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Abstract 

INTRODUCTION: Trust is a prerequisite for safe and effective Human–Robot Interaction (HRI), yet reported gender 
differences are inconsistent and likely contingent on context and socio-perceptual processes. 
OBJECTIVES: Within a unified framework spanning four canonical HRI contexts (healthcare, education, manufacturing, 
security), we test whether (a) gender predicts trust, (b) context moderates gender effects, and (c) perceived warmth and 
perceived threat mediate gender–trust relations. 
METHODS: A vignette-based experiment with adults (N = 132; male/female) measured affective and cognitive trust, 
perceived warmth, and perceived threat on 7-point scales. Analyses followed a preregistered plan: 2×4 mixed ANOVAs 
(Gender × Context) and parallel mediation (PROCESS Model 4; 5,000 bootstrap resamples) with covariates (age, education, 
prior HRI experience). 
RESULTS: Gender showed a significant main effect for affective trust (females > males), but not for cognitive trust. Context 
effects were significant for both trust facets. Gender × Context interactions emerged: the female advantage in affective trust 
was concentrated in healthcare, while males reported higher cognitive trust in education and manufacturing. Mediation 
indicated that females’ higher perceived warmth and lower perceived threat jointly accounted for gender differences in 
overall trust; the direct gender effect was not significant after including mediators. Robustness checks (ANCOVAs; order 
effects) supported all primary findings. 
CONCLUSION: Gender differences in robot trust are context-dependent and arise via warmth-enhancing and threat-
reducing socio-perceptual pathways. Design should emphasize empathy/assurance cues in caring roles and 
competence/reliability cues in task/authority roles, alongside systematic threat mitigation. 
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1. Introduction

Robots are increasingly deployed in socially sensitive 
domains-healthcare, education, manufacturing, and public 
safety-where failures and misunderstandings carry human,  

*Corresponding author. Email: hhover@163.com 

ethical, and organizational costs. In such settings, trust is a 
decisive precondition for safe and effective Human–Robot 
Interaction (HRI). Building on contemporary accounts that 
differentiate trust into affective (feelings of comfort and 
psychological safety) and cognitive (perceived competence 
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and reliability) components, we note that gender is often 
invoked to explain variation in trust, yet empirical findings 
remain inconsistent. The study of human–machine 
relationships and trust must consider the sociotechnical 
systems in which robots are embedded. Research has 
highlighted how algorithms, as technological objects, shape 
trust perceptions through normative design, influencing 
behavioral plasticity and interaction outcomes in diverse 
contexts[1]. A growing consensus is that these 
inconsistencies reflect context dependence and underlying 
socio‑perceptual processes [2], rather than a uniform gender 
effect [3]. 

Despite progress, three limitations constrain current 
understanding. First, many studies investigate single contexts, 
hindering direct comparison of gender effects across roles 
that differ in risk, authority, and prosocial expectations. 
Second, theory, measurement, and model specification are 
not always aligned [4], leading to construct drift and mixed 
inferences about what is being predicted as ‘trust’. Third, 
mechanistic accounts are underdeveloped: while competence 
cues are well studied, the roles of perceived warmth 
(benevolence) and perceived threat (anticipated 
harm/discomfort) as socio‑affective pathways remain 
insufficiently tested. 

The present work addresses these gaps by employing a 
unified experimental design that standardizes scenarios 
across four canonical HRI contexts and jointly examines 
Gender × Context effects on affective and cognitive trust. We 
articulate a theory‑driven framework in which perceived 
warmth and perceived threat operate as parallel mediators 
linking gender to overall trust, thereby specifying when and 
why gender differences emerge. 

2. Related Work

Scholarship on trust in Human–Robot Interaction (HRI) has 
evolved from a performance‑centric view to a socio‑cognitive 
perspective. Foundational work established reliability, 
predictability, and error rates as primary antecedents of trust 
and developed widely used measurement approaches for trust 
in automation [5][6][7]. More recent surveys consolidate 
these insights and call for integrative accounts that 
incorporate cultural and social factors alongside system 
performance [8][9]. 

As robots pervade social domains, social signaling-
anthropomorphism, politeness, and non‑verbal behavior-has 
been shown to shape users’ trust judgments in tandem with 
capability cues[10]. Experimental and review evidence 
indicates that perceived warmth and competence are robust 
predictors of trust‑related appraisals in HRI, and scale work 
has begun to refine their operationalization for efficient use 
in studies [11][12]. 

A parallel line of inquiry considers human attributes, with 
gender frequently examined yet yielding mixed results: some 
studies document greater hesitancy or anxiety among women, 
whereas others report higher acceptance in care-oriented 
interactions. Comparative and empirical work suggests that 
such discrepancies arise from differences in task demands, 

perceived risk, and role framing, rather than a uniform gender 
effect [13]. This pattern highlights context as a pivotal 
moderator of gender–trust relations [14]. 

Contextual moderation is evident across healthcare, 
education, manufacturing, and security, where expectations 
about appropriateness, authority, and safety diverge [15]. 
Recent domain‑specific studies and reviews underscore that 
trust and acceptance are jointly shaped by role‑specific 
affordances and risk profiles-e.g., service/care robots in 
healthcare, tutoring or AI‑EdTech tools in education, 
collaborative robots (cobots) on shop floors, and 
patrol/surveillance robots in public safety-yet most 
investigations still isolate single contexts, limiting direct tests 
of Gender × Context interactions [16]. 

Beyond documenting correlates, scholars increasingly 
probe mechanisms. Converging evidence shows that warmth 
(benevolence, prosocial intent) elevates affective components 
of trust, whereas cues linked to hazard raise perceived threat 
(or discomfort) and can depress trust even when competence 
is high [17][18]. These pathways motivate the present focus 
on socio‑perceptual mediators. 

2.1. Risk Communication and Social Threat in 
HRI 

The role of risk communication and social threat in shaping 
trust perceptions has gained significant attention in the 
context of HRI. Social threat refers to the concerns and 
perceived risks arising from human–robot interactions, 
including feelings of being judged, controlled, or monitored, 
which can reduce trust and engagement. Social evaluation 
anxiety, in particular, can significantly mediate individuals' 
trust in robots, especially in safety-critical settings where the 
robot's actions may be perceived as potentially harmful or 
evaluative [19]. 

Risk communication focuses on how uncertainty and risk 
are conveyed to individuals, shaping their decision-making 
and trust. In the case of robots, how risks are communicated-
through transparency, error-handling strategies, and 
reliability statements-affects the perceived threat and trust 
formation. Studies have shown that transparent 
communication about a robot's capabilities and limitations 
can mitigate the sense of threat and increase trust, especially 
in critical domains like healthcare and security [20]. 
Conversely, lack of transparency or ambiguous 
communication can exacerbate perceptions of threat and 
diminish trust, particularly among users with lower 
technology familiarity or higher social evaluation concerns 
[21][22]. 

2.2. Hypotheses and Conceptual Model 

Let G denote gender (0 = male, 1 = female) and C the within-
subject factor Context (healthcare, education, manufacturing, 
security). Trust is decomposed into affective trust and 
cognitive trust. Mediators are perceived warmth and 
perceived threat. 
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H1 (Gender main effect on affective trust). Females report 
higher affective trust than males. 

H2 (Gender × Context for affective trust). Gender 
differences in affective trust are moderated by context and are 
largest in healthcare (caring) scenarios. 

H3 (Gender × Context for cognitive trust). Gender 
differences in cognitive trust are moderated by context, with 
males showing higher cognitive trust in manufacturing (task) 
and education (guidance) contexts. 

H4 (Warmth mediation). G → higher perceived warmth → 
higher trust. 

H5 (Threat mediation). G → lower perceived threat → 
higher trust. 

H6 (Full mediation for overall trust). After accounting for 
warmth and threat, the direct effect of G on overall trust 
(mean of affective and cognitive) is not significant. 

3. Methodology and System Design 

This study employed a computer‑administered, 
vignette‑based experiment to examine how participant gender 
(between‑subjects) and interaction context (within‑subjects) 
jointly shape trust in robots and through which 

socio‑perceptual mechanisms (perceived warmth and 
perceived threat) these effects arise. A scenario paradigm 
affords tight control of stimuli, systematic manipulation of 
context, and scalable data collection, while maintaining 
ecological plausibility via domain-typical narratives. While 
vignettes support controlled cross-context comparison and 
mechanism testing, they capture trust attitudes rather than 
behavioral reliance; thus, generalization to embodied 
interaction should be treated cautiously and validated with 
behavioral and in-situ measures. 

3.1. Research Framework 

We implemented a 2 (Gender: male, female; between) × 4 
(Context: healthcare, education, manufacturing, security; 
within) mixed design. Each participant evaluated all four 
contexts, enabling estimation of Gender × Context 
interactions while controlling for stable individual 
differences. The primary outcomes were affective trust and 
cognitive trust; mediators were perceived warmth and 
perceived threat. Figure 1 provides the conceptual diagram 
linking these variables. 

 

 

Figure 1. Conceptual Framework of the Study

3.2. Participants 

We recruited 140 adults from a professional online 
participant pool. Inclusion criteria were age ≥ 18. Participants 
selected gender from Male / Female / Non‑binary/Other; 
because the present study focuses on binary gender 
differences, data from participants choosing  

 
Non‑binary/Other were not analyzed. Eight participants were 
excluded for failing attention checks or selecting 
Non‑binary/Other, yielding a final N=132  ( NMale=66 , 
NFemale=66). An a priori G Power analysis (mixed ANOVA, 
medium effect f=0.25, α=.05, power = .80) indicated that 
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N≈128 would be adequate, supporting the achieved sample 
size. 

3.3. Materials and Stimuli 

We developed four standardized, text‑only vignettes (≈120–
140 words each) representing canonical HRI domains: 

• Healthcare (Caring): a home‑care robot providing 
medication reminders and vital‑sign checks. 

• Education (Guidance): a tutoring robot delivering 
step‑wise explanations and adaptive quizzes. 

• Manufacturing (Task‑oriented): a collaborative robot 
coordinating part placement and safety stops. 

• Security (Authority): a patrol robot offering guidance 
and reporting hazards. 

Stimuli were controlled for robot appearance (neutral 
description), task complexity, tone, and privacy disclosures; 
proper names and locales were neutralized. The full texts are 
provided in Appendix A. 

3.4. Measures 

All measures used 7‑point Likert scales (1 = strongly 
disagree, 7 = strongly agree). 

• Affective trust (4 items; e.g., I feel secure with the 
robot), adapted from established trust‑in‑automation 
instruments. 

• Cognitive trust (4 items; e.g., The robot is reliable), 
aligned with competence/reliability facets. 

• Perceived warmth (6 items), using the RoSAS Warmth 
subscale. 

• Perceived threat (5 items), adapted from prior work on 
robot‑elicited unease/threat. 

The full texts are provided in Appendix B. 

3.5. Procedure 

After consent and demographics, participants completed four 
vignette blocks presented in counterbalanced order (Latin 
square). Within each block, participants read the vignette, 
responded to the trust/warmth/threat items, and then 
completed manipulation‑check ratings. Attention checks and 
minimum engagement time thresholds were embedded to 
promote data quality. 

3.6. Data Quality and Exclusions 

The following preregistered criteria were applied: (i) exclude 
any participant failing attention check(s); (ii) flag completion 
times < 1/3 of the median per‑page or > 3× IQR as 
careless/extreme and exclude upon pattern confirmation; (iii) 
handle missingness via person‑mean imputation when ≤ 1 
item is missing per subscale; otherwise drop that vignette’s 
subscale for the participant. 

4. Experiments and Results 

4.1. Descriptive Statistics 

Table 1 presents the descriptive statistics for affective and 
cognitive trust across the four interaction contexts and by 
gender. Across contexts, affective trust tended to be higher in 
the healthcare scenario and lower in security, whereas 
cognitive trust was highest in manufacturing and education. 
Gender‑specific means indicate that females reported higher 
affective trust in most contexts, while males generally 
reported higher cognitive trust in task‑ and guidance‑oriented 
contexts. 

Table 1. Trust by gender and context (1–7) 

Context Gender N Affective 
Trust 

Cognitive 
Trust 

Healthcare 
(Caring) 

Female 66 5.85 ± 0.92 5.12 ± 1.05 
Male 66 5.41 ± 1.10 5.35 ± 0.98 

Education 
(Guidance) 

Female 66 5.22 ± 1.01 5.58 ± 0.89 
Male 66 5.05 ± 1.15 5.81 ± 0.82 

Manufacturi
ng (Task) 

Female 66 4.88 ± 1.12 5.45 ± 0.95 
Male 66 4.75 ± 1.20 5.79 ± 0.88 

Security 
(Authority) 

Female 66 4.55 ± 1.25 5.01 ± 1.10 
Male 66 4.30 ± 1.30 5.25 ± 1.02 

4.2. Mixed ANOVA for Trust 

To test H1–H3, we conducted two 2 (Gender: male, female; 
between) ×  4 (Context: healthcare, education, 
manufacturing, security; within) mixed ANOVAs, one for 
affective trust and one for cognitive trust. Greenhouse–
Geisser corrections were applied when sphericity 
assumptions were violated. (details shown in Table 2) 
 

Table 2. Summary of Mixed ANOVA 

Source Dependent Variable F df p ηp
2 95% CI Correction 

Gender Affective 4.95 1,130 0.028 0.037 [0.03, 0.50] None 
Gender Cognitive 0.88 1,130 0.349 0.007 [−0.15, 0.42] None 

Context Affective 12.1
1 2.89, 375.7 <.001 0.085 [0.18, 0.45] G–G 

Context Cognitive 8.77 3, 390 <.001 0.063 [0.10, 0.35] None 
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G × C Affective 3.55 2.89, 375.7 0.015 0.027 [0.01, 0.15] G–G 
G × C Cognitive 4.12 3, 390 0.007 0.031 [0.02, 0.18] None 

Affective Trust: 

• Main effect of Gender: Significant, 𝐹𝐹(1,130) =
4.95, 𝑝𝑝 = .028, 𝜂𝜂𝑝𝑝2 = .037 . Females reported higher 
affective trust. 

• Main effect of Context: Significant, 𝐹𝐹(2.89,375.7) =
12.11, 𝑝𝑝 < .001, 𝜂𝜂𝑝𝑝2 = .085.  Trust was highest in 
healthcare and lowest in security. 

• Gender ×  Context interaction: Significant, 
𝐹𝐹(2.89,375.7) = 3.55, 𝑝𝑝 = .015, 𝜂𝜂𝑝𝑝2 = .027.  Simple-
effects analyses showed a significant gender difference 
only in healthcare, where females reported higher 
affective trust ( 𝑝𝑝 = .035 ). No significant gender 
differences emerged in the other three contexts. 

Cognitive Trust: 

• Main effect of Gender: Not significant, 𝐹𝐹(1,130) =
0.88, 𝑝𝑝 = 0.349. 

• Main effect of Context: Significant, 𝐹𝐹(3,390) =
8.77, 𝑝𝑝 < .001, 𝜂𝜂𝑝𝑝2 = .063 .Cognitive trust was highest 
in manufacturing. 

• Gender × Context interaction: Significant, F(3,390) =
4.12, p = .007, ηp

2 = .031 . Simple‑effects analyses 

indicated higher cognitive trust for males in education 
(p = .041) and manufacturing (p = .035) 

4.3. Mediation Analysis 

To test H4–H6, we examined whether perceived warmth and 
perceived threat mediated the effect of Gender on overall trust 
(average of affective and cognitive trust). PROCESS Model 
4 was used with 5,000 bootstrap resamples and covariates 
(age, education, prior HRI experience). All continuous 
covariates were mean-centered prior to analysis, and 95% 
bias-corrected bootstrap confidence intervals were used to 
evaluate indirect effects. 

Mediation Results 
Table 3 reports unstandardized coefficients. 

• Gender significantly predicted higher warmth and lower 
threat. 

• Warmth positively predicted overall trust; threat 
negatively predicted it. 

• The direct effect of Gender on overall trust was not 
significant, indicating full mediation. 

• Both indirect paths-via Warmth and via Threat-were 
significant. 

 

Table 3. Summary of Parallel Mediation Analysis 

Path Predictor → Mediator/Outcome b SE t p 95% CI 

a 
Gender (1=female) → Warmth 0.45 0.12 3.75 <.001 [0.21, 0.69] 

Gender (1=female) → Threat -0.30 0.10 -3.00 .003 [-0.50, -0.10] 

b 
Warmth → Overall trust 0.52 0.08 6.50 <.001 [0.36, 0.68] 

Threat → Overall trust -0.35 0.07 -5.00 <.001 [-0.49, -0.21] 

c Gender (1=female) → Overall trust 0.10 0.15 0.67 .503 [-0.20, 0.40] 

4.4. Robustness Checks 

To assess robustness, we conducted mixed ANCOVAs 
including age and prior HRI experience as covariates. The 
main effects of gender and context, as well as the Gender × 
Context interaction for affective trust, remained significant. 
We also tested for order effects using Latin‑square 

assignment and found no impact on any trust measure, 
confirming adequate counterbalancing. 

4.5. Visual Representation of Interaction 

The significant Gender × Context interactions are illustrated 
in Figure 2 and Figure 3. 
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Figure 2. Gender × Context Interaction on Affective Trust

Figure 2. Gender ×  Context Interaction on Affective 
Trust. Error bars represent the Standard Error of the Mean 

(SE). The asterisk indicates a significant difference between 
genders within the Healthcare context (𝑝𝑝 < .05). 𝑁𝑁 = 132. 

 

 

Figure 3. Gender × Context Interaction on Cognitive Trust 
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Figure 3. Gender ×  Context Interaction on Cognitive 
Trust. Error bars represent the Standard Error of the Mean 
(SE). Asterisks () indicate significant differences between 
genders within the Education and Manufacturing contexts 
(𝑝𝑝 < .05). 𝑁𝑁 = 132. 

5. Analysis and Discussion 

This section interprets the empirical findings in light of the 
conceptual model and prior work on human–robot trust, 
gender, and social perception. We first summarize how the 
results map onto the preregistered hypotheses (H1–H6), then 
discuss the implications for theory and design in Human–
Robot Interaction (HRI). 

5.1. Summary of Findings Relative to the 
Hypotheses 

The mixed-design ANOVAs and mediation analyses provide 
convergent support for the proposed framework. First, H1 
predicted a main effect of gender on affective trust, with 
females reporting higher levels than males. This hypothesis 
was supported: across contexts, females exhibited 
significantly higher affective trust, whereas no corresponding 
main effect of gender emerged for cognitive trust. This 
pattern indicates that gender differences are more pronounced 
for trust as a feeling of comfort and psychological safety than 
for trust as perceived competence or reliability. 

H2 and H3 posited that gender effects on trust would be 
context-dependent. The results align closely with these 
expectations. For affective trust, a significant Gender × 
Context interaction showed that the female advantage was 
concentrated in the healthcare (caring) context, with no 
reliable gender differences in education, manufacturing, or 
security. For cognitive trust, gender did not show a main 
effect, but the Gender × Context interaction revealed that 
males reported higher cognitive trust than females in 
education (guidance) and manufacturing (task) contexts, 
consistent with the idea that these scenarios foreground 
competence- and performance-related expectations. 

The mediation analysis addressed H4–H6, which proposed 
that perceived warmth and perceived threat operate as parallel 
socio-perceptual mechanisms linking gender to overall trust. 
The results are consistent with this account. Gender 
significantly predicted both mediators (females perceiving 
robots as warmer and less threatening), and both warmth and 
threat, in turn, were strong predictors of overall trust. 
Critically, the direct effect of gender on overall trust became 
non-significant once warmth and threat were included, 
supporting H6 and indicating full mediation. Together, these 
findings demonstrate that gender influences trust primarily by 
shaping social perceptions of the robot, rather than exerting 
an independent, residual effect. 

5.2. Contextualized Gender Differences in 
Affective and Cognitive Trust 

The observed dissociation between affective and cognitive 
trust refines existing discussions of gender in HRI. Rather 
than a uniform 'women trust robots more/less than men' 
narrative, the data suggest that: 

• Females are more likely to report higher affective trust-
feeling safer and more at ease-especially when the 
robot’s role is aligned with caring and support, as in the 
healthcare context. 

• Males are more likely to report higher cognitive trust-
confidence in reliability and task performance-when the 
robot is embedded in guidance- and task-focused roles, 
such as education and manufacturing. 

This pattern is consistent with the idea that gendered 
expectations about roles and domain norms shape how users 
interpret the same robot behavior. Healthcare scenarios are 
culturally associated with nurturing, empathy, and 
interpersonal support; in such contexts, females may be more 
attuned to, and reassured by, cues that the robot is attentive 
and benevolent, which inflates affective trust. In contrast, 
education and manufacturing emphasize accuracy, 
procedural clarity, and efficiency-domains in which males 
may have stronger expectations of, or familiarity with, 
performance-oriented systems, resulting in higher cognitive 
trust. 

Importantly, the absence of a global gender main effect on 
cognitive trust reinforces that context, not gender per se, 
drives many of the differences. This nuance helps reconcile 
prior empirical findings that reported inconsistent gender 
effects in different HRI settings. Studies focusing on a single 
context may detect a gender difference that does not 
generalize beyond that specific role or risk profile; only by 
comparing multiple contexts within the same design can the 
Gender × Context structure be fully revealed. 

5.3. Socio-Perceptual Mechanisms: Warmth 
and Threat 

The mediation results clarify how gender becomes linked to 
trust. Drawing on frameworks of social perception, the study 
hypothesized that perceived warmth (benevolence, prosocial 
intent) and perceived threat (anticipated harm, unease) form 
two complementary pathways through which gender shapes 
trust evaluations. The data support this mechanism-based 
view. 

Females, on average, perceived the robots as warmer and 
less threatening than males did. In turn, higher warmth was 
associated with higher overall trust, whereas higher threat 
was associated with lower overall trust. Once these mediators 
were taken into account, the direct effect of gender on trust 
was no longer significant, indicating that gender differences 
in trust are fully accounted for by differences in these socio-
perceptual appraisals rather than by gender itself as a 
standalone determinant. 

This pattern has several theoretical implications: 
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• It aligns HRI research with broader social cognition 
theories, in which warmth and threat-related appraisals 
often precede and shape trust judgments. 

• It suggests that what might appear as 'gender differences 
in trust' at the surface level actually reflect deeper 
differences in how male and female participants 
construe the intentions and potential risks associated 
with robots. 

• It underscores the importance of negative socio-affective 
pathways: even when competence is high, heightened 
perceptions of threat can depress trust. Designing solely 
for competence signals may therefore be insufficient. 

By demonstrating parallel mediation, the present study 
extends prior work that focused primarily on competence or 
anthropomorphism by showing that warmth-enhancing 
features and threat-mitigating cues jointly explain gendered 
trust patterns across contexts. 

6. Conclusion 

This study provides a unified test of how gender and 
interaction context jointly shape trust in robots and through 
which socio-perceptual mechanisms these effects arise. 
Across four canonical HRI domains, females reported higher 
affective trust, while cognitive trust showed no overall gender 
main effect. Crucially, both trust facets exhibited Gender × 
Context interactions: the female advantage in affective trust 
was concentrated in healthcare, whereas males reported 
higher cognitive trust in education and manufacturing. 
Parallel mediation analyses indicated that perceived warmth 
(positive pathway) and perceived threat (negative pathway) 
jointly accounted for gender differences in overall trust; the 
direct gender effect was not significant once these mediators 
were included. 

This work also clarifies construct alignment by 
distinguishing affective from cognitive trust and by 
specifying warmth and threat as parallel mediators. Several 
limitations warrant attention. First, because the analysis 
focused on binary gender, the generality of effects to non-
binary and gender-diverse identities remains to be 
established. Second, vignette-based methods afford control 
but should be complemented by in-situ studies with physical 
robots to assess ecological validity. Third, our context set 
covered four salient domains; expanding to additional social 
and professional settings will further test boundary 
conditions. Future work should also consider latent-variable 
modeling of trust, cross-cultural samples, and longitudinal 
designs that link perceptions to behavioral cooperation over 
time. 

Appendix A. The first appendix 

Below are the full texts of the four standardized vignettes 
used in the study. Each vignette is approximately 120–140 
words, written in neutral language, and controls for robot 

appearance (not specified), task complexity, tone, and data-
handling statements. 

A1. Healthcare (Caring) Vignette 

You are recovering at home under routine medical 
supervision. A waist-high mobile robot arrives daily to 
remind you to take prescribed medication and to record 
temperature and blood pressure. It greets you in a calm voice, 
confirms your name, and explains each step before 
proceeding. The robot repeats instructions on request, slows 
its pace when asked, and asks whether you want to contact 
your clinician if any reading is outside the safe range. A small 
display shows status messages (e.g., 'measuring,' 'recorded,' 
'complete'). The robot stores your readings locally and shares 
them only with your designated clinician. Today, the robot 
arrives at the usual hour, verifies the medication schedule, 
and begins the routine check-in, waiting while you take your 
pills and asking if you would like a brief walk afterward. 
Note. All vignettes were matched in length, tone, and data-handling 
disclosures to the extent possible; minor domain-specific phrases were 
retained to preserve role plausibility. 

A2. Education (Guidance) Vignette 

You are preparing for an upcoming exam. A desktop tutoring 
robot provides step-by-step explanations and checks your 
understanding with short quizzes. It adapts to your pace, 
highlights mistakes without judgment, and offers practice 
items that match your current level. The robot pauses 
regularly to ask whether to continue, review, or slow down, 
and it summarizes key points at the end of each segment. A 
small indicator shows when it is listening or processing. Your 
quiz scores are recorded for your private review only and are 
not shared with others. Today, the robot introduces a new 
problem set, asks how confident you feel before starting, and 
suggests a quick warm-up exercise to refresh foundational 
concepts. 
Note. All vignettes were matched in length, tone, and data-handling 
disclosures to the extent possible; minor domain-specific phrases were 
retained to preserve role plausibility. 

A3. Manufacturing (Task-Oriented) Vignette 

You are working on a light-assembly line. A collaborative 
robot (cobot) places components while you secure them. It 
follows a clear schedule, signals movements with lights and 
speech, and automatically pauses when you enter its 
workspace. A screen displays status states such as ‘ready’, 
‘placing’, ‘paused’, and ‘awaiting confirmation’. When a 
misalignment occurs, the cobot alerts you, requests 
confirmation, and proposes a recovery routine. Today, the 
cobot detects a part-tolerance deviation and asks whether to 
switch to the backup procedure. The system logs tasks locally 
for quality control; no personal data are stored. You can 
request the cobot to slow down, repeat an action, or halt if 
conditions seem unsafe, and it acknowledges each command 
before proceeding. 
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Note. All vignettes were matched in length, tone, and data-handling 
disclosures to the extent possible; minor domain-specific phrases were 
retained to preserve role plausibility. 

A4. Security (Authority) Vignette 

You are in a public building where a patrol robot circulates 
along predefined routes. It greets visitors, answers simple 
questions about directions, and reports hazards such as spills 
or blocked exits to human staff. If it detects unusual behavior 
or unattended items, it notifies human security personnel for 
follow-up. The robot records only low-resolution images for 
incident review and posts visible signs describing this policy. 
It keeps a respectful distance, yields to pedestrians, and 
announces turns to avoid surprises. Today, the robot stops 
near a closed stairwell and announces that maintenance is in 
progress, asking visitors to use the elevator. It waits until a 
staff member arrives, then resumes its route after confirming 
the area is safe. 
Note. All vignettes were matched in length, tone, and data-handling 
disclosures to the extent possible; minor domain-specific phrases were 
retained to preserve role plausibility. 

Appendix B: Measurement Items (Excerpt) 

All items are measured on a 7-point Likert scale (1 = Strongly 
Disagree, 7 = Strongly Agree). 

B.1. Affective Trust (Adapted from Jian et al., 2000) 1. I 
feel secure with the robot. 2. I am comfortable with the robot. 
3. I am not afraid of the robot. (Reverse-scored) 4. I feel a 
sense of connection with the robot. 

B.2. Cognitive Trust (Adapted from Jian et al., 2000) 1. 
The robot is reliable. 2. The robot is competent. 3. The robot 
is dependable. 4. I can count on the robot to perform its task. 

B.3. Perceived Warmth (RoSAS Warmth Subscale, 
Carpinella et al., 2017) 1. The robot seems friendly. 2. The 
robot seems sincere. 3. The robot seems good-natured. 4. The 
robot seems warm. 5. The robot seems sociable. 6. The robot 
seems emotional. 

B.4. Perceived Threat (Adapted from Social Evaluation 
Anxiety) 1. I would feel judged by the robot. 2. The robot 
seems dangerous. 3. I feel uneasy when the robot is near. 4. 
The robot could potentially harm me. 5. I feel threatened by 
the robot’s presence. 
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