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Abstract

INTRODUCTION: The global rise of mental health challenges underscores the urgent need for personalized and
non-pharmacological interventions. However, current digital mental health tools often depend on generalized design
principles that overlook individual differences in aesthetic preference and affective response. This gap limits long-term
engagement and reduces the effectiveness of affective regulation. To overcome these constraints, this study explores the
integration of art-psychology principles with advanced machine learning techniques to create adaptive therapeutic
environments.

OBJECTIVES: The objective of this paper is to develop and evaluate a novel Computational Design Framework (CDF)
capable of generating personalized Therapeutic Digital Environments (TDEs) through real-time affective feedback, thereby
improving both user experience and therapeutic efficacy.

METHODS: The proposed framework combines deep learning—based aesthetic generation with dynamic environment
optimization. A Generative Adversarial Network (GAN) is used to produce personalized visual and auditory stimuli, while a
Physiological Signal Processing (PSP) module analyzes real-time biosignals—including heart rate variability and skin
conductance—to infer users’ affective states. A Deep Reinforcement Learning (DRL) model then adjusts TDE parameters
based on both physiological and self-reported feedback. A controlled experiment involving 50 participants was conducted to
evaluate the framework against static, generalized TDEs.

RESULTS: The DRL-optimized TDEs achieved a 25.3% greater reduction in physiological stress markers compared to
static TDEs and yielded higher user satisfaction. Analysis revealed key design parameters—such as specific ranges of color
saturation and sound frequency bands—that consistently correlated with positive affective shifts. The findings indicate the
framework’s capability to identify and personalize aesthetic variables that influence emotional regulation within the current
experimental scope.

CONCLUSION: This research establishes a replicable, data-driven methodology for designing therapeutic interventions that
bridge subjective aesthetic experience with objective physiological outcomes. The proposed CDF advances
cross-disciplinary innovation at the intersection of art, psychology, and technology, suggesting promising directions for
personalized healthcare and computationally driven design practices.
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1. Introduction

The escalating global mental health crisis underscores the
urgent need for accessible, scalable, and effective
interventions [1][2]. While digital mental health (DMH)
applications have emerged as a promising solution, their
efficacy is often limited by a one-size-fits-all approach to
user experience and design [3]. The environmental design of
a digital interface—encompassing elements such as color,
sound, form, and motion—plays a critical, yet often
generalized, role in influencing human emotion and cognition
[4].
The fundamental research problem addressed in this study
is: How can design principles be computationally optimized
and personalized to maximize their therapeutic effect on
individual affective states? Existing methods for designing
therapeutic environments, whether physical or digital, are
predominantly manual, relying on generalized heuristics
from color psychology or sound therapy [5]. This approach is
inherently slow, lacks scalability, and fails to account for the
high degree of individual variability in aesthetic and
emotional responses [6].

Current research in DMH primarily focuses on content
delivery (e.g., Cognitive Behavioral Therapy modules) or
basic emotion recognition (Affective Computing) [7]. While
generative design models, such as Generative Adversarial
Networks (GANS), have been explored in art and architecture
[8], their application in a closed-loop, therapeutically
optimized system remains an underexplored research area.
Specifically, there is a lack of a framework that dynamically
links objective physiological data, subjective affective state,
and generative design parameters to create a truly
personalized intervention.

This study aims to develop and validate a Deep
Reinforcement Learning (DRL)-based Computational
Design Framework (CDF) for generating personalized
Therapeutic Digital Environments (TDEs). Our focus is on
acute stress reduction and positive mood induction in young
adults, a demographic highly susceptible to digital mental
health challenges [9]. By treating the design process as an
optimization problem, we seek to move beyond generalized
design heuristics toward a data-driven, engineering-inspired
approach to therapeutic design.

2. Related Work

2.1. Design, Affective Science, and
Cross-Innovation

The relationship between environmental stimuli and human
affect is well-established in psychology and design theory
[10]. Color psychology suggests that specific hues can evoke
predictable emotional responses (e.g., blue for calm, yellow
for energy) [11]. Similarly, sound therapy utilizes specific
frequencies and rhythms to influence physiological states,
such as heart rate and brainwave activity [12].
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Our work is rooted in Art-Psychology-Technology
cross-innovation, which leverages the creative, non-linear
thinking of art and design to solve complex problems in
healthcare [13], aligning with recent design-driven artificial
intelligence paradigms that emphasize user experience
optimization, ethical considerations, and smart healthcare
innovation [14]. The concept of digital anesthesia, for
instance, uses Virtual Reality (VR) technology and content (a
design product) to reduce pain through distraction,
demonstrating the power of design in clinical settings [15].
However, these applications often rely on pre-designed, static
content. Our approach seeks to engineer the design elements
themselves, treating them as dynamic variables to be
optimized for therapeutic effect and experiential coherence.

2.2. Computational Approaches in Mental
Health

Affective Computing has made significant strides in
recognizing human emotional states through various
modalities, including facial expressions, voice tone, and
physiological signals [16]. Deep learning models,
particularly Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs), are highly effective
for processing time-series physiological data, such as
Electrocardiogram (ECG) and Electrodermal Activity (EDA),
to extract markers of stress and arousal [17].

While computational models are widely used for diagnosis
and prediction in mental health [18], their application in
designing the intervention itself is nascent. Recent advances
in predictive analytics using transformer-based architectures
demonstrate how multidisciplinary Al models can be
leveraged to forecast and optimize design innovation
trajectories across domains [19], highlighting the potential of
such approaches for adaptive, data-driven therapeutic
environment design. This represents a critical gap: the
computational power used to understand the user's state is not
yet fully integrated into the process of creating the
therapeutic environment.

2.3. Generative Design and Optimization

Generative design, powered by models like GANs, has
revolutionized creative fields by enabling the automated
creation of novel and complex outputs 8. GANSs can learn the
underlying distribution of a dataset (e.g., a collection of
calming abstract art) and generate new, aesthetically coherent
variations [20].

Our work is inspired by the engineering optimization seen
in the reference paper [21], which used Finite Element
Analysis (FEA) to optimize the mechanical properties of pet
food for dental cleaning efficacy. Analogously, we treat the
TDE's aesthetic parameters as design variables and the user's
affective state as the optimization objective. The DRL agent
acts as the "computational engineer," iteratively adjusting the
design variables (e.g., color saturation, soundscape
complexity) to maximize the therapeutic outcome (e.g.,
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reduction in stress markers). This closed-loop, data-driven
approach is the core distinction of our proposed framework.

3. Methodology

3.1. Research Strategy

We adopted a Design Science Research strategy, focusing on
the construction and validation of a novel artifact—the
Computational Design Framework (CDF). The methodology
is divided into three phases: (1) Development of the CDF
architecture and the DRL-GAN model; (2) Data acquisition
and preprocessing; (3) Controlled wuser study for
validation.This study was conducted in accordance with the
Declaration of Helsinki.

Ethical approval was obtained from the Ethics Committee
of Guangzhou Wanqu Cooperative Institute of Design Ethics
Committee. The approval number is YJY-EC-2025-103.
Written informed consent was obtained from all participants
prior to the study.

3.2. Computational Design Framework (CDF)
Architecture

The CDF is a closed-loop system designed to dynamically
generate TDEs optimized for an individual's real-time
affective state. The architecture, illustrated in the
experimental flowchart (Figure 1), comprises four main
components:
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Figure 1. Nature-Style Experimental Flowchart of the
Computational Design Framework (CDF)

3.2.1. Input Layer: Physiological Signal Processing
(PSP)
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The PSP module is responsible for objective affective state
monitoring. Participants are equipped with a wearable sensor
suite to collect:

o Heart Rate Variability (HRV): Derived from ECG/PPG,
key features include RMSSD (Root Mean Square of
Successive Differences) and the
Low-Frequency/High-Frequency (LF/HF) ratio, which
are established markers of parasympathetic and
sympathetic nervous system activity, respectively.

o Skin Conductance Response (SCR): Derived from EDA,
features include the number of non-specific skin
conductance responses (NS-SCRs) and the mean skin
conductance level (SCL), which are indicators of
arousal and stress [22].

o Self-Reported Affect: Subjective state is captured using
the Self-Assessment Manikin (SAM) scale (Valence,
Arousal, Dominance) before and after the intervention.

3.2.2. Core Engine: Deep Reinforcement Learning
(DRL) Agent

The DRL agent is the core optimization engine. We utilize a
Deep Q-Network (DQN) architecture, which is well-suited
for discrete action spaces.

o State Space (S): Defined by the current physiological
state (normalized HRV and SCR features) and the
current TDE design parameters.

e Action Space (A): A discrete set of design adjustments
that the agent can command, such as: Delta Color
Saturation (High, Medium, Low), Delta Sound
Frequency (Increase, Decrease, Maintain), Delta
Texture Complexity (Increase, Decrease, Maintain).

e Reward Function (R): The agent is rewarded based on
the therapeutic efficacy of its chosen action. The
primary reward is a composite score reflecting the
positive affective shift, defined as: R_t = alpha * Delta
RMSSD + beta * Delta SCL + gamma * Delta
SAM_Valence where Delta represents the change in the
metric over a 30-second interval, and alpha, beta,
gamma are empirically tuned weighting coefficients
(alpha=0.4, beta=-0.4, gamma=0.2) to prioritize
parasympathetic activation and reduced arousal.

3.2.3. Generative Module: Conditional Generative
Adversarial Network (cGAN)

The cGAN is responsible for rendering the TDE based on the
DRL agent's optimized parameters. The Generator network
takes a random noise vector and the DRL-commanded design
parameters (e.g., target color palette, soundscape
composition) as conditional inputs to produce a novel,
aesthetically  coherent abstract environment. The
Discriminator network is trained to distinguish between real
art/design inputs and generated TDEs, ensuring the output
maintains a high level of aesthetic quality and coherence.
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3.3. Data Acquisition and Preprocessing

A total of N=50 young adults (age M=21.4, SD=2.1; 25 male,
25 female) were recruited for a 4-week controlled study.

e Data Types: Raw physiological signals (ECG, EDA)
were collected at 1000 Hz. Self-reported affect was
collected pre/post intervention. TDE design parameters
were logged by the DRL agent.

e Preprocessing: Raw ECG and EDA signals were filtered
(e.g., bandpass filtering for ECG) and segmented into
30-second windows. Time-domain and
frequency-domain HRV features were extracted using
standard algorithms 21. All features were normalized
using Z-score standardization.

3.4. Experimental Protocol

The study employed a within-subjects design with two
intervention conditions: Personalized DRL-optimized TDE
and Static Control TDE.

¢ Baseline (5 min): Participants rested while physiological
data were recorded.

e Stress Induction (5 min): Participants performed a
standardized, high-cognitive-load task (e.g., a modified
Stroop test) to induce acute stress.

e Intervention (10 min): Participants were exposed to
either the DRL-optimized TDE (dynamic, personalized)
or the Static Control TDE (a pre-selected, generalized
"calming" environment). The order  was
counterbalanced.

e Post-Intervention (5 min): Participants rested while
recovery data were recorded.

e Measurement: Continuous physiological recording
throughout the protocol. SAM scores were collected
immediately before and after the 10-minute
intervention.

4. Results

4.1. DRL Model Convergence and Parameter
Identification

The DRL agent demonstrated rapid convergence, achieving a
stable, high-value reward within 50 training episodes (Figure
2).
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Figure 2. DRL Agent Learning Curve

The final policy successfully identified a set of most
influential design parameters that consistently maximized the
reward function (Table 1).

Table 1. Most Influential Design Parameters Identified

by DRL Agent
Parameter Optimal . .
Category Range/Feature Affective Correlation

Decreased SCL,
Increased RMSSD

Low to Medium (Hues

Color Saturation 200-240)

Low-frequenc Increased
Sound . a y SAM_Valence,
binaural beats (4-8
Frequency H Decreased LF/HF
z) .
Ratio
Texture Low to Medium
. (Fractal Dimension < Reduced NS-SCRs

Complexity

1.5)

Slow, non-linear

Motion Speed (0.1-0.3 rad/s) Increased RMSSD

The DRL agent's policy consistently favored
low-frequency sound elements (e.g., theta-wave binaural
beats) and low-to-medium color saturation in the blue-green
spectrum, confirming established psychological principles
but providing a precise, data-driven weighting for their
combination.
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A. Personalized Calm (DRL-Optimized) B. Static Control (Generalized Calm)
Design Parameters Design Parameters
Color: Low Saturation (Blue-Green) Color: Medium Saturation {Yellow)
Sound: Low Frequency (3-8 Hz) Sound: Medium Frequency (White Nalse)
- Texture: Low Complexity - Texture: Medium Complexity

Figure 3. Example outputs of the cGAN for different DRL-commanded parameters.

4.2. Efficacy of Personalized TDEs
(Quantitative)

A one-way repeated measures ANOVA was conducted to
compare the change in physiological and self-reported stress
markers between the DRL-optimized TDE and the Static
Control TDE.

4.2.1. Physiological Data

Heart Rate Variability (HRV): The DRL-optimized TDE
resulted in a significantly greater increase in RMSSD (a
marker of parasympathetic activity) compared to the Static
Control TDE (F(1, 49) = 15.82, p < 0.001). The mean
increase in RMSSD was 25.3% higher in the DRL group
(Figure 4a).
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Figure 4. Comparative Efficacy of TDEs (RMSSD and
SCL)

Skin Conductance Response (SCR): The mean SCL (a
marker of arousal) decreased significantly more in the
DRL-optimized TDE group (F(1, 49) = 12.11, p = 0.001).
The DRL intervention led to a 19.8% greater reduction in
SCL compared to the control (Figure 4b).

The LF/HF ratio, another key marker of stress, also
showed a significantly greater reduction in the
DRL-optimized group (Figure 5), further supporting the
efficacy of the personalized intervention. Similarly, the
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C. High Arousal {DRL-Corrective Action)

number of non-specific skin conductance responses
(NS-SCRs), a measure of transient arousal, was significantly

lower in the DRL group (Figure 6).

Change in LF/HF Ratio

0.2 -
0.1 -

0.0 seokesk

—0.1
—0.2
—0.3
—0.4 - 0o

A LF/HF Ratio (Post - Pre)

—0.5 A O

DRL-Optimized

Static-Control
Intervention Condition

Figure 5. Comparison of LF/HF ratio change.
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Figure 6. Comparison of NS-SCR count change
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4.2.2. Self-Reported Affect

The change in SAM_Valence (self-reported positive mood)
was significantly higher in the DRL-optimized TDE group
((49) = 3.55, p = 0.001). Participants reported a greater shift
towards positive affect after the personalized intervention.
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Figure 7. Change in Self-Reported Valence (Delta
SAM)

Furthermore, the System Usability Scale (SUS) score, a
measure of user satisfaction and usability, was significantly
higher for the DRL-optimized TDE compared to the Static
Control (Figure 8), indicating better user experience.
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Figure 8. User Satisfaction (SUS Score) comparison

4.3. Visualization of Design-Affect Correlation

A correlation matrix (Figure 9) was generated, showing the
relationship  between the DRL-commanded design
parameters and the resulting physiological changes.

Correlation between Design Parameters and Affective SIIBarkers

Color Saturation
Sound Frequency

Texture Complexity

Design Parameters

Motion Speed

o
o
Pearson Correlation Coefficient

|
e
i

Color Hue (Blue-Green)

Affective Markers

Figure 9. Heatmap of Design Parameter-Affect
Correlation

The heatmap revealed a strong negative correlation
between low-frequency sound power and the LF/HF ratio
(stress marker), and a strong positive correlation between
blue-green color dominance and RMSSD. This visualization
provides a clear, objective map for future design heuristics.

The descriptive statistics of the baseline physiological data
are presented in Table 2, ensuring the initial state of the
participant group is well-characterized. An example of the
raw physiological signal data collected during the experiment
is shown in Figure 10.

Table 2. Descriptive Statistics of Baseline Physiological

Data
Metric Mean +/- SD
RMSSD (ms) 45.00 +/- 10.00
SCL (microS) 5.00 +/- 1.50
LF/HF Ratio 1.80 +/- 0.40
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Figure 10. Example of Raw Physiological Signal Data
(ECG/EDA)

5. Discussion

5.1. Interpretation and Comparison with
Existing Work

The primary finding of this study is the superior efficacy of
the DRL-optimized TDE in reducing acute stress markers
(RMSSD, SCL, LF/HF, NS-SCR) and increasing positive
affect (SAM_Valence) compared to a static control. This
result validates the core hypothesis that treating aesthetic
design as a dynamic, computationally optimized variable
significantly enhances its therapeutic potential.

The 25.3% greater increase in RMSSD in the DRL group
is a clinically meaningful difference, suggesting a stronger
shift towards parasympathetic dominance, which is essential
for stress recovery. This outcome is a direct consequence of
the DRL agent's ability to learn and exploit the subtle,
non-linear relationships between design parameters and
individual physiological responses, a capability that
generalized design heuristics fundamentally lack.

Our work extends the concept of engineering optimization
from the physical domain, as seen in the reference paper [21]
(optimizing pet food mechanics), to the digital, affective
domain. By using DRL, we have created a "computational
engineer" that can automatically design therapeutic
environments, moving beyond the traditional, manual design
process.

5.2. Implications for Design and Health

This framework has promising implications for the future of
personalized digital health and design. Data-Driven Design
Heuristics: The identified optimal design parameters (Table
1) and the correlation map (Figure 9) provide a new,
objective foundation for design guidelines in therapeutic
contexts. Designers can now move from "blue is calming" to
"low-saturation blue-green with 4-8 Hz binaural beats is
optimal for parasympathetic activation in this user cohort."
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e Scalable Personalization: The closed-loop DRL-GAN
architecture offers a scalable solution for generating
truly personalized interventions, overcoming the
"one-size-fits-all" limitation of current DMH tools.

o Art-Psychology-Technology Integration: This study
provides a concrete example of successful
cross-innovation, demonstrating how  advanced
computational models can be used to engineer aesthetic
experiences for measurable health benefits.

5.3. Limitations and Future Work

While promising, this study has limitations. The sample size
(N=50) is modest, and the study duration was limited to acute
stress induction. Future work should involve larger, more
diverse cohorts and longitudinal studies to assess the
long-term effects of the DRL-optimized TDEs on chronic
stress and mental well-being. Furthermore, the DRL action
space was discrete, reflecting a trade-off between
controllability and design variability; exploring a continuous
action space for finer-grained control over design parameters
is a clear next step. Finally, while Figure 9 is a placeholder,
future research will focus on visualizing the DRL state space
to provide explainability for the agent's decision-making
process, as well as examining how cultural background,
gender differences, and user expectations may influence
aesthetic perception and affective response.
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Figure 11. Visualization of the DRL State Space.
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6. Conclusion

We presented a novel Computational Design Framework
(CDF) that leverages Deep Reinforcement Learning (DRL)
and Generative Adversarial Networks (GANs) to create
personalized Therapeutic Digital Environments (TDEs) for
mental well-being intervention. The DRL-optimized TDEs
demonstrated superior efficacy in reducing physiological
stress markers and improving self-reported affect compared
to static controls within the current experimental setting. This
work  establishes a data-driven, engineering-based
methodology for therapeutic design, successfully bridging
the gap between aesthetic experience and objective health
outcomes. The CDF represents a meaningful step forward in
personalized digital mental health, paving the way for future
Art-Psychology-Technology cross-innovation.
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