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Abstract

INTRODUCTION: In everyday households, fruits are often stored for too long, forgotten, or discarded early due to
uncertainty about their freshness, leading to avoidable waste, unnecessary cost, and suboptimal dietary habits. A reliable and
user-centered fresh produce assessment tool can help people establish a healthier and more sustainable lifestyle. The existing
freshness assessment systems are mainly designed for industrial or laboratory environments and rarely meet the privacy,
stability and cost requirements of family digital health products.

OBJECTIVES: This study aims to design and evaluate an edge-Al system that jointly recognizes fruit category and ordinal
freshness stage in real kitchens, providing a reproducible benchmark for household-oriented freshness sensing rather than a
one-off engineering prototype.

METHODS: We develop the Fruit Freshness Identification System (FFIS), a lightweight multi-task detector built on
YOLOI 1n with a BiFPN neck, ACmix hybrid attention, and an loU-based localization loss reweighted for partial occlusion.
A kitchen-scene dataset is collected and stratified by household, countertop material, lighting, and clutter. The system is
trained with an ordinal regression head for freshness staging and evaluated on COCO-style detection metrics, stage-wise
classification metrics, and edge-device throughput and energy consumption.

RESULTS: On the FFIS-Fruit test split, FFIS achieves an mAP@0.5:0.95 of 62.4 + 0.4, mAP@0.5 of 94.1 + 0.3, and recall
of 90.8 + 0.3, outperforming lightweight YOLO baselines as well as a two-stage detector-plus-classifier pipeline. Warm-
LED and glossy-countertop subsets show consistent gains in high-reflection scenarios. On-device experiments reach ~55
FPS (INT8) on Jetson Orin Nano and ~10 FPS on Raspberry Pi 5 under a unified evaluation protocol.

CONCLUSION: FFIS provides a household-oriented, privacy-preserving reference implementation for kitchen fruit
monitoring, demonstrating that single-pass multi-task detection can meet domestic deployment constraints on low-cost
hardware. Rather than directly claiming reductions in household food waste, the findings establish a technical foundation
for integrating freshness signals into downstream digital-health workflows such as waste-aware reminders and dietary
planning.
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Food waste is a growing global concern, and household
disposal accounts for a substantial share of overall losses [1].
Fruits are often discarded prematurely because of improper
storage or misjudged freshness, which not only creates
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environmental and economic waste but also disrupts meal
planning and dietary habits [2]. Such avoidable disposal is
closely related to household diet models, and can be mitigated
by healthy-diet-oriented green design approaches that
explicitly account for environmental impact and sustainable
development [3]. Household kitchens—where most food
handling occurs—pose unique challenges for fresh-food
management: subtle visual cues (e.g., color and texture) are
hard to interpret under varying lighting, countertop
reflections, clutter, and partial occlusions. These factors make
it difficult for consumers to decide whether fruits are still
suitable for consumption, leading to unnecessary waste. From
a digital-health perspective, preventing premature disposal
supports proactive, user-centered dietary management in
everyday homes.

Existing freshness-assessment approaches are largely
industrial or laboratory-oriented and require controlled
conditions that are impractical for everyday households.
Consumer applications typically offer coarse labels (e.g.,
“ripe”/“unripe”) and lack reliable, fine-grained cues that are
robust to real-kitchen environments, leaving users uncertain
and encouraging premature disposal.

1.1 Motivation and positioning within digital
health

Global health services are shifting from treatment to
prevention and from hospital-centric to user-centered
models[4]. Within this agenda, dietary behaviors and
domestic food handling are modifiable factors with outsized
impact but remain poorly instrumented in everyday homes.
We therefore frame kitchen fruit monitoring as a digital-
health product component: an edge-Al capability that
passively senses fruit status and provides timely signals for
downstream workflows—e.g., waste-aware reminders,
nutrition dashboards, or IoT prompts in smart kitchens. To
make these downstream dashboards and reminders usable
across different household groups, inclusive design principles
should be adopted to address diverse user needs and equity,
which can further improve user satisfaction through
interdisciplinary collaboration [5].Unlike lab-centric vision
models, our focus is on product constraints crucial to digital
health: privacy-preserving on-device inference, data
minimization, robustness to kitchen-specific artefacts
(glare/occlusion), and a reproducible evaluation protocol that
supports real-world deployment.

This paper presents the Fruit Freshness Identification
System (FFIS), a vision-based, edge-first system that detects
both fruit class and ordinal freshness stage in typical kitchen
settings. FFIS is privacy-preserving and runs in real time on
inexpensive on-device hardware, addressing the practical
challenges of variable illumination, specular reflections,
clutter, and occlusions.

Our work focuses on a single-pass multi-task detector
(YOLOI11n + BiFPN + ACmix with an improved IoU-based
localization loss), a kitchen-specific dataset with a unified
evaluation protocol, and on-device deployment evidence
demonstrating real-time or near-real-time performance.

This work is positioned as a digital-health—oriented,
household reference implementation for domestic fruit
monitoring, rather than a radically new detection paradigm.
In home digital health ecosystems, everyday dietary choices
and food-handling behaviors are key modifiable factors;
however, they are often limited by incomplete, moment-to-
moment awareness of food status. By estimating fruit
category and ordinal freshness stage from real kitchen scenes,
our system provides a practical decision-support signal for
consumer-facing applications (e.g., consumption
prioritization, storage guidance, and waste-aware meal
planning), while preserving privacy through on-device
inference. We emphasize that visual freshness stages are a
proxy influenced by storage conditions
(temperature/humidity) and individual variability; therefore,
we frame the contribution as an enabling sensing module for
digital-health products rather than a direct predictor of time-
to-spoilage or clinical outcomes.

Our main contributions are four-fold:

e Household-specific formulation and dataset. We
formulate kitchen fruit monitoring as a single-pass
multi-task problem, jointly predicting fruit category and
ordinal freshness stage under domestic artefacts such as
mixed illumination, glossy countertops, and clutter. We
release a kitchen-scene dataset with household- and
countertop-stratified splits to support reproducible
evaluation in realistic consumer settings.

e Lightweight multi-task detector for edge devices.
Building on YOLO1 1n, we adopt a BiFPN neck and two
decoupled heads (category and freshness stage) with a
shared box regression branch. The design targets product
constraints—Ilatency, memory footprint, and power—
required by always-on home devices, rather than
maximizing accuracy at any cost.

o Kitchen-aware robustness and loss design. We integrate
ACmix hybrid attention and an IoU-based localization
loss reweighted for partially occluded fruits, and we
analyze their impact through ablations and stratified
robustness experiments on high-reflection and cluttered
subsets.

e Reproducible edge-deployment evidence. We provide a
unified export and evaluation pipeline for Jetson Orin
Nano and Raspberry Pi 5, reporting throughput, module
power, and energy-per-frame, together with scripts and
split indices to facilitate independent reproduction and
downstream product transfer.

The rest of the paper is organized as follows. Section 2
reviews related work on fruit recognition and freshness-stage
estimation; Section 3 presents the methodology and system
design of FFIS; Section 4 describes the experimental setup
and results; and Section 5 discusses findings, limitations, and
future directions.

2. Related Work
2.1 Fruit Category Recognition
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Fruit category recognition aims to assign an identity (e.g.,
banana, persimmon) to each fruit instance. Early approaches
based on hand-crafted color/shape/texture descriptors were
sensitive to background clutter and illumination changes,
which limits their applicability in household kitchens. With
deep learning, convolutional neural networks and YOLO-
family one-stage detectors have substantially improved
category recognition and detection performance in practice
[6][71[8]. In the fruit domain, detector-based pipelines have
shown strong performance, although robustness can still
degrade under occlusion and illumination shifts [9].

However, much of the prior literature is evaluated in
comparatively constrained settings, while everyday kitchens
feature mixed illumination, specular reflections, clutter, and
frequent partial occlusions, leading to a pronounced domain
gap [9]. This setting differs markedly from everyday
kitchens, which feature mixed illumination, specular
countertop reflections, heavy clutter, and frequent partial
occlusions. These factors create a pronounced domain gap
and motivate our design of a single-pass detector that
performs category detection together with freshness-stage
classification under a unified pipeline tailored to household
environments.

2.2 Freshness-Stage Estimation

Fruit freshness assessment is essential for food-quality
management and consumer decision support. Traditional
approaches often rely on physicochemical sensing (e.g.,
firmness, gas/chemical indicators) or controlled imaging
setups, which can be costly or inconvenient for daily
household use. Recent progress in computer vision and deep
learning has enabled non-destructive freshness recognition
from RGB images by learning surface cues such as color
shift, speckling/blemishes, and texture deterioration, and has
been summarized in broader food-freshness detection
surveys. [10] For example, attention-augmented CNN
backbones have been explored for fruit freshness
classification/detection to better capture global appearance
cues. [11]

However, freshness is inherently an ordinal concept in
many household settings (e.g., unripe — ripe — overripe),
and treating stages as flat categorical labels may ignore rank
structure and exacerbate boundary errors. Rank-consistent
ordinal regression frameworks (e.g., CORAL/CORN)
provide a principled way to exploit ordering constraints and
improve consistency for adjacent stages. [12][13]

2.3 Multi-task Learning and Lightweight
Models

To reduce latency and error accumulation from cascaded
pipelines (e.g., detector — crop — stage classifier), multi-
task learning (MTL) has been increasingly adopted to jointly
learn related outputs under shared representations. For
example, recent multi-task architectures simultaneously
predict freshness and produce type, showing that shared

feature learning can improve overall performance and
simplify deployment.[14]

For real-time household applications, model design must
balance accuracy with edge constraints (latency, memory,
and power). Lightweight detection backbones and efficient
feature aggregation are commonly used strategies; for
instance, BiFPN provides an efficient multi-scale fusion
mechanism for object detection. [15]

2.4 Challenges in Household Kitchen Fruit
Recognition

Compared with agricultural fields or retail inspection lines,
household kitchens introduce distinct visual confounders:
mixed illumination (daylight and warm LED),
glossy/reflective countertops, background clutter, frequent
partial occlusions, and large viewpoint variance. These
factors can degrade both localization and stage recognition,
and they also create strong domain shift if models are trained
on cleaner datasets. Classic fruit detection studies already
highlight illumination variation and occlusion as major
failure modes even outside kitchens.[9]

In addition, household-oriented systems often require
privacy-preserving and  low-maintenance  operation,
motivating on-device inference and avoiding raw-image
uploads—constraints that are rarely addressed in lab-only
freshness studies.

2.5 Limitations of Existing Methods

Despite progress, existing freshness-recognition literature
still shows several limitations when translated to household
deployment:

e Dataset—deployment mismatch. Many studies evaluate
in controlled or semi-controlled environments, while
real kitchens contain reflections, clutter, and occlusions
that are underrepresented in benchmarks.

e Stage definition and boundary ambiguity. A large
portion of work uses binary “fresh/rotten” labels or
coarse classes, which do not reflect ordinal household
decision needs; boundary cases (e.g., early speckling)
remain challenging and require consistent protocols.
[12][13]

o Insufficient evidence for productization. Many papers
report accuracy but omit reproducible splits, robustness
stratification, and edge-device metrics (throughput,
power, energy-per-frame), which are important for
digital-health/product innovation contexts.[16][17]

e Limited attention to on-device privacy. Practical
household adoption often depends on local processing
and user control, but privacy-by-design is not
consistently treated as a first-class requirement.

2.6 Innovations and Improvements in This
Study
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To address the above gaps, this study presents FFIS as a
kitchen-scene, privacy-preserving, single-pass multi-task
system that jointly detects fruit category and ordinal freshness
stage under household artefacts (mixed illumination, glossy
reflections, clutter, and occlusions).

First, we construct a household-oriented dataset and
protocol with household- and countertop-stratified splits to
reduce scene leakage and support reproducible evaluation.
Second, we adopt an edge-friendly detector design using
efficient multi-scale feature fusion (BiFPN) [15] and
integrate hybrid attention mechanisms (ACmix) to improve
robustness in challenging scenes. [18] Third, for freshness-
stage learning we explicitly model the ordinal nature of
freshness using rank-consistent ordinal regression ideas
(CORAL/CORN) to improve boundary consistency. [12][13]

Finally, we align the system with digital-health/product
innovation needs by emphasizing on-device operation,
robustness, energy efficiency, and transferability-capabilities
often highlighted as necessary for real-world digital
interventions and waste-reduction-oriented workflows.
[10][16][17]

3. Methodology and System Design

3.1 Problem Definition and Notation

Let D = {(x_i,B_i,y_i)} denote the kitchen-scene dataset,
where x_1i is an image, B i are ground-truth boxes with class
labels and y_i€{0, ..., K} is the ordinal freshness stage. Our
goal is single-stage multi-task inference: detect fruit class and
estimate its ordinal freshness stage in one forward pass under
edge constraints (latency, power, memory).

Preprocessing

Camera / Frame S
(letterbox to 640=640, normalizatiof)

3.2 Architecture Overview

Goal. We design an intelligent, edge-first vision system that
performs single-pass, real-time (or near real-time) detection
of fruit category and freshness stage in household kitchens
[6][71[8].

Architecture. The framework is a multi-task detector built
on a lightweight YOLOIlIn backbone with a BiFPN
neck[15]. It uses two decoupled prediction heads that share
features—(i) a category head and (ii) a freshness-stage
head—together with a box-regression branch trained with an
improved IoU-based localization loss. A single forward pass
jointly outputs category logits, freshness-stage logits, and
bounding boxes[12].

Processing pipeline:

o Data acquisition: capture fruit images in real time.

e Image processing: denoise/enhance if needed before
inference.

e Object detection: run YOLOI11n to jointly detect fruit
class and ordinal freshness stage.

e Result output: structured outputs
confidence, timestamp).

(class, stage,

Design requirements for digital health. We target (R1)
privacy (no raw-image upload), (R2) on-device real-time
inference, (R3) robustness to kitchen artefacts, (R4) low
energy/cost for household devices, and (R5) reproducibility
for product transfer. FFIS addresses them via a single-pass
multi-task detector, edge-friendly training/inference, and a
unified protocol[19][20][12].

An overview of the end-to-end workflow is shown in

Figure 1.

4 ™
Prediction Heads
Category head

Backbone + Neck Freshness-stage head

h 4

(YOLO11n + BiFPN)

Box regression
({loU-series loss)

Y I

Structured Output
ategory, Stage, EBox [x,y,w,h], Confidenge)

Class-agnostic NMS
{loU=0.60, score=0.25)

L A

Figure 1. FFIS system processing workflow.
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Terminology. We use category (not “species”) and freshness
stage (not “grade”/“ripeness”) throughout the paper.

We adopt a reweighted IoU for box regression and focal-
style objectives for classification; details are given in Sec. 3.4.

3.3 Multi-Task Head

3.3.1 Backbone and Neck

We adopt YOLO1 In as the backbone and integrate a BiFPN
(bidirectional feature pyramid) neck for efficient multi-scale
feature fusion [15]. This balances accuracy and speed and is
well suited to edge deployment in kitchens.

The detector uses a shared box regression branch and two
parallel classification heads, one for fruit category and one for
freshness stage. This single-pass multi-task design improves
sample efficiency and avoids the latency/error amplification
of cascaded detection-then-classification.

To cope with fine-grained textures and specular highlights
in kitchens, we insert ACmix in the prediction head[18]. By
mixing depth-wise convolution and self-attention, ACmix
enhances local-global feature interaction and suppresses
reflection-induced false positives with negligible overhead.
Ablations in Sec. 4.4 show consistent gains.

3.3.2 Mitigating task interference in the multi-task
head.

A potential concern with single-pass multi-task detection is
negative transfer: gradients from the freshness-stage head
might distort the shared features needed for category
recognition, or vice versa. In FFIS we mitigate this effect in
three ways. First, the backbone and BiFPN neck are shared,
but the prediction heads are decoupled into three branches—
box regression, category logits, and ordinal freshness logits—
so that task-specific layers can adjust to different label
granularities. Second, the loss weights for box regression,
category classification, and ordinal freshness prediction in
Eq. (A.1) are tuned such that the freshness head contributes a
comparable but not dominant gradient magnitude, avoiding
over-fitting to subtle stage boundaries at the expense of
detection stability. Third, the ordinal formulation used in Eq.
(A.4) encourages monotonic stage scores and thus smoother
gradients around ambiguous boundary cases (e.g., ripe vs.
overripe), which empirically reduces oscillations in both
classification and localization on cluttered kitchen scenes.

3.4 Loss Functions and Task Coupling

For the freshness-stage head, we adopt a cumulative ordinal
formulation inspired by rank-consistent ordinal regression
methods [12][13], enabling stage-aware classification that
respects the natural order of fruit ripeness.

Overall objective:

L= Adct(l‘cls + Lbox) + AordLordinal (1)

We use a reweighted IoU:

Lyox = w(IoU) - Liyy, w(IoU) = (1 — IoU)* 2)
Classification:
Las = —a(1—py)'log p; ©)
Ordinal staging:
Lorainar = k=1 B CE(1[y > k], 0(z)) )

e (A.l)where A_box, A _cls,A_ord>0; o= 0.25,y=2.

® (A.2)We instantiate L_IoU as DIoU [20]; ablations with
GloU are in Table 5 [19].

e (A.3)For the category head we use focal loss with the
same o and .

e (A.4)For ordinal staging we adopt CORAL [12] with
K—1 classifiers, with px = o(zx).

3.5 Implementation Details (Training)

3.5.1 Augmentation Strategy

We adopt kitchen-specific augmentations—brightness/
contrast jitter, random cropping, horizontal flip, synthetic
shadows, and gamma correction—to model illumination
shifts and improve robustness(Table 1).

Table 1. Training hyperparameters (defaults unless

noted).
Hyperparameter Value
Image size (train/eval) 640 x 640
Batch size (global) 16
Max epochs 200
Optimizer SGD
Initial learning rate 0.01
Momentum 0.937
Weight decay 5.00E-04
LR schedule Cosine decay
AMP Enabled
EMA Enabled
Label smoothing 0.05

Normalization [0, 1]
Brightness/contrast jitter;

gamma correction; synthetic

Augmentations shadows; random
perspective; horizontal flip;
mosaic/mixup disabled

Early stopping

patience (epochs) 100

3.5.2 Summary
We propose a YOLOI In-based multi-task framework that
jointly performs fruit category recognition and freshness
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stage classification for real-time kitchen scenarios. With a
lightweight design and targeted augmentations, the system
delivers robust performance under challenging illumination,
reflections, and occlusions—offering a practical foundation
for reducing household fruit waste.

4. Experiments and Results

This paper focuses exclusively on vision-only multi-task
detection (category + freshness stage).

4 1 Dataset and Protocol

4.1.1 Dataset & Stratification

FFIS-Fruit targets household kitchens with variability in
illumination (daylight vs. warm-LED), countertop finishes
(glossy vs. matte), and clutter/occlusion. To prevent leakage
across similar scenes, we adopt household- and countertop-
stratified partitions: a 20% hold-out test set is first sampled at
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the household level; the remaining households are split into
train/val (e.g., 80/20). Exact split indices and seeds {0,1,2}
are released for reproducibility. Figure 2 shows
representative examples, and Table 2 summarizes factors and
levels used in robustness analyses.

Why these fruits and stages. We focus on banana and
persimmon because they are common in households and
exhibit visually observable progression patterns (e.g., color
shift, speckling/blemishes, and surface texture changes) that
align with typical domestic freshness cues. Importantly, our
kitchen scenes capture key deployment challenges—mixed
illumination, glossy/reflective surfaces, clutter, and partial
occlusions—which are largely fruit-agnostic. We therefore
position the current taxonomy as a reproducible baseline for
household freshness sensing, while acknowledging that
expanding to broader fruit types and defect modes (e.g., mold,
bruising, internal damage) is an important next step.

The test split contains 1,564 instances across Banana
{Unripe 230, Ripe 310, Overripe 190} and Persimmon {Ripe
520, Overripe 314}, with stratification by
household/countertop to prevent leakage.
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Figure 2. Representative detections across stages and lighting.
Data source: authors’ dataset (custom)
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Table 2. Factor matrix for FFIS-Fruit experimentation. Temperature, lighting, and clutter are environmental
covariates used for robustness analysis and are not fed to the model.

Factor Levels Role Used as model input
Fruit category Banana; Persimmon Task label Yes
Banana: Unripe / Ripe /
Freshness stage Overripe; Persimmon: Ripe / Task label Yes
Overripe
Ambient temperature (°C) 12; 20; 28 Environmental covariate No
Lighting Daylight; Warm LED Environmental covariate No
Scene clutter Low; Medium; High Environmental covariate No

4.1.2 Annotation & Protocol

Images are annotated with category bounding boxes and
ordinal freshness stages under a written protocol. Freshness-
stage rubric: We define stages using observable kitchen-scene
cues. For banana, unripe corresponds to predominantly
green/yellow-green peel, ripe to yellow peel with limited
speckling, and overripe to pronounced browning/speckling
and visible surface deterioration (e.g., shrinkage/softening
cues). For persimmon, ripe exhibits relatively uniform
coloration with intact surface appearance, whereas overripe
shows noticeable darkening/blemishes and surface texture
changes. Quality control: Each instance is labeled by one
annotator and independently reviewed by a second annotator;
borderline cases (e.g., early speckling) are resolved via
adjudication to obtain the final label, with cross-scene spot
checks for consistency across households and lighting
conditions. In practice, these stages are intended for consumer

decision support (e.g., prioritizing consumption when ripe
and prompt consumption/processing when overripe). Inter-
annotator agreement (planned). Each instance is labeled by a
primary annotator and independently reviewed by a second
annotator; borderline cases are resolved via adjudication to
produce the final label. While this two-pass procedure
reduces labeling noise, we did not retain a complete set of
pre-adjudication dual labels in the current revision and
therefore do not report inter-annotator agreement statistics
(e.g., weighted Cohen’s k / Krippendorff's a) at this time.
We will include these agreement measures in an extended
dataset release together with the annotation protocol and split
indices.We do not directly infer remaining shelf-life (“days
left”) without environmental context such as temperature and
humidity. The dataset schema (files, splits, and class
taxonomy) is shown in Figure. 3.

Figure 3. Dataset YAML schema (splits and class taxonomy).
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4.1.3 Preprocessing & Augmentation
Preprocessing. We letterbox images to 640x640 and
normalize pixel values to [0,1].

Augmentation. Kitchen-oriented augmentations include
brightness/contrast jitter, gamma correction, synthetic
shadows, random perspective, and horizontal flip;
mosaic/mixup are disabled to preserve scene realism.
Training hyper-parameters and schedule follow Sec. 3.5.

4.1.4 Metrics & Reporting

Detection is evaluated by COCO mAP@0.5:0.95 (primary),
with mAP@0.5 and recall as references[21]. Ordinal staging
uses macro-F1 and accuracy. Unless noted, scores are mean
+ sd over three seeds (0/1/2) on the same test split, with 95%
bootstrap CIs (10,000 image-level resamples)[22].
Significance is assessed using a paired, two-sided
permutation test over images (N = 2,000; a = 0.05)[23].

4.2 Baselines and Implementation

4.2.1 Baselines and Inference Protocol

We compare FFIS against widely used lightweight YOLO
baselines trained under the same schedule and augmentations
(Sec. 3.6). Representative YOLO-family papers [6][7][8]; see
Table 3 for staging metrics and Table 4 for
detection.YOLOI11 is referenced via the Ultralytics YOLO
release record (v8.3.0), which documents the YOLOI1
update in the project’s citation metadata.

Inputs are letterboxed to 640x640, batch = 1, no TTA. We
use class-agnostic NMS (IoU = 0.60, score = 0.25).
Checkpoints are selected by best validation mAP@0.5:0.95.
Models are exported PyTorch — ONNX — TensorRT (Orin
Nano, INT8/FP16)[24] and ONNX Runtime (Raspberry Pi
5)[25]. Throughput/latency are reported in Sec. 4.5 under the
unified inference settings (Sec. 4.2); runs use fixed clocks, a
50-frame warm-up, and median-of-5 reporting.

Table 3. Freshness-stage classification on FFIS-Fruit
(test split; 3 seeds; mean + sd).

Model Macro-F1 (%) Accuracy (%)
YOLOv5n[4] 88.2+0.4 90.1 0.3
YOLOv8n[5] 89.1+0.3 91.0 0.3
YOLOTIn- g6 640.3 90.4 £0.3
plain[6]

FFIS (ours) 90.7 £0.3 92.4 +0.3

Additional baselines. Beyond YOLO baselines, we include
a two-stage pipeline (detector — crop — MobileNet
classifier) and a non-YOLO lightweight detector (NanoDet-
Plus). These help quantify the benefit of single-pass multi-
tasking under identical training/inference settings. Summary
numbers are provided in Appendix A.1.

These baselines quantify the value of single-pass multi-
tasking versus two-stage pipelines and non-YOLO
lightweight detectors under identical training/inference
settings.

4.3 Main Results

Overall performance. Under the unified evaluation protocol
(Sec. 4.1-4.2), our model surpasses YOLOvV5n, YOLOV8n,
and YOLOI In-plain on the FFIS-Fruit test split. It achieves
mAP@0.5:0.95 = 62.4 = 0.4, mAP@0.5 = 94.1 £ 0.3, and
recall = 90.8 + 0.3 (mean + sd over 3 seeds), yielding a +3.4
mAP@0.5:0.95 improvement over the strongest baseline
YOLOVS8n (59.0 + 0.4) (Table 4).

Beyond YOLO baselines, a two-stage pipeline (detector —
crop — MobileNet) and a lightweight anchor-free detector
(NanoDet-Plus) under the same training/inference settings
trail our model in both mAP@0.5:0.95 and recall (see
Appendix A.1), confirming the advantage of single-pass
multi-tasking under kitchen artefacts.

Error analysis. Residual errors concentrate near freshness-
stage boundaries (e.g., ripe vs. overripe), while cross-
category confusions are rare, suggesting that the single-pass
multi-task formulation largely decouples fruit category
recognition from freshness-stage estimation (Figure4,
Figure5). This boundary-dominated error pattern is expected
for ordinal staging and motivates future work on uncertainty
handling and temporal smoothing.

Table 4. Model comparison on FFIS-Fruit (test split;
mean * sd over 3 seeds) under the unified evaluation
protocol (Sec. 4.1-4.2).

mAP@0.5:0.95 mAP@0.5 o
Model (%) (%) Recall (%)
YOLOv5n 57.6+04 90.1+0.3 86.5+0.5
YOLOvV8n 59.0+04 91.2+0.3 87.1+05
:;2;;101 1n- 58.4+04 90.7+0.3 86.2+0.5
FFIS (ours) 62.4+0.4 94.1+0.3 90.8 £ 0.3
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Precision-Recall Curves by Class

1.000

0.975

0.950

0.9251

0.900

Precision

0.875¢

0.850

Banana_Unripe
Banana_Ripe
—— Banana_Overripe
Persimmon_Ripe
—— Persimmon_Overripe
0.800 1 — All classes (macro avg)
L

0.825

0.0 0.2 0.4

0.6 0.8 1.0
Recall

Figure 4. Precision—Recall curves by class (macro average included).
Data source: authors’ test set (custom)
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Figure 5. Normalized confusion matrix across category and freshness.
Data source: authors’ test set (custom).

For completeness, we also evaluated two-stage classifiers
(MobileNetV2-based) and lightweight anchor-free detectors
(NanoDet-Plus). Both approaches showed substantially lower
accuracy and recall under real-kitchen illumination and
clutter, so their detailed results are provided in Appendix A.1
but are not used as primary baselines.

4 .4 Ablation Studies

We report mAP@0.5:0.95 (primary), mAP@0.5, and recall
(mean =+ sd over three runs) under the unified protocol (Sec.

4.1-4.2). Table 4 provides the across-model comparison,
whereas Table 5 isolates the contribution of each component
in FFIS (BiFPN, ACmix, and IoU-series loss), together with
model complexity (parameters and FLOPs). We use
mAP@0.5:0.95 as the primary metric because it is less
sensitive to operating-point choices than single-threshold
metrics.

Note on the YOLO1 In-plain baseline across tables. The
YOLOl1n-plain baseline in Table 5 was re-trained in
independent runs (different random seeds/checkpoints) under
the same dataset split and evaluation protocol. While
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mAP@0.5:0.95 remains consistent with Table 4, single-
threshold metrics (mAP@0.5 and recall) can vary more
across runs because they are more sensitive to the chosen
operating point (e.g., confidence/NMS settings) and score
calibration. Therefore, we use Table 4 for the main model-to-

Table 5. Ablation study on FFIS-Fruit (test split; mean * sd over 3 runs) under the unified protocol (Sec. 4.1-4.2).

model comparison and Table 5 primarily to assess relative

gains within the same ablation suite.

Figure 6 illustrates stable convergence under the unified

training schedule

Primary metric: mAP@0.5:0.95. Complexity is reported as parameters and FLOPs (@640).

Variant mMAP@0.5:0.95 (%) mAP@0.5 (%) Recall (%) Params (M) FLOPs (G @640)
YOLO11n-plain 58.4 + 0.4 84.1+02 72.0+0.4 3.2 8.1

(baseline)

+ BiFPN 60.3+0.2 85.0+£0.2 73.0+£0.3 3.5 8.9

+ ACmix 61.1+£0.2 85.4+0.3 74.1+£0.3 3.8 9.5

+ loU-series loss 61.6+£0.3 85.7+0.2 74604 3.2 8.1

Full (BiIFPN+ACmix+loU) 62.4 +0.2 86.0+0.2 75.5+0.3 4.1 10.2

Note. The ablation baseline (YOLO11n-plain) was re-trained with different seeds; therefore its mAP@0.5 and recall differ

slightly from Table 5 while mMAP@0.5:0.95 matches.

train/box_loss train/cls_loss

train/dfl_loss

metrics/precision(B)

metrics/recall(B)

i I results 1.3 A 1.0 1.0 AETRENOR R
T J <=+ smooth 1
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Figure 6. Training dynamics on FFIS-Fruit (single seed; 200 epochs, batch 16). The dashed line shows a moving-

average smoothing of the raw metrics.
Data source: authors’ training logs (custom).

4.5 Edge Deployment for Digital-Health
Scenarios

10

Throughput (absolute). Under this setting, Orin Nano reaches
55 FPS (INT8) and 42 FPS (FP16), while Raspberry Pi 5
reaches ~10 FPS for our full model. These values replace
earlier approximate claims (“INT8 >30 FPS, FP16 ~40+

FPS”) and align with Table 6.
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Power & energy. Module power is reported in Table 6.
Energy-per-frame (J/frame = W/FPS) and efficiency (FPS/W
= FPS/Watt) are derived from the FPS and power values in
Table 6.(Figure 7)

End-to-End Throughput by Device
55.0

50

42.0
a0t

FPS

201

9.8
10p

Orin Nano INT8 Orin Nano FP16 Raspberry Pi 5

Figure 7. End-to-end throughput across edge devices.
Data source: authors’ measurements (custom).

Energy metrics & protocol. In addition to throughput, we
report energy-per-frame and energy efficiency under the
unified inference settings (Sec. 4.2):

FPS

__ Power (W) _
J/frame = E—— FPS/W = p— (A.5)

Module power is read from board sensors; runs use fixed
clocks, a 50-frame warm-up, batch = 1, and median-of-5
reporting.

Derived values (mean):

* Jetson Orin Nano (INTS): 0.200 J/frame, 5.00 FPS/W
* Jetson Orin Nano (FP16): 0.286 J/frame, 3.50 FPS/W
* Raspberry Pi 5 (ONNX): 0.571 J/frame, 1.75 FPS/W

Table 6. Edge performance (mean * sd over 1000
frames).
Data source: authors’ measurements (custom).

Device FPS (mean * sd) Module Power (W)
Jetson Orin

Nano (INT8) 55.0+1.2 11.0+£0.3

Jetson Orin 45 5+0.9 12.0 £ 0.4

Nano (FP16)

11

Raspberry Pi 5

(ONNX) 9.8+04

56+03

Key findings. On Orin Nano, INT8 improves energy
efficiency (FPS/W) by =42.9% (3.50 — 5.00) and reduces
energy-per-frame (J/frame) by ~30.1% (0.286 — 0.200) vs.
FP16, while preserving accuracy (AmAP@0.5:0.95 < 0.3,
provisional).  This supports low-power, on-device
deployment for household digital-health scenarios.

4.6 Robustness on Difficult Subsets and
Qualitative Results

Stratified robustness. On the Warm-LED x Glossy subset,
FFIS yields +2.1 mAP@0.5:0.95 and +2.4 recall over
YOLOvVS8n; the two-stage pipeline is +0.6 mAP@0.5:0.95 vs.
YOLOv8n. 95% Cls are estimated via 10k bootstrap and
significance via a paired permutation test (N = 2000, o =
0.05). Full tables will appear in Appendix A.1.

We provide qualitative evidence complementary to the
quantitative scores in Sec. 4.3—4.5. Figure 8§ illustrates single-
fruit cases across freshness stages under reflective rims, while
Figure 9 focuses on multi-fruit clutter and occlusions.

Lighting & reflectance. Under warm-LED lighting with
glossy countertops, qualitative examples suggest that ACmix
suppresses spurious activations from specular highlights and
vein-like textures, reducing false positives around metallic
rims . See PR curves by lighting in the Appendix for stratified
trends.

Occlusion & clutter. With bowls or neighboring produce
partially covering the target, reweighted IoU (Sec. 3.4) yields
tighter boxes and fewer box jitter events, which would
otherwise flip the freshness-stage decision near boundaries
(Figure 8). We include mosaics of typical failure modes
(missed small instances; box merges under heavy clutter).

Boundary stages. The hardest errors occur near ripe <>
overripe transitions. We visualize posterior probabilities and
confusion hotspots; remaining mistakes are consistent with
annotator ambiguity at stage boundaries.

Runtime variability (device). On Raspberry Pi 5, FPS
variability mainly arises from thermal throttling and
background processes. To ensure fair comparison, we report
median over 5 runs and mean + sd on long sequences after a
50-frame warm-up, with fixed clocks, thread pinning, and
passive cooling—matching the inference settings used
elsewhere.

Note on smoothing. For live demos only, we apply a short
temporal smoothing window (3—5 frames) and conservative
score thresholds to reduce visual flip-flops.



X. Liu et al.

HFersimmon Ripe 092

Figure 8. Single-fruit qualitative results across the freshness spectrum (ripe — overripe — rotten) and reflective

bowl rims.
Data source: authors’ test set (custom).

Yz 05

A £ L\

i.

Figure 9. Multi-fruit detections under occlusion, clutter and specular highlights in real kitchens.
Data source: authors’ test set (custom)

4.7 Reproducibility Artefacts

We will release (upon acceptance) the following artefacts to
fully reproduce our results:

e Configs & splits. YAML configs and the exact
household-stratified split indices for train/val/test; seeds
={0,1,2}.

o Checkpoints & logs. Model checkpoints selected by best
validation mAP@0.5:0.95, plus training/validation logs.

e Export & runtime. Scripts for PyTorch — ONNX,
TensorRT (INT8/FP16, Orin Nano)[22], and ONNX
Runtime (Raspberry Pi 5), with requirements.txt and a
Dockerfile[23].

12

e Evaluation notebooks. Notebooks and CLI commands
that reproduce Tables 4-6 and figures (PR curves, row-

normalized confusion matrices, ablation plots,
throughput/energy, qualitative panels).
e Device measurement. Scripts and settings for

latency/energy measurement (batch=1, 50-frame warm-
up, fixed clocks, median-of-5, class-agnostic NMS
1oU=0.60 / score=0.25).

e Documentation. A README with commit hash,
environment details, and exact run commands.

Data availability. We provide the annotation files and split
lists; images are anonymized to remove personal items.
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Where full image sharing is restricted, we release the split
indices and an academic request procedure.

5. Analysis and Discussion

5.1 Interpretation of Empirical Results

Across identical training schedules and augmentations, our
detector consistently outperforms lightweight baselines
(YOLOVS5n, YOLOv8n, YOLO1 1n-plain) on FFIS-Fruit. The
improvements are most visible on mAP@0.5:0.95, indicating
better localization—classification synergy rather than a gain
only at loose IoU. In the PR curves the macro curve encloses
a larger area at high recall, showing that the model retrieves
more true positives without collapsing precision. The
normalized confusion matrix further shows that residual
errors are concentrated at freshness-stage boundaries (e.g.,
ripe vs. overripe), while cross-category confusions remain
rare—evidence that the single-pass multi-task design
separates category cues from stage cues -effectively.
Ablations attribute additive gains to BiFPN (multi-scale
fusion), ACmix (reflection-aware attention), and improved
IoU losses (tighter boxes under occlusion), with significance
confirmed by statistical tests.

5.2 Analysis of Experimental Phenomena

Three phenomena recur across our analyses and qualitative
panels:

¢ Boundary sensitivity. Most mistakes occur around stage
boundaries. This matches human intuition: early
speckling or mild color shift can be ambiguous even for
experts.

e Specular highlights & glossy bowls. Strong highlights
can mimic edges or textures. Introducing ACmix in the
head reduces such false positives and stabilizes scores in
scenes with warm-LED lighting and glossy countertops.

e Occlusion and contact. When fruit touches bowl rims or
other fruit, loU-refined localization reduces stage flips
caused by small box drifts. The PR curves’ high-recall
improvement aligns with these corrections.

On devices, 4.5 shows real-time throughput on Jetson Orin
Nano (INT8/FP16) and on-demand scanning on Raspberry Pi
5. Throughput variance on Pi-class hardware correlates with
thermal throttling and background load; our reported
mean+sd and measurement protocol capture this variability.

5.3 Comparative Discussion with Related
Work

Prior studies on freshness stage or produce detection often
assume controlled illumination (lab, retail shelves, orchards)
or adopt two-stage pipelines (detect — crop — classify). Such
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assumptions weaken in kitchens where lighting, clutter and

reflections change continuously. Our contributions are

orthogonal:
L] kitchen-specific dataset with diverse
lighting/reflectance/occlusion;

e a single-pass multi-task detector that avoids cascade
error amplification;

e lightweight architectural choices (BiFPN, ACmix in the
head) well-suited to edge deployment. Under the same
training schedule, these choices translate into stronger
high-recall behavior and better mAP@0.5:0.95 than
generic YOLO baselines , without resorting to heavy
transformers that are difficult to run on small boards.

5.4 Practical Value and Impact

Accurate, on-device recognition of fruit category + freshness
stage enables concrete household routines without cloud
upload or an app Ul layer. Examples include:

e prioritizing ripe items for immediate consumption;

o flagging overripe items for timely processing;

¢ logging stage distributions to support meal planning and
shopping cadence. The speed—accuracy—power trade-off
demonstrates the feasibility of edge-first deployments
on inexpensive hardware, lowering privacy and
maintenance barriers. In short, the method is not only
more accurate than strong baselines but also deployable
in real kitchens, which is essential for actual waste-
reduction impact.

5.5 Limitations and Error Analysis

Label ambiguity. Stage boundaries are inherently fuzzy; even
with double-review, disagreements remain. This explains
diagonal blur in the confusion matrix and suggests exploring
ordinal or label-smoothing strategies tailored to stages. In this
revision, we do not report inter-annotator agreement statistics
(e.g., ordinal weighted Cohen’s k) because complete pre-adM
dual labels were not retained. We will report x/a on a
stratified sample and release adjudication-rate statistics in an
extended dataset release.

Scope of classes. Current experiments focus on bananas
and persimmons. Generalization to fruits with subtle or
internal defects (e.g., bruises) may require additional cues
beyond RGB (NIR, firmness proxies).

Domain shift. [llumination hardware, camera ISP settings,
and countertop materials vary by home. We mitigate via
domestic augmentations (gamma/contrast jitter, synthetic
shadows) and class-agnostic NMS, but long-term drift
(sensor aging, repainting, new lamps) can still reduce
accuracy. Periodic calibration frames and active learning are
practical mitigations.

Compute variability. Raspberry Pi 5 throughput depends
on thermal and OS background services. We report mean+sd
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over long sequences and recommend process pinning and
thermal pads in deployments.

Split leakage & external validity. Although splits are
stratified by household/time-of-day, hidden correlations
might persist. Publishing split indices/seeds and maintaining
a household-held-out protocol in follow-ups will further
reduce this threat.

Metric focus. We optimize for mAP-style metrics;
calibration metrics (e.g., ECE) and decision-weighted
measures could offer complementary views when integrating
with downstream routines.

6. Conclusion

We presented FFIS, a kitchen-focused, privacy-preserving,
single-pass on-device system that jointly detects fruit
category and ordinal freshness stage under everyday
household artefacts (variable lighting, glossy countertops,
clutter, and occlusions). Beyond the model, we contribute a
kitchen-scene dataset with a unified evaluation protocol and
reproducible artefacts (configs / splits / checkpoints / export
and evaluation scripts), aligning the work with digital-health
product requirements including privacy-by-design, real-time
operation, robustness, energy efficiency, and transferability.

Under the unified protocol, FFIS attains mAP@0.5: 0.95
=62.4=+0.4, with 94.1 £ 0.3 mAP@0.5 and 90.8 + 0.3 recall
on the test split. On device, it reaches ~55 FPS (INTS8) and
~42 FPS (FP16) on Jetson Orin Nano and ~10 FPS on
Raspberry Pi 5. In terms of deployment relevance, INT8
improves energy efficiency (FPS/W) by =43% and reduces
energy-per-frame (J/frame) by =30% versus FP16, supporting
low-power household use.

Scope and impact. In the context of Digital Health and
Product Innovation, FFIS provides an on-device freshness-
stage signal that can serve as a decision-support input for
consumer applications (e.g., consumption prioritization,
waste-aware reminders, nutrition dashboards, and smart-
kitchen / IoT workflows). We emphasize that the predicted
stages are visual proxies whose relationship to time-to-
spoilage depends on storage conditions (e.g., temperature and
humidity) and individual variability; therefore, this paper
does not claim direct estimation of remaining shelf-life or
clinical/behavioral outcomes.

Mapping to time-to-spoilage (planned validation). A
practical next step is to calibrate the ordinal stages against
time-to-spoilage under controlled storage conditions.
Concretely, we will track fruit instances over time at multiple
temperature settings (e.g., 12/20/28 °C), record daily RGB
images together with basic environmental metadata
(temperature/humidity), and obtain reference endpoints via
simple sensory/edibility checks (and, when feasible,
objective proxies such as mass loss or firmness). This enables
learning a calibrated mapping from stage probabilities to an
estimated remaining-time distribution (e.g., via regression or
survival analysis) and reporting uncertainty intervals that are
meaningful for household decision support. We view this as
a follow-up validation step rather than part of the current
paper’s empirical scope.

Limitations and future work. The current study covers a
small taxonomy (two fruit categories with a few stages) and
a limited set of households, which constrains generalization
across fruit types, devices, and kitchen environments. Future
work will (i) expand categories and stage granularity, (ii)
quantify labeling reliability (e.g., ordinal inter-annotator
agreement) and improve uncertainty handling for boundary
stages, and (iii) improve efficiency via distillation, pruning,
and lower-bit quantization. We will also explore lightweight
temporal smoothing for improved sequence stability and
domain adaptation strategies for cross-kitchen robustness.
Finally, integrating environmental context (e.g., temperature-
aware modeling) may enable a more explicit, validated
mapping from freshness stages to days-left estimates.

From a digital-health and product-innovation perspective,
our findings should be interpreted as evidence that privacy-
preserving, on-device freshness sensing is technically
feasible in real kitchens, rather than as proof of reduced
household food waste. Demonstrating downstream impact
will require user-facing studies on how alerts, visualizations,
and kitchen workflows influence shopping, storage, and
cooking behaviors.

Appendix A.1 Provisional cross-baseline
results

mAP@0.5:0. mAP@0.5 Recall
Model 95 (%) (%) (%)
YOLOV5n 576+0.4  90.1+0.3 865'5 *
YOLOV8n 500404  912+0.3 275'1 *
YOLO11n-plain  58.4+04  90.7+0.3 265'2 *
Two-stage
(YOLOv8n +  587+04  90.9+03 375'3 *
MobileNet) ’
NanoDet-Plus 86.0 +
(ighweight 57.1£05  898%04 .
FFIS (ours) 624:04  941x03 050*
Model / Pipeline Macro-F1 (%) Accuracy (%)
YOLOVSN (multitask g5 5 4 ¢ 4 90.1+0.3
head)
YOLOv8N (multitask g9 44 ¢ 3 91.0+0.3
head)
YOLO11n-plain
(it task head) 88.6+0.3 90.4+0.3
Two-stage
(YOLOvS8N + 89.8 + 0.3 91.5+0.3
MobileNet)
NanoDet-Plus (with g5 5, () 4 90.4 + 0.4
stage head)
FFIS (ours) 90.7+0.3 92.4+0.3
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