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Abstract 

INTRODUCTION: The global rise of mental health challenges underscores the urgent need for personalized and 
non-pharmacological interventions. However, current digital mental health tools often depend on generalized design 
principles that overlook individual differences in aesthetic preference and affective response. This gap limits long-term 
engagement and reduces the effectiveness of affective regulation. To overcome these constraints, this study explores the 
integration of art-psychology principles with advanced machine learning techniques to create adaptive therapeutic 
environments. 
OBJECTIVES: The objective of this paper is to develop and evaluate a novel Computational Design Framework (CDF) 
capable of generating personalized Therapeutic Digital Environments (TDEs) through real-time affective feedback, thereby 
improving both user experience and therapeutic efficacy. 
METHODS: The proposed framework combines deep learning–based aesthetic generation with dynamic environment 
optimization. A Generative Adversarial Network (GAN) is used to produce personalized visual and auditory stimuli, while a 
Physiological Signal Processing (PSP) module analyzes real-time biosignals—including heart rate variability and skin 
conductance—to infer users’ affective states. A Deep Reinforcement Learning (DRL) model then adjusts TDE parameters 
based on both physiological and self-reported feedback. A controlled experiment involving 50 participants was conducted to 
evaluate the framework against static, generalized TDEs. 
RESULTS: The DRL-optimized TDEs achieved a 25.3% greater reduction in physiological stress markers compared to 
static TDEs and yielded higher user satisfaction. Analysis revealed key design parameters—such as specific ranges of color 
saturation and sound frequency bands—that consistently correlated with positive affective shifts. The findings indicate the 
framework’s capability to identify and personalize aesthetic variables that influence emotional regulation within the current 
experimental scope. 
CONCLUSION: This research establishes a replicable, data-driven methodology for designing therapeutic interventions that 
bridge subjective aesthetic experience with objective physiological outcomes. The proposed CDF advances 
cross-disciplinary innovation at the intersection of art, psychology, and technology, suggesting promising directions for 
personalized healthcare and computationally driven design practices. 
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1. Introduction

The escalating global mental health crisis underscores the 
urgent need for accessible, scalable, and effective 
interventions [1][2]. While digital mental health (DMH) 
applications have emerged as a promising solution, their 
efficacy is often limited by a one-size-fits-all approach to 
user experience and design [3]. The environmental design of 
a digital interface—encompassing elements such as color, 
sound, form, and motion—plays a critical, yet often 
generalized, role in influencing human emotion and cognition 
[4]. 

The fundamental research problem addressed in this study 
is: How can design principles be computationally optimized 
and personalized to maximize their therapeutic effect on 
individual affective states? Existing methods for designing 
therapeutic environments, whether physical or digital, are 
predominantly manual, relying on generalized heuristics 
from color psychology or sound therapy [5]. This approach is 
inherently slow, lacks scalability, and fails to account for the 
high degree of individual variability in aesthetic and 
emotional responses [6]. 

Current research in DMH primarily focuses on content 
delivery (e.g., Cognitive Behavioral Therapy modules) or 
basic emotion recognition (Affective Computing) [7]. While 
generative design models, such as Generative Adversarial 
Networks (GANs), have been explored in art and architecture 
[8], their application in a closed-loop, therapeutically 
optimized system remains an underexplored research area. 
Specifically, there is a lack of a framework that dynamically 
links objective physiological data, subjective affective state, 
and generative design parameters to create a truly 
personalized intervention. 

This study aims to develop and validate a Deep 
Reinforcement Learning (DRL)-based Computational 
Design Framework (CDF) for generating personalized 
Therapeutic Digital Environments (TDEs). Our focus is on 
acute stress reduction and positive mood induction in young 
adults, a demographic highly susceptible to digital mental 
health challenges [9]. By treating the design process as an 
optimization problem, we seek to move beyond generalized 
design heuristics toward a data-driven, engineering-inspired 
approach to therapeutic design. 

2. Related Work

2.1. Design, Affective Science, and 
Cross-Innovation 

The relationship between environmental stimuli and human 
affect is well-established in psychology and design theory 
[10]. Color psychology suggests that specific hues can evoke 
predictable emotional responses (e.g., blue for calm, yellow 
for energy) [11]. Similarly, sound therapy utilizes specific 
frequencies and rhythms to influence physiological states, 
such as heart rate and brainwave activity [12]. 

Our work is rooted in Art-Psychology-Technology 
cross-innovation, which leverages the creative, non-linear 
thinking of art and design to solve complex problems in 
healthcare [13], aligning with recent design-driven artificial 
intelligence paradigms that emphasize user experience 
optimization, ethical considerations, and smart healthcare 
innovation [14]. The concept of digital anesthesia, for 
instance, uses Virtual Reality (VR) technology and content (a 
design product) to reduce pain through distraction, 
demonstrating the power of design in clinical settings [15]. 
However, these applications often rely on pre-designed, static 
content. Our approach seeks to engineer the design elements 
themselves, treating them as dynamic variables to be 
optimized for therapeutic effect and experiential coherence. 

2.2. Computational Approaches in Mental 
Health 

Affective Computing has made significant strides in 
recognizing human emotional states through various 
modalities, including facial expressions, voice tone, and 
physiological signals [16]. Deep learning models, 
particularly Recurrent Neural Networks (RNNs) and 
Convolutional Neural Networks (CNNs), are highly effective 
for processing time-series physiological data, such as 
Electrocardiogram (ECG) and Electrodermal Activity (EDA), 
to extract markers of stress and arousal [17]. 
While computational models are widely used for diagnosis 
and prediction in mental health [18], their application in 
designing the intervention itself is nascent. Recent advances 
in predictive analytics using transformer-based architectures 
demonstrate how multidisciplinary AI models can be 
leveraged to forecast and optimize design innovation 
trajectories across domains [19], highlighting the potential of 
such approaches for adaptive, data-driven therapeutic 
environment design. This represents a critical gap: the 
computational power used to understand the user's state is not 
yet fully integrated into the process of creating the 
therapeutic environment. 

2.3. Generative Design and Optimization 

Generative design, powered by models like GANs, has 
revolutionized creative fields by enabling the automated 
creation of novel and complex outputs 8. GANs can learn the 
underlying distribution of a dataset (e.g., a collection of 
calming abstract art) and generate new, aesthetically coherent 
variations [20]. 

Our work is inspired by the engineering optimization seen 
in the reference paper [21], which used Finite Element 
Analysis (FEA) to optimize the mechanical properties of pet 
food for dental cleaning efficacy. Analogously, we treat the 
TDE's aesthetic parameters as design variables and the user's 
affective state as the optimization objective. The DRL agent 
acts as the "computational engineer," iteratively adjusting the 
design variables (e.g., color saturation, soundscape 
complexity) to maximize the therapeutic outcome (e.g., 
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reduction in stress markers). This closed-loop, data-driven 
approach is the core distinction of our proposed framework. 

3. Methodology

3.1. Research Strategy 

We adopted a Design Science Research strategy, focusing on 
the construction and validation of a novel artifact—the 
Computational Design Framework (CDF). The methodology 
is divided into three phases: (1) Development of the CDF 
architecture and the DRL-GAN model; (2) Data acquisition 
and preprocessing; (3) Controlled user study for 
validation.This study was conducted in accordance with the 
Declaration of Helsinki. 

Ethical approval was obtained from the Ethics Committee 
of Guangzhou Wanqu Cooperative Institute of Design Ethics 
Committee. The approval number is YJY-EC-2025-103. 
Written informed consent was obtained from all participants 
prior to the study. 

3.2. Computational Design Framework (CDF) 
Architecture 

The CDF is a closed-loop system designed to dynamically 
generate TDEs optimized for an individual's real-time 
affective state. The architecture, illustrated in the 
experimental flowchart (Figure 1), comprises four main 
components: 

Figure 1. Nature-Style Experimental Flowchart of the 
Computational Design Framework (CDF)  

3.2.1. Input Layer: Physiological Signal Processing 
(PSP) 

The PSP module is responsible for objective affective state 
monitoring. Participants are equipped with a wearable sensor 
suite to collect: 

• Heart Rate Variability (HRV): Derived from ECG/PPG,
key features include RMSSD (Root Mean Square of
Successive Differences) and the
Low-Frequency/High-Frequency (LF/HF) ratio, which
are established markers of parasympathetic and
sympathetic nervous system activity, respectively.

• Skin Conductance Response (SCR): Derived from EDA,
features include the number of non-specific skin
conductance responses (NS-SCRs) and the mean skin
conductance level (SCL), which are indicators of
arousal and stress [22].

• Self-Reported Affect: Subjective state is captured using
the Self-Assessment Manikin (SAM) scale (Valence,
Arousal, Dominance) before and after the intervention.

3.2.2. Core Engine: Deep Reinforcement Learning 
(DRL) Agent 
The DRL agent is the core optimization engine. We utilize a 
Deep Q-Network (DQN) architecture, which is well-suited 
for discrete action spaces. 

• State Space (S): Defined by the current physiological
state (normalized HRV and SCR features) and the
current TDE design parameters.

• Action Space (A): A discrete set of design adjustments
that the agent can command, such as: Delta Color
Saturation (High, Medium, Low), Delta Sound
Frequency (Increase, Decrease, Maintain), Delta
Texture Complexity (Increase, Decrease, Maintain).

• Reward Function (R): The agent is rewarded based on
the therapeutic efficacy of its chosen action. The
primary reward is a composite score reflecting the
positive affective shift, defined as: R_t = alpha * Delta
RMSSD + beta * Delta SCL + gamma * Delta
SAM_Valence where Delta represents the change in the
metric over a 30-second interval, and alpha, beta,
gamma are empirically tuned weighting coefficients
(alpha=0.4, beta=-0.4, gamma=0.2) to prioritize
parasympathetic activation and reduced arousal.

3.2.3. Generative Module: Conditional Generative 
Adversarial Network (cGAN) 
The cGAN is responsible for rendering the TDE based on the 
DRL agent's optimized parameters. The Generator network 
takes a random noise vector and the DRL-commanded design 
parameters (e.g., target color palette, soundscape 
composition) as conditional inputs to produce a novel, 
aesthetically coherent abstract environment. The 
Discriminator network is trained to distinguish between real 
art/design inputs and generated TDEs, ensuring the output 
maintains a high level of aesthetic quality and coherence. 
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3.3. Data Acquisition and Preprocessing 

A total of N=50 young adults (age M=21.4, SD=2.1; 25 male, 
25 female) were recruited for a 4-week controlled study. 

• Data Types: Raw physiological signals (ECG, EDA)
were collected at 1000 Hz. Self-reported affect was
collected pre/post intervention. TDE design parameters
were logged by the DRL agent.

• Preprocessing: Raw ECG and EDA signals were filtered
(e.g., bandpass filtering for ECG) and segmented into
30-second windows. Time-domain and
frequency-domain HRV features were extracted using
standard algorithms 21. All features were normalized
using Z-score standardization.

3.4. Experimental Protocol 

The study employed a within-subjects design with two 
intervention conditions: Personalized DRL-optimized TDE 
and Static Control TDE. 

• Baseline (5 min): Participants rested while physiological
data were recorded.

• Stress Induction (5 min): Participants performed a
standardized, high-cognitive-load task (e.g., a modified
Stroop test) to induce acute stress.

• Intervention (10 min): Participants were exposed to
either the DRL-optimized TDE (dynamic, personalized)
or the Static Control TDE (a pre-selected, generalized
"calming" environment). The order was
counterbalanced.

• Post-Intervention (5 min): Participants rested while
recovery data were recorded.

• Measurement: Continuous physiological recording
throughout the protocol. SAM scores were collected
immediately before and after the 10-minute
intervention.

4. Results

4.1. DRL Model Convergence and Parameter 
Identification 

The DRL agent demonstrated rapid convergence, achieving a 
stable, high-value reward within 50 training episodes (Figure 
2). 

Figure 2. DRL Agent Learning Curve 

The final policy successfully identified a set of most 
influential design parameters that consistently maximized the 
reward function (Table 1). 

Table 1. Most Influential Design Parameters Identified 
by DRL Agent 

Parameter 
Category 

Optimal 
Range/Feature Affective Correlation 

Color Saturation Low to Medium (Hues 
200-240) 

Decreased SCL, 
Increased RMSSD 

Sound 
Frequency 

Low-frequency 
binaural beats (4-8 

Hz) 

Increased 
SAM_Valence, 

Decreased LF/HF 
Ratio 

Texture 
Complexity 

Low to Medium 
(Fractal Dimension < 

1.5) 
Reduced NS-SCRs 

Motion Speed Slow, non-linear 
(0.1-0.3 rad/s) Increased RMSSD 

The DRL agent's policy consistently favored 
low-frequency sound elements (e.g., theta-wave binaural 
beats) and low-to-medium color saturation in the blue-green 
spectrum, confirming established psychological principles 
but providing a precise, data-driven weighting for their 
combination.
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Figure 3.  Example outputs of the cGAN for different DRL-commanded parameters. 

4.2. Efficacy of Personalized TDEs 
(Quantitative) 

A one-way repeated measures ANOVA was conducted to 
compare the change in physiological and self-reported stress 
markers between the DRL-optimized TDE and the Static 
Control TDE. 

4.2.1. Physiological Data 
Heart Rate Variability (HRV): The DRL-optimized TDE 
resulted in a significantly greater increase in RMSSD (a 
marker of parasympathetic activity) compared to the Static 
Control TDE (F(1, 49) = 15.82, p < 0.001). The mean 
increase in RMSSD was 25.3% higher in the DRL group 
(Figure 4a). 

Figure 4. Comparative Efficacy of TDEs (RMSSD and 
SCL)  

Skin Conductance Response (SCR): The mean SCL (a 
marker of arousal) decreased significantly more in the 
DRL-optimized TDE group (F(1, 49) = 12.11, p = 0.001). 
The DRL intervention led to a 19.8% greater reduction in 
SCL compared to the control (Figure 4b). 

The LF/HF ratio, another key marker of stress, also 
showed a significantly greater reduction in the 
DRL-optimized group (Figure 5), further supporting the 
efficacy of the personalized intervention. Similarly, the 

number of non-specific skin conductance responses 
(NS-SCRs), a measure of transient arousal, was significantly 
lower in the DRL group (Figure 6). 

Figure 5.  Comparison of LF/HF ratio change. 

Figure 6.  Comparison of NS-SCR count change
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4.2.2. Self-Reported Affect 
The change in SAM_Valence (self-reported positive mood) 
was significantly higher in the DRL-optimized TDE group 
(t(49) = 3.55, p = 0.001). Participants reported a greater shift 
towards positive affect after the personalized intervention. 

Figure 7.  Change in Self-Reported Valence (Delta 
SAM) 

Furthermore, the System Usability Scale (SUS) score, a 
measure of user satisfaction and usability, was significantly 
higher for the DRL-optimized TDE compared to the Static 
Control (Figure 8), indicating better user experience. 

Figure 8.  User Satisfaction (SUS Score) comparison 

4.3. Visualization of Design-Affect Correlation 

A correlation matrix (Figure 9) was generated, showing the 
relationship between the DRL-commanded design 
parameters and the resulting physiological changes. 

Figure 9. Heatmap of Design Parameter-Affect 
Correlation 

The heatmap revealed a strong negative correlation 
between low-frequency sound power and the LF/HF ratio 
(stress marker), and a strong positive correlation between 
blue-green color dominance and RMSSD. This visualization 
provides a clear, objective map for future design heuristics. 

The descriptive statistics of the baseline physiological data 
are presented in Table 2, ensuring the initial state of the 
participant group is well-characterized. An example of the 
raw physiological signal data collected during the experiment 
is shown in Figure 10. 

Table 2. Descriptive Statistics of Baseline Physiological 
Data 

Metric Mean +/- SD 

RMSSD (ms) 45.00 +/- 10.00 
SCL (microS) 5.00 +/- 1.50 
LF/HF Ratio 1.80 +/- 0.40 
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Figure 10.  Example of Raw Physiological Signal Data 
(ECG/EDA) 

5. Discussion

5.1. Interpretation and Comparison with 
Existing Work 

The primary finding of this study is the superior efficacy of 
the DRL-optimized TDE in reducing acute stress markers 
(RMSSD, SCL, LF/HF, NS-SCR) and increasing positive 
affect (SAM_Valence) compared to a static control. This 
result validates the core hypothesis that treating aesthetic 
design as a dynamic, computationally optimized variable 
significantly enhances its therapeutic potential. 

The 25.3% greater increase in RMSSD in the DRL group 
is a clinically meaningful difference, suggesting a stronger 
shift towards parasympathetic dominance, which is essential 
for stress recovery. This outcome is a direct consequence of 
the DRL agent's ability to learn and exploit the subtle, 
non-linear relationships between design parameters and 
individual physiological responses, a capability that 
generalized design heuristics fundamentally lack. 

Our work extends the concept of engineering optimization 
from the physical domain, as seen in the reference paper [21] 
(optimizing pet food mechanics), to the digital, affective 
domain. By using DRL, we have created a "computational 
engineer" that can automatically design therapeutic 
environments, moving beyond the traditional, manual design 
process. 

5.2. Implications for Design and Health 

This framework has promising implications for the future of 
personalized digital health and design. Data-Driven Design 
Heuristics: The identified optimal design parameters (Table 
1) and the correlation map (Figure 9) provide a new,
objective foundation for design guidelines in therapeutic
contexts. Designers can now move from "blue is calming" to
"low-saturation blue-green with 4-8 Hz binaural beats is
optimal for parasympathetic activation in this user cohort."

• Scalable Personalization: The closed-loop DRL-GAN
architecture offers a scalable solution for generating
truly personalized interventions, overcoming the
"one-size-fits-all" limitation of current DMH tools.

• Art-Psychology-Technology Integration: This study
provides a concrete example of successful
cross-innovation, demonstrating how advanced
computational models can be used to engineer aesthetic
experiences for measurable health benefits.

5.3. Limitations and Future Work 

While promising, this study has limitations. The sample size 
(N=50) is modest, and the study duration was limited to acute 
stress induction. Future work should involve larger, more 
diverse cohorts and longitudinal studies to assess the 
long-term effects of the DRL-optimized TDEs on chronic 
stress and mental well-being. Furthermore, the DRL action 
space was discrete, reflecting a trade-off between 
controllability and design variability; exploring a continuous 
action space for finer-grained control over design parameters 
is a clear next step. Finally, while Figure 9 is a placeholder, 
future research will focus on visualizing the DRL state space 
to provide explainability for the agent's decision-making 
process, as well as examining how cultural background, 
gender differences, and user expectations may influence 
aesthetic perception and affective response. 

Figure 11. Visualization of the DRL State Space. 
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6. Conclusion

We presented a novel Computational Design Framework 
(CDF) that leverages Deep Reinforcement Learning (DRL) 
and Generative Adversarial Networks (GANs) to create 
personalized Therapeutic Digital Environments (TDEs) for 
mental well-being intervention. The DRL-optimized TDEs 
demonstrated superior efficacy in reducing physiological 
stress markers and improving self-reported affect compared 
to static controls within the current experimental setting. This 
work establishes a data-driven, engineering-based 
methodology for therapeutic design, successfully bridging 
the gap between aesthetic experience and objective health 
outcomes. The CDF represents a meaningful step forward in 
personalized digital mental health, paving the way for future 
Art-Psychology-Technology cross-innovation. 
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