs (@640). 

Variant mAP@0.5:0.95 (%) mAP@0.5 (%) Recall (%) Params (M) FLOPs (G @640) 

YOLO11n-plain 
(baseline) 58.4 ± 0.4 84.1 ± 0.2 72.0 ± 0.4 3.2 8.1 

+ BiFPN 60.3 ± 0.2 85.0 ± 0.2 73.0 ± 0.3 3.5 8.9 

+ ACmix 61.1 ± 0.2 85.4 ± 0.3 74.1 ± 0.3 3.8 9.5 

+ IoU-series loss 61.6 ± 0.3 85.7 ± 0.2 74.6 ± 0.4 3.2 8.1 

Full (BiFPN+ACmix+IoU) 62.4 ± 0.2 86.0 ± 0.2 75.5 ± 0.3 4.1 10.2 

Note. The ablation baseline (YOLO11n-plain) was re-trained with different seeds; therefore its mAP@0.5 and recall differ 
slightly from Table 5 while mAP@0.5:0.95 matches. 

Figure 6. Training dynamics on FFIS-Fruit (single seed; 200 epochs, batch 16). The dashed line shows a moving-
average smoothing of the raw metrics.  

Data source: authors’ training logs (custom). 

4.5 Edge Deployment for Digital-Health 
Scenarios 

Throughput (absolute). Under this setting, Orin Nano reaches 
55 FPS (INT8) and 42 FPS (FP16), while Raspberry Pi 5 
reaches ~10 FPS for our full model. These values replace 
earlier approximate claims (“INT8 >30 FPS, FP16 ~40+ 
FPS”) and align with Table 6. 
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Power & energy. Module power is reported in Table 6. 
Energy-per-frame (J/frame = W/FPS) and efficiency (FPS/W 
= FPS/Watt) are derived from the FPS and power values in 
Table 6.(Figure 7) 

Figure 7. End‑to‑end throughput across edge devices. 
Data source: authors’ measurements (custom). 

Energy metrics & protocol. In addition to throughput, we 
report energy-per-frame and energy efficiency under the 
unified inference settings (Sec. 4.2): 
𝐽𝐽/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑊𝑊)

𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹/𝑊𝑊 = 𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑊𝑊)
      (A.5) 

Module power is read from board sensors; runs use fixed 
clocks, a 50-frame warm-up, batch = 1, and median-of-5 
reporting. 

Derived values (mean): 
• Jetson Orin Nano (INT8): 0.200 J/frame, 5.00 FPS/W
• Jetson Orin Nano (FP16): 0.286 J/frame, 3.50 FPS/W
• Raspberry Pi 5 (ONNX): 0.571 J/frame, 1.75 FPS/W

Table 6. Edge performance (mean ± sd over 1000 
frames).  

Data source: authors’ measurements (custom). 

Device FPS (mean ± sd) Module Power (W) 
Jetson Orin 
Nano (INT8) 55.0 ± 1.2 11.0 ± 0.3 

Jetson Orin 
Nano (FP16) 42.0 ± 0.9 12.0 ± 0.4 

Raspberry Pi 5 
(ONNX) 9.8 ± 0.4 5.6 ± 0.3 

Key findings. On Orin Nano, INT8 improves energy 
efficiency (FPS/W) by ≈42.9% (3.50 → 5.00) and reduces 
energy-per-frame (J/frame) by ≈30.1% (0.286 → 0.200) vs. 
FP16, while preserving accuracy (ΔmAP@0.5:0.95 ≤ 0.3, 
provisional). This supports low-power, on-device 
deployment for household digital-health scenarios. 

4.6 Robustness on Difficult Subsets and 
Qualitative Results 

Stratified robustness. On the Warm-LED × Glossy subset, 
FFIS yields +2.1 mAP@0.5:0.95 and +2.4 recall over 
YOLOv8n; the two-stage pipeline is +0.6 mAP@0.5:0.95 vs. 
YOLOv8n. 95% CIs are estimated via 10k bootstrap and 
significance via a paired permutation test (N = 2000, α = 
0.05). Full tables will appear in Appendix A.1. 

We provide qualitative evidence complementary to the 
quantitative scores in Sec. 4.3–4.5. Figure 8 illustrates single-
fruit cases across freshness stages under reflective rims, while 
Figure 9 focuses on multi-fruit clutter and occlusions. 

Lighting & reflectance. Under warm-LED lighting with 
glossy countertops, qualitative examples suggest that ACmix 
suppresses spurious activations from specular highlights and 
vein-like textures, reducing false positives around metallic 
rims . See PR curves by lighting in the Appendix for stratified 
trends. 

Occlusion & clutter. With bowls or neighboring produce 
partially covering the target, reweighted IoU (Sec. 3.4) yields 
tighter boxes and fewer box jitter events, which would 
otherwise flip the freshness-stage decision near boundaries 
(Figure 8). We include mosaics of typical failure modes 
(missed small instances; box merges under heavy clutter). 

Boundary stages. The hardest errors occur near ripe ↔ 
overripe transitions. We visualize posterior probabilities and 
confusion hotspots; remaining mistakes are consistent with 
annotator ambiguity at stage boundaries. 

Runtime variability (device). On Raspberry Pi 5, FPS 
variability mainly arises from thermal throttling and 
background processes. To ensure fair comparison, we report 
median over 5 runs and mean ± sd on long sequences after a 
50-frame warm-up, with fixed clocks, thread pinning, and
passive cooling—matching the inference settings used
elsewhere.

Note on smoothing. For live demos only, we apply a short 
temporal smoothing window (3–5 frames) and conservative 
score thresholds to reduce visual flip-flops.  
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Figure 8. Single-fruit qualitative results across the freshness spectrum (ripe → overripe → rotten) and reflective 
bowl rims.  

Data source: authors’ test set (custom). 

Figure 9. Multi-fruit detections under occlusion, clutter and specular highlights in real kitchens. 
Data source: authors’ test set (custom) 

4.7 Reproducibility Artefacts 

We will release (upon acceptance) the following artefacts to 
fully reproduce our results: 

• Configs & splits. YAML configs and the exact
household-stratified split indices for train/val/test; seeds
= {0,1,2}.

• Checkpoints & logs. Model checkpoints selected by best
validation mAP@0.5:0.95, plus training/validation logs.

• Export & runtime. Scripts for PyTorch → ONNX,
TensorRT (INT8/FP16, Orin Nano)[22], and ONNX
Runtime (Raspberry Pi 5), with requirements.txt and a
Dockerfile[23].

• Evaluation notebooks. Notebooks and CLI commands
that reproduce Tables 4–6 and figures (PR curves, row-
normalized confusion matrices, ablation plots,
throughput/energy, qualitative panels).

• Device measurement. Scripts and settings for
latency/energy measurement (batch=1, 50-frame warm-
up, fixed clocks, median-of-5, class-agnostic NMS
IoU=0.60 / score=0.25).

• Documentation. A README with commit hash,
environment details, and exact run commands.

Data availability. We provide the annotation files and split 
lists; images are anonymized to remove personal items. 
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Where full image sharing is restricted, we release the split 
indices and an academic request procedure. 

5. Analysis and Discussion 

5.1 Interpretation of Empirical Results 

Across identical training schedules and augmentations, our 
detector consistently outperforms lightweight baselines 
(YOLOv5n, YOLOv8n, YOLO11n-plain) on FFIS-Fruit. The 
improvements are most visible on mAP@0.5:0.95, indicating 
better localization–classification synergy rather than a gain 
only at loose IoU. In the PR curves the macro curve encloses 
a larger area at high recall, showing that the model retrieves 
more true positives without collapsing precision. The 
normalized confusion matrix further shows that residual 
errors are concentrated at freshness-stage boundaries (e.g., 
ripe vs. overripe), while cross-category confusions remain 
rare—evidence that the single-pass multi-task design 
separates category cues from stage cues effectively. 
Ablations attribute additive gains to BiFPN (multi-scale 
fusion), ACmix (reflection-aware attention), and improved 
IoU losses (tighter boxes under occlusion), with significance 
confirmed by statistical tests. 

5.2 Analysis of Experimental Phenomena 

Three phenomena recur across our analyses and qualitative 
panels: 

• Boundary sensitivity. Most mistakes occur around stage 
boundaries. This matches human intuition: early 
speckling or mild color shift can be ambiguous even for 
experts. 

• Specular highlights & glossy bowls. Strong highlights 
can mimic edges or textures. Introducing ACmix in the 
head reduces such false positives and stabilizes scores in 
scenes with warm-LED lighting and glossy countertops. 

• Occlusion and contact. When fruit touches bowl rims or 
other fruit, IoU-refined localization reduces stage flips 
caused by small box drifts. The PR curves’ high-recall 
improvement aligns with these corrections. 

On devices, 4.5 shows real-time throughput on Jetson Orin 
Nano (INT8/FP16) and on-demand scanning on Raspberry Pi 
5. Throughput variance on Pi-class hardware correlates with 
thermal throttling and background load; our reported 
mean±sd and measurement protocol capture this variability. 

5.3 Comparative Discussion with Related 
Work 

Prior studies on freshness stage or produce detection often 
assume controlled illumination (lab, retail shelves, orchards) 
or adopt two-stage pipelines (detect → crop → classify). Such 

assumptions weaken in kitchens where lighting, clutter and 
reflections change continuously. Our contributions are 
orthogonal: 

• a kitchen-specific dataset with diverse 
lighting/reflectance/occlusion; 

• a single-pass multi-task detector that avoids cascade 
error amplification; 

• lightweight architectural choices (BiFPN, ACmix in the 
head) well-suited to edge deployment. Under the same 
training schedule, these choices translate into stronger 
high-recall behavior and better mAP@0.5:0.95 than 
generic YOLO baselines , without resorting to heavy 
transformers that are difficult to run on small boards. 

5.4 Practical Value and Impact 

Accurate, on-device recognition of fruit category + freshness 
stage enables concrete household routines without cloud 
upload or an app UI layer. Examples include: 

• prioritizing ripe items for immediate consumption; 
• flagging overripe items for timely processing; 
• logging stage distributions to support meal planning and 

shopping cadence. The speed–accuracy–power trade-off 
demonstrates the feasibility of edge-first deployments 
on inexpensive hardware, lowering privacy and 
maintenance barriers. In short, the method is not only 
more accurate than strong baselines but also deployable 
in real kitchens, which is essential for actual waste-
reduction impact. 

5.5 Limitations and Error Analysis 

Label ambiguity. Stage boundaries are inherently fuzzy; even 
with double-review, disagreements remain. This explains 
diagonal blur in the confusion matrix and suggests exploring 
ordinal or label-smoothing strategies tailored to stages. In this 
revision, we do not report inter-annotator agreement statistics 
(e.g., ordinal weighted Cohen’s κ) because complete pre-adM 
dual labels were not retained. We will report κ/α on a 
stratified sample and release adjudication-rate statistics in an 
extended dataset release. 

Scope of classes. Current experiments focus on bananas 
and persimmons. Generalization to fruits with subtle or 
internal defects (e.g., bruises) may require additional cues 
beyond RGB (NIR, firmness proxies). 

Domain shift. Illumination hardware, camera ISP settings, 
and countertop materials vary by home. We mitigate via 
domestic augmentations (gamma/contrast jitter, synthetic 
shadows) and class-agnostic NMS, but long-term drift 
(sensor aging, repainting, new lamps) can still reduce 
accuracy. Periodic calibration frames and active learning are 
practical mitigations. 

Compute variability. Raspberry Pi 5 throughput depends 
on thermal and OS background services. We report mean±sd 
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over long sequences and recommend process pinning and 
thermal pads in deployments. 

Split leakage & external validity. Although splits are 
stratified by household/time-of-day, hidden correlations 
might persist. Publishing split indices/seeds and maintaining 
a household-held-out protocol in follow-ups will further 
reduce this threat. 

Metric focus. We optimize for mAP-style metrics; 
calibration metrics (e.g., ECE) and decision-weighted 
measures could offer complementary views when integrating 
with downstream routines. 

6. Conclusion 

We presented FFIS, a kitchen-focused, privacy-preserving, 
single-pass on-device system that jointly detects fruit 
category and ordinal freshness stage under everyday 
household artefacts (variable lighting, glossy countertops, 
clutter, and occlusions). Beyond the model, we contribute a 
kitchen-scene dataset with a unified evaluation protocol and 
reproducible artefacts  (configs / splits / checkpoints / export 
and evaluation scripts), aligning the work with digital-health 
product requirements including privacy-by-design, real-time 
operation, robustness, energy efficiency, and transferability. 

Under the unified protocol, FFIS attains mAP@0.5: 0.95 
= 62.4 ± 0.4, with 94.1 ± 0.3 mAP@0.5 and 90.8 ± 0.3 recall 
on the test split. On device, it reaches ~55 FPS (INT8) and 
~42 FPS (FP16) on Jetson Orin Nano and ~10 FPS on 
Raspberry Pi 5. In terms of deployment relevance, INT8 
improves energy efficiency (FPS/W) by ≈43% and reduces 
energy-per-frame (J/frame) by ≈30% versus FP16, supporting 
low-power household use. 

Scope and impact. In the context of Digital Health and 
Product Innovation, FFIS provides an on-device freshness-
stage signal that can serve as a decision-support input for 
consumer applications (e.g., consumption prioritization, 
waste-aware reminders, nutrition dashboards, and smart-
kitchen / IoT workflows). We emphasize that the predicted 
stages are visual proxies whose relationship to time-to-
spoilage depends on storage conditions (e.g., temperature and 
humidity) and individual variability; therefore, this paper 
does not claim direct estimation of remaining shelf-life or 
clinical/behavioral outcomes. 

Mapping to time-to-spoilage (planned validation). A 
practical next step is to calibrate the ordinal stages against 
time-to-spoilage under controlled storage conditions. 
Concretely, we will track fruit instances over time at multiple 
temperature settings (e.g., 12/20/28 °C), record daily RGB 
images together with basic environmental metadata 
(temperature/humidity), and obtain reference endpoints via 
simple sensory/edibility checks (and, when feasible, 
objective proxies such as mass loss or firmness). This enables 
learning a calibrated mapping from stage probabilities to an 
estimated remaining-time distribution (e.g., via regression or 
survival analysis) and reporting uncertainty intervals that are 
meaningful for household decision support. We view this as 
a follow-up validation step rather than part of the current 
paper’s empirical scope. 

Limitations and future work. The current study covers a 
small taxonomy (two fruit categories with a few stages) and 
a limited set of households, which constrains generalization 
across fruit types, devices, and kitchen environments. Future 
work will (i) expand categories and stage granularity, (ii) 
quantify labeling reliability (e.g., ordinal inter-annotator 
agreement) and improve uncertainty handling for boundary 
stages, and (iii) improve efficiency via distillation, pruning, 
and lower-bit quantization. We will also explore lightweight 
temporal smoothing for improved sequence stability and 
domain adaptation strategies for cross-kitchen robustness. 
Finally, integrating environmental context (e.g., temperature-
aware modeling) may enable a more explicit, validated 
mapping from freshness stages to days-left estimates. 

From a digital-health and product-innovation perspective, 
our findings should be interpreted as evidence that privacy-
preserving, on-device freshness sensing is technically 
feasible in real kitchens, rather than as proof of reduced 
household food waste. Demonstrating downstream impact 
will require user-facing studies on how alerts, visualizations, 
and kitchen workflows influence shopping, storage, and 
cooking behaviors. 

Appendix A.1 Provisional cross-baseline 
results 

Model mAP@0.5:0.
95 (%) 

mAP@0.5 
(%) 

Recall 
(%) 

YOLOv5n 57.6 ± 0.4 90.1 ± 0.3 86.5 ± 
0.5 

YOLOv8n 59.0 ± 0.4 91.2 ± 0.3 87.1 ± 
0.5 

YOLO11n-plain 58.4 ± 0.4 90.7 ± 0.3 86.2 ± 
0.5 

Two-stage 
(YOLOv8n + 
MobileNet) 

58.7 ± 0.4 90.9 ± 0.3 87.3 ± 
0.5 

NanoDet-Plus 
(lightweight) 57.1 ± 0.5 89.8 ± 0.4 86.0 ± 

0.5 

FFIS (ours) 62.4 ± 0.4 94.1 ± 0.3 90.8 ± 
0.3 

Model / Pipeline Macro-F1 (%) Accuracy (%) 
YOLOv5n (multi-task 
head) 88.2 ± 0.4 90.1 ± 0.3 

YOLOv8n (multi-task 
head) 89.1 ± 0.3 91.0 ± 0.3 

YOLO11n-plain 
(multi-task head) 88.6 ± 0.3 90.4 ± 0.3 

Two-stage 
(YOLOv8n + 
MobileNet) 

89.8 ± 0.3 91.5 ± 0.3 

NanoDet-Plus (with 
stage head) 88.5 ± 0.4 90.4 ± 0.4 

FFIS (ours) 90.7 ± 0.3 92.4 ± 0.3 
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