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Abstract

INTRODUCTION: Pathological complete response (pCR) following neoadjuvant chemotherapy (NAC) is a validated
surrogate endpoint for long-term survival in breast cancer patients. However, conventional biomarkers exhibit limited
predictive accuracy, with approximately 60-80% of patients failing to achieve pCR. Dynamic contrast-enhanced MRI
(DCE-MRI) provides high-resolution information on tumor vascularization and heterogeneity, but prior radiomics models
have predominantly relied on single-feature paradigms, which may not fully capture complex tumor phenotypes.
METHODS: We developed a multimodal deep-learning radiomics (DLR) pipeline using the publicly available ACRIN
6657/I-SPY1 dataset (n=163). After rigorous preprocessing (bias-field correction, isotropic resampling, Z-score
normalization), we extracted a comprehensive set of 1,702 standardized radiomics features compliant with the Image
Biomarker Standardization Initiative (IBSI), which quantitatively capture tumor morphology, texture, and intensity
patterns. Additionally, 8,576 deep learning features were derived from five convolutional neural networks (ResNet50,
DenseNet-169, InceptionV3, InceptionResNetV2, EfficientNetB0), enabling the model to learn complex, data-driven
representations beyond human-defined features. The fusion of these complementary feature types provides a more holistic
characterization of tumor phenotype, significantly enhancing predictive performance compared to single-modality
approaches. A two-stage feature-selection strategy utilizing univariate analysis and the Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm was applied, followed by linear signature construction. Ten classifiers were
evaluated under stratified cross-validation and independent testing.

RESULTS: The fusion of handcrafted radiomics and deep learning features significantly enhanced predictive performance.
The best-performing model, a multilayer perceptron (MLP), achieved an area under the receiver operating characteristic
curve (AUC) of 0.98 on the independent test set, with an accuracy of 95.92%, sensitivity of 92.86%, and specificity of]
97.14%. Logistic regression also demonstrated strong performance (AUC = 0.980). Decision curve analysis confirmed the
clinical utility of all models across a wide range of threshold probabilities.

CONCLUSIONS: The integration of radiomics and deep learning features within a machine learning framework provides
a robust, non-invasive tool for predicting pCR to NAC in breast cancer. This multimodal approach outperforms
single-modality models and offers potential for clinical translation to personalize treatment strategies and avoid ineffective
chemotherapy. Further multi-center validation is warranted to confirm its generalizability.
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1. Introduction

Breast cancer remains a leading cause of cancer-related
mortality in women worldwide, with an estimated 2.3
million new cases and 685,000 deaths globally in 2023 [1].
pCR defined as the absence of invasive residual disease in
the breast and lymph nodes following neoadjuvant
chemotherapy (NAC), has been validated as a strong
surrogate endpoint for improved long-term survival,
particularly in aggressive molecular subtypes such as
triple-negative and HER2-positive breast cancer [2], [3].
Recent large-scale analyses confirm that pCR achievement
correlates with a 55-75% reduction in recurrence risk and a
40-60% improvement in overall survival [4],[5]. However,
only 20—40% of patients achieve pCR, while conventional
clinical biomarkers—such as hormone receptor (HR) status
and HER2 amplification—exhibit limited predictive
accuracy (AUC: 0.60-0.70) [6], [7]. Consequently,
non-invasive prediction of pCR is urgently needed to
optimize treatment personalization, avoiding ineffective
chemotherapy and its associated toxicities.

Dynamic contrast-enhanced MRI (DCE-MRI) captures
tumor  vascularity, perfusion  heterogeneity, and
spatial-temporal kinetics, making it ideal for radiomics
analysis [8]. Traditional radiomics relies on radiomics
features (e.g., texture, shape) derived from predefined
algorithms. However, these features often fail to capture
complex tumor phenotypes and are sensitive to imaging
protocols [9]. In contrast, deep learning radiomics (DLR)
leverages convolutional neural networks (CNNs) to extract
high-dimensional, data-driven features directly from images,
offering superior representation of latent biological patterns
[10], [11]. Recent studies demonstrate that CNN-based
models can achieve AUCs of 0.85-0.89 for pCR prediction
but remain constrained by single-feature paradigms [12],
[13].

Multimodal DLR, which fuses radiomics features with
deep learning features, represents an emerging paradigm to
overcome these limitations. For instance, Jiang et al. [14]
integrated radiomics MRI features with ResNet50-derived
features, improving pCR prediction in triple-negative breast
cancer (AUC: 0.92 vs. 0.86 for single-modality). Similarly,
Wang et al. [15] reported that combining DCE-MRI
radiomics and deep learning features enhanced predictive
robustness across diverse molecular subtypes. Despite these
advances, multimodal DLR for pCR prediction remains
underexplored, particularly in large, publicly available
cohorts.

To address this gap, we propose a multimodal DLR
pipeline leveraging the ACRIN 6657/I-SPY1 dataset. By
fusing IBSI-compliant radiomics features with deep learning
features from five state-of-the-art CNNs (ResNet50,
DenseNet-169, InceptionV3, InceptionResNetV2,
EfficientNetB0), and employing rigorous feature selection
and ensemble classifiers, we aim to establish a robust,
non-invasive model for NAC response prediction. Our
approach aligns with recent calls for standardized,
reproducible radiomics workflows [16] and integrates

biological interpretability through feature contribution
analysis [17].

2. Methodology

2.10verview

The comprehensive framework of this study is illustrated in
Figure 1, which encompasses five principal stages: data
acquisition, feature extraction, feature selection, model
development, and model evaluation. Initially, the data
acquisition phase involved the procurement of case data,
including MRI images and associated clinical information,
followed by a preprocessing step to standardize and prepare
the data for subsequent analysis.

In the feature extraction phase, both radiomic and deep
learning features were extracted. Radiomic features were
derived from DCE-MRI images and included a diverse set
of morphological, intensity, texture, and filter-based
features. These features were calculated using established
algorithms to quantify various aspects of the tumor's
appearance in the images. Additionally, deep learning
features were extracted using a pre-trained model, which
processed the input images to produce high-level features
that capture complex patterns and relationships within the
data. The feature selection stage was crucial for identifying
the most informative features and constructing a robust
radiomics signature. This was achieved through univariate
analysis and the application of the LASSO feature selection
algorithm, which effectively reduced the dimensionality of
the feature space while retaining the most relevant features
for the classification task. In the model development phase,
various classification algorithms were employed to integrate
the extracted radiomics signatures and clinical features. The
algorithms included linear models such as Logistic
Regression and Linear Discriminant Analysis (LDA),
tree-based ensembles like Random Forest and Extra Trees,
neural networks and instance-based methods such as
Multilayer Perceptron (MLP), k-Nearest Neighbors (k-NN),
Support Vector Machines (SVM), and Adaptive Boosting
(AdaBoost). Other advanced methods like XGBoost and
CatBoost were also utilized to enhance the predictive
performance of the models. Finally, the model evaluation
phase involved the assessment of the developed models
using various metrics and visualization techniques. This
included the computation of confusion matrices, ROC
curves, and other performance indicators to evaluate the
accuracy, sensitivity, and specificity of the models. The
results were visually represented through bar charts and
heatmaps to facilitate a comprehensive understanding of the
model's performance across different scenarios.

The following sections will delve into each stage in
greater detail, providing insights into the methodologies
employed, the challenges encountered, and the outcomes
achieved.
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Figure 1. The overall workflow of this study.

2.2 Radiomics features

Radiomics feature extraction was performed using
PyRadiomics v3.0.1 to convert medical images into
mineable, high-dimensional data, allowing for the
quantification of tumor phenotypes that may not be
discernible to the human eye. The extraction was conducted
in strict adherence to the Image Biomarker Standardization
Initiative (IBSI) to ensure methodological rigor and
reproducibility. For each patient, a total of 1,702 features
were automatically extracted from each tumor region of
interest (ROI) across all MRI sequences. The feature set was
categorized into three hierarchical domains: (1) first-order
statistics, which encode voxel-level intensity distributions,
including skewness, kurtosis, entropy, and analogous
histogram metrics; (2) morphologic descriptors, quantifying
three-dimensional tumor architecture, such as volume,
surface area, sphericity, and related geometric indices; and
(3) high-order texture features, capturing spatial
heterogeneity via Gray-Level Co-occurrence Matrix
(GLCM), Gray-Level Run Length Matrix (GLRLM),
Gray-Level Size Zone Matrix (GLSZM), Gray-Level
Dependence  Matrix (GLDM), and Neighborhood
Gray-Tone Difference Matrix (NGTDM). All mathematical
formulations, extraction parameters, and software
implementations were meticulously aligned with IBSI
specifications, thereby generating a  standardized,

multidimensional radiomics space that is amenable to
downstream predictive modeling.

2.3 Deep learning features

Complementing the handcrafted radiomics features, deep
learning features were extracted to leverage the power of
convolutional neural networks (CNNs) in automatically
learning hierarchical and nuanced representations directly
from the imaging data. Five established convolutional neural
network (CNN) architectures: ResNet50, DenseNet-169,
InceptionResNetV2, InceptionV3, and EfficientNetBO,
which were utilized as foundational feature extractors in this
research. These models were pre-trained on the extensively
annotated ImageNet database, leveraging transfer learning
to harness their representational capabilities.

Pre-NAC DCE-MRI images were used as input to the
deep learning models. For each patient, the slice containing
the largest section of the breast tumor was selected for each
DCE MRI sequence. The input ROI images encompassed
the entire tumor region and its border region, which were
manually cropped from the raw MRI images. The original
DCE MRI images were normalized such that the pixel
values ranged from 0 to 1000. The image box containing the
lesion was resampled to a size of 224 x 224 pixels. The
training process employed the Adam optimizer with a
learning rate of 0.001 and a batch size of 32. To prevent
overfitting, L2 regularization and early stopping were
implemented. The loss rate was utilized to evaluate model
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performance. Each slice was treated as an independent input
during the deep learning process. Once the deep learning
model training was completed, the features from the fully
connected layer were extracted as the deep learning features
(DLFs) and subsequently channeled into our machine
learning pipeline for predictive model development.

2.4 Feature selection and Radiomics
signature Construction

To identify the features most correlated with the pCR

outcome, a rigorous two-stage feature selection
methodology was employed to pinpoint the most
discriminative  radiomics features while mitigating

overfitting in high-dimensional space. This hierarchical
approach synergistically combines statistical filtering with
regularized machine learning to ensure biological relevance
and predictive robustness.

2.4.1 Univariate Statistical Filtering.

Initial  feature  screening was conducted using
distribution-adaptive hypothesis testing. Features with
near-zero variance (o< 1x107%) were excluded to eliminate
non-informative predictors. For the remaining features,
group-wise statistical analysis between the pathological
(class 1) and control (class 0) cohorts was performed
through sequential assessment: (1) Normality evaluation
using the Shapiro-Wilk test (applied where 4 < n < 5000);
(2) Variance homogeneity assessment using Levene's test (o
= 0.05); and (3) Group difference testing, employing the
independent t-test for normally distributed data with
homogeneous variance, Welch's t-test for normally
distributed data with heterogeneous variance, and the
Mann-Whitney U test for non-normally distributed data.
Features with insufficient group samples (n < 3) or
non-significant group differences (o > 0.05) were discarded.

2.4.2 Regularized Feature Selection via LASSO.
Features that survived the univariate filtering were subjected
to Z-score normalization prior to regularized selection using
the least absolute shrinkage and selection operator (LASSO)
regression. Parameter optimization included 100 log-spaced
regularization values (o0 € [1074, 10°]), 10-fold stratified
cross-validation preserving class distributions, with
convergence criteria set at maximum iterations = 100,000
and tolerance = 1 x 107¢. Features with non-zero coefficients
in the optimal model were retained for signature
construction.

2.4.3 Radiomics Signature Construction.
The final predictive signature was computed as a linear
combination, expressed as:

Radiomics_signature = YN, B; - x; 1)

Where f;denotes the LASSO-derived coefficient, x;
represents the standardized feature value, and N signifies
the cardinality of selected features.

2.5 Model development and evaluation

A robust machine learning framework was implemented to
develop and validate radiomics-based diagnostic models.
The methodology encompassed systematic data partitioning,
preprocessing, and evaluation of ten distinct classifiers
through stratified cross-validation and independent testing
protocols.

2.5.1 Data Partitioning.

The cohort was partitioned using stratified sampling to
preserve the original class distributions: 70% of the samples
were allocated to the training subset (for model development
and hyperparameter tuning), while 30% were assigned to the
testing subset (for independent performance validation).
Patient identifiers were retained throughout the pipeline to
ensure traceability and clinical relevance. A fixed random
seed was employed to guarantee reproducible splits across
experiments.

2.5.2 Classification Algorithms.

To systematically identify the most clinically actionable
predictor of pCR, we benchmarked ten machine-learning
classifiers that span five distinct algorithmic paradigms:
linear or distance-based models, tree ensembles,
gradient-boosted ensembles, kernel methods, and neural
networks. All algorithms were implemented within a fully
reproducible scikit-learn 1.3 pipeline (Python 3.9). This
pipeline automatically imputed missing features via median
imputation, applied Z-score normalization, and compensated
for class imbalance using balanced class weights or their
algorithm-specific equivalents. Hyper-parameters were
intentionally fixed across models to ensure fair comparison,
and nested five-fold stratified cross-validation on the
training set followed by a single independent test set was
used to assess generalizability.

In this study, ten machine learning classifiers spanning
diverse algorithmic paradigms were rigorously evaluated to
identify the most clinically actionable predictor of
pathological complete response (pCR). These included: (1)
Logistic Regression (LR) with L2 regularization to handle
multicollinearity and class imbalance; (2) Linear
Discriminant Analysis (LDA), a generative classifier
assuming Gaussian class-conditional densities; (3) Support
Vector Machine with RBF kernel (SVM-RBF), a
maximum-margin kernel method accommodating non-linear
decision boundaries; (4) k-Nearest Neighbors (k-NN), a
non-parametric instance-based learner using Euclidean
distance; (5) Random Forest (RF), an ensemble of 500
decision trees with Gini impurity splitting; (6) Extremely
Randomized Trees (Extra Trees), a variant of RF with
additional randomization in split selection; (7) Adaptive
Boosting (AdaBoost), which sequentially builds an
ensemble of weak classifiers; (8) XGBoost, a
gradient-boosting framework optimized with second-order
derivatives and L2 regularization; (9) CatBoost, designed to
handle categorical features efficiently using ordered
boosting; and (10) Multi-Layer Perceptron (MLP), a shallow
neural network with one hidden layer of 100 ReLU neurons
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optimized via L-BFGS. All models were implemented using
scikit-learn 1.3 under Python 3.9, with consistent
preprocessing including median imputation, Z-score
normalization, and balanced class weighting to ensure fair
and reproducible comparison. All classifiers were evaluated
with identical random seeds, ensuring deterministic splits
and reproducible results across comparative analyses.

3. Results

3.1 Patient data

3.1.1 Data Source and Cohort Construction.

In this research, we applied the public clinical dataset
published on The Cancer Imaging Archive (TCIA) [18], the
ISPY 1 TRIAL MRI dataset, to confirm the effectiveness
and generalization of the proposed models. Furthermore,
Chitalia et al. [19] excluded incomplete pathologic data and
missing pre-treatment DCE-MRI sequences to obtain
uniformly quantitative images and tumor annotations, and
163 patients were reserved. All women received
neoadjuvant chemotherapy with an
anthracycline-cyclophosphamide regimen alone or followed

by taxane and underwent longitudinal DCE-MRI imaging
using a 1.5T field-strength system.

3.1.2 Image Preprocessing.

During preprocessing, we first extracted the DCE-MRI
sequences of each patient before NAC treatment. We then
standardized the original sequences to unify image
resolution and reduce computational resource consumption.
The normalization process adjusted all sequences to a pixel
value range of [0, 1] to conform to model specifications.
The specific steps included: (1)Resampling: Raw I-SPY
images with variable voxel resolutions were resampled to a
standard 1 mm? isotropic resolution. This resolution was
chosen to facilitate cohesive computational analysis while
fitting within GPU memory constraints. (2) Z-score
normalization: After resampling, images were Z-score
normalized using instance-level statistics (encompassing all
timepoints for a given patient, rather than the entire dataset).
This normalization adjusted multi-timepoint scans to zero
mean and unit variance, enhancing algorithmic
generalizability.

3.1.3 Clinical characteristics.

Baseline demographic, tumour-related and treatment
variables of the 163 women with locally advanced breast
cancer are summarized in Table 1 and detailed below.

Table 1. Baseline Clinical and Pathological Characteristics of the Study Cohort.

Training cohort Testing cohort
Characteristics

I11110=n 8po1R §C=R 32! p-value® I11110=n 3psC1R §C=R 14! p-value®
age 48.7+9.6 44.8+6.2 0.035 49.1+38.1 51.2+11.8 0.5
race_id 0.3 0.3
Caucasian 59 (72%) 23 (72%) 28 (80%) 11 (79%)
African American 19 (23%) 5 (16%) 6 (17%) 1 (7%)
Asian 3 (4%) 2 (6%) 1 (3%) 1 (7%)
Native Hawaiian/PI 0 (0%) 0 (0%) 0 (0%) 1 (7%)
Multiple 1 (1%) 2 (6%) 0 (0%) 0 (0%)
ERpos <0.001 0.023
Negative 26 (32%) 22 (69%) 14 (42%) 11 (79%)
Positive 56 (68%) 10 (31%) 19 (58%) 3 (21%)
PgRpos <0.001 0.027
Negative 33 (40%) 26 (81%) 17 (52%) 12 (86%)
Positive 49 (60%) 6 (19%) 16 (48%) 2 (14%)
HR Pos <0.001 0.008
Negative 24 (29%) 22 (69%) 12 (36%) 11 (79%)
Positive 58 (71%) 10 (31%) 21 (64%) 3 (21%)
Her2MostPos 0.023 0.036
Negative 60 (74%) 16 (52%) 25 (76%) 5 (38%)
Positive 21 (26%) 15 (48%) 8 (24%) 8 (62%)
HR _HER2 STATUS 0.004 0.018
HR+/HER2- 44 (54%) 6 (19%) 16 (48%) 1 (8%)
HER2+ 21 (26%) 15 (48%) 8 (24%) 8 (62%)
Triple Negative 16 (20%) 10 (32%) 9 (27%) 4 (31%)
Laterality >0.9 0.5
Left 40 (49%) 16 (50%) 19 (54%) 6 (43%)
Right 42 (51%) 16 (50%) 16 (46%) 8 (57%)

"Mean =+ SD; n (%)

2Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test
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3.2 Feature extraction and selection

A dual-stream framework was designed to capture the full
spectrum of tumour phenotypic information from
pre-treatment DCE-MRI. In the first stream, radiomics
features were computed to quantify a priori defined
morphologic and textural patterns; in the second, deep
learning features (DLFs) were extracted from convolutional
neural networks (CNNs) to model high-level, data-driven
representations. To guarantee methodological rigour and
enable unbiased downstream comparison, each modality
underwent an identical, independent processing chain
consisting of extraction, univariate filtering, LASSO-based
selection, and linear signature construction.

3.2.1 Radiomic Feature Extraction.

Radiomic features were extracted with PyRadiomics 3.0.1 in
strict accordance with the Image Biomarker Standardization
Initiative (IBSI). A total of 1,702 features were calculated
from the three-dimensional tumour ROI of each patient.
These comprised 18 first-order statistics describing the
global intensity distribution (e.g., median, entropy, kurtosis,
skewness), 14 morphological descriptors quantifying
three-dimensional geometry (volume, surface area,
sphericity, maximum 3-D diameter), and 1,670 high-order
texture features derived from grey-level co-occurrence,
run-length, size-zone, dependence, and
neighbourhood-difference matrices, including
wavelet-decomposed counterparts. All features were

z-standardised (mean = 0, SD = 1) prior to further analysis
to mitigate scale-dependent biases.

3.2.2 Deep Learning Feature Extraction.

For DLF extraction, five ImageNet-pre-trained CNN
architectures—ResNet50, DenseNet-169, InceptionV3,
InceptionResNetV2, and EfficientNetB0—were employed
as frozen feature extractors. The axial slice exhibiting the
largest tumour cross-section was manually cropped and
resized to 224 x 224 pixels; pixel intensities were
normalized to the 0-1 range. Activations from the final
fully-connected layer of each network were harvested,
yielding feature vectors of 2,048, 1,664, 2,048, 1,536, and
1,280 dimensions, respectively.

3.2.3 Feature Selection and Signature
Construction.

To counter the high-dimensional-low-sample-size challenge
while preserving biological interpretability, a two-stage
selection protocol was applied to both radiomics features
and deep learning features. The first stage removed
descriptors exhibiting near-zero variance (¢ < 1 x 107®) and
subjected the remainder to univariate statistical testing.
Normality was assessed with the Shapiro-Wilk test; variance
homogeneity with Levene’s test. Depending on data
distribution, group-wise differences between pCR and
non-pCR cases were evaluated using the independent t-test,
Welch’s t-test, or Mann—Whitney U test at o = 0.05. The
univariate analysis of radiomics features is depicted in
Figure 2.

Univariate Analysis Results — Volcano Plot
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Figure 2. Univariate analysis of Radiomics features.

In the second stage, features surviving univariate filtering
were z-standardized and entered into LASSO logistic
regression. Regularisation strength was optimised over 100
logarithmically spaced values (10-10°) via 10-fold
stratified cross-validation, with convergence criteria set to
100,000 iterations and a tolerance of 1x107° Features

retaining non-zero coefficients in the optimal model were
linearly combined to generate a compact signature.This
procedure (Figure 3) yielded 20 Radiomics features from an
initial pool of 1,702, and 30, 34, 24, 16, and 6 DLFs for
ResNet50, DenseNet-169, InceptionV3,
InceptionResNetV2, and EfficientNetBO0, respectively.
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Figure 3. Feature selection using LASSO regression.

Signature values ranged from -0.624 to 0.809 across the
cohort, encapsulating inter-patient variability in pCR
likelihood and providing a low-redundancy,
high-information substrate for subsequent multimodal
modelling. Figure 4 presents a comparison of the DenseNet
signature values between the pCR group and the non-pCR
group. The data, visualized using a box plot, demonstrates a
clear distributional difference between the two cohorts. The
DenseNet signature values are significantly higher in the
pCR group compared to the non-pCR group, suggesting a
strong association between this deep learning-derived
radiomic feature and treatment response. This result
indicates that the DenseNet signature holds potential as a
non-invasive imaging biomarker for predicting and
differentiating treatment outcomes prior to therapy.

Comparison of DenseNet Signature between Groups
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Figure 4. Comparison of DenseNet Signature Values
between pCR and non-pCR Groups.
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3.3 Development and performance of
models

The predictive performance of ten machine learning
classifiers was systematically evaluated using a rigorous
framework  incorporating  both  stratified  5-fold
cross-validation on the training set and independent testing
on a held-out test set. Key metrics—including accuracy,
area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, precision, and
F1-score—were computed to comprehensively assess model
discrimination, calibration, and clinical applicability.

3.3.1 Overall Performance.

All models demonstrated robust performance during
cross-validation, with mean accuracy ranging from 0.842 to
0.877. Notably, KNN, Extra Trees, AdaBoost, and XGBoost
achieved the highest cross-validated accuracy (0.868—
0.877). However, performance on the independent test set
revealed variations in generalizability. The highest test
accuracy (0.96) was attained by both XGBoost and MLP,
followed by AdaBoost, Random Forest, CatBoost, LDA,
and Logistic Regression (0.94). SVM and Extra Trees
yielded an accuracy of 0.92, while KNN performed slightly
lower (0.86).

Notably, the fusion model significantly outperformed
radiomics-only and deep-learning-only baseline models (see
Supplementary Table S1), underscoring the value of
integrating complementary feature types.

Test AUC values were consistently high across most
models, with MLP achieving the highest AUC (0.98),
followed by Logistic Regression (0.98), LDA and Extra
Trees (0.98), Random Forest (0.97), CatBoost (0.97), SVM
(0.97), AdaBoost (0.96), and XGBoost and KNN (0.94).
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These results indicate strong discriminatory power across
multiple algorithms, as shown in Table 2.

The Receiver Operating Characteristic (ROC) curves for
all classifiers are depicted in Figure 5, revealing that the

Multi-Layer Perceptron (AUC = 0.98) achieved the highest
classification performance.

Table 2. Predictive performance of models.

Model TestAccuracy TestAUC Recall(Sensitivity) Specificity Precision F1Score
MLP 0.96 0.98 0.93 0.97 0.93 0.93
Logistic Regression 0.94 0.98 0.93 0.94 0.87 0.90
LDA 0.94 0.98 0.86 0.97 0.92 0.89
Extra Trees 0.92 0.98 0.71 1.00 1.00 0.83
Random Forest 0.94 0.97 0.79 1.00 1.00 0.88
CatBoost 0.94 0.97 0.79 1.00 1.00 0.88
SVM 0.92 0.97 0.86 0.94 0.86 0.86
AdaBoost 0.94 0.96 0.79 1.00 1.00 0.88
XGBoost 0.96 0.94 0.86 1.00 1.00 0.92
KNN 0.86 0.94 0.71 0.91 0.77 0.74

Receiver Operating Characteristic Comparison

Extra Trees (AUC = 0.98}
- LDA (AUC = 0.98)
- —— MLP {AUC = 0,98)
oo XGBoost (AUC = 0.94)
L ~—— CatBoost (AUC = 0.97)

Figure 5. The ROC curves of ten classifiers.

3.3.2 Decision Curve Analysis.

Decision curve analysis (Figure 6) further confirmed the
clinical utility of the models that all machine learning
models provided higher net benefit than “treat-all” or
“treat-none” strategies across threshold probabilities ranging
from 0.1 to 0.8. Logistic Regression consistently achieved
among the highest net benefits, supporting their clinical
utility for decision-making across a wide range of risk
thresholds.
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Figure 6. Decision curve analysis for ten classifiers.

3.3.3 Summary of Top Performers.

Logistic Regression and MLP emerged as the
best-performing models, offering an optimal balance
between accuracy, AUC, sensitivity, specificity, and net
clinical benefit. Both models also exhibited strong
calibration and stability, making them promising candidates
for clinical translation. Tree-based ensembles and boosting
algorithms showed commendable performance but were
limited either by computational demand or slight overfitting
tendencies.

Overall, the results confirm that the fusion of radiomics
features and deep learning features within a machine
learning framework enables highly accurate prediction of
pCR. The consistency between cross-validation and
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independent test results underscores the generalizability of
the models, with MLP representing the most promising
candidates for future clinical translation.

4. Discussion

In this study, we developed and validated a multimodal
DLR pipeline for the non-invasive prediction of pCR to
neoadjuvant chemotherapy (NAC) in breast cancer using
DCE-MRI. By integrating radiomics features with deep
learning features extracted from five state-of-the-art CNN
architectures, we demonstrated that the fusion of

complementary feature types significantly enhances
predictive performance compared to single-modality
approaches. Our best-performing model, based on a

multilayer perceptron (MLP) classifier, achieved an AUC of
0.982 on independent testing, underscoring the potential of
multimodal DLR for clinical decision support. The superior
performance of the fusion model wunderscores the
complementary nature of these feature types: while
radiomics features provide interpretable, quantitative
descriptors of known tumor characteristics, deep learning
features uncover subtle, latent patterns within the image data
that are not predefined by human experts.

The superior performance of our fused feature model
aligns with emerging evidence that radiomics features and
deep learning features capture distinct yet complementary
aspects of tumor phenotype. Our ablation study confirmed
that the fusion model (AUC: 0.982) outperformed both
radiomics-only (AUC: 0.78) and deep-learning-only (AUC:
0.94) models constructed using the same feature selection
and classification pipeline. The integration of 1,702
radiomics features and 8,576 deep learning features enables
a multi-scale representation of tumor phenotype: the former
offers clinically interpretable biomarkers, while the latter
uncovers subtle imaging patterns indicative of treatment
response. This synergy explains the superior performance of
our fusion model, underscoring the value of combining
domain knowledge with data-driven learning. This synergy
is consistent with prior studies by Jiang et al. [14] and Wang
et al. [15], who also reported improved prediction accuracy
through feature fusion. However, our study extends this
paradigm by incorporating a broader array of CNN
architectures and a rigorous, IBSI-compliant feature
extraction protocol, thereby enhancing both reproducibility
and generalizability.

Our feature selection strategy-combining univariate
filtering with LASSO regression-proved effective in
reducing dimensionality while retaining biologically
relevant features. The resulting radiomics signature, derived
from a small subset of highly discriminative features,
exhibited significant differences between pCR and non-pCR
groups, as illustrated in Figure 4. To enhance
interpretability, we employed SHAP (SHapley Additive
exPlanations) analysis on the LR model (see Supplementary
Figure S1). This analysis not only enhances model
transparency but also identifies potential imaging
biomarkers for further biological validation.

The constructed radiomics signatures exhibited a wide
range of values (e.g., -0.624 to 0.809 for the ResNet-based
signature), which strongly correlated with pCR probability.
This stratification capability could support clinical
decision-making by identifying patients with a high
likelihood of response, who may benefit from NAC, and
those with resistant disease, for whom alternative or
intensified therapies should be considered. This
underscores the potential utility of our model in
biomarker-limited contexts where conventional predictors
are less informative.

Notably, the MLP and logistic regression models
emerged as top performers, balancing high accuracy,
robustness, and clinical interpretability. The strong
performance of linear models like logistic regression
suggests that the selected features exhibit approximately
linear separability between responders and non-responders,
which may facilitate easier clinical adoption. Conversely,
the MLP’s superior AUC highlights the value of non-linear
modeling in capturing complex interactions within
high-dimensional feature spaces. The consistency between
cross-validation and independent test results further
validates the generalizability of our approach and mitigates
concerns regarding overfitting.

The strong predictive performance and positive decision
curve analysis suggest clear clinical translatability. In
practice, our model could be integrated into the clinical
workflow to assist in treatment decision-making. For
instance, for patients predicted with a high probability of
pCR (e.g., above a certain threshold), clinicians could
proceed with NAC with greater confidence. Conversely, for
patients predicted to have a very low likelihood of response,
the model could serve as a decision-support tool to avoid the
toxicity and morbidity of ineffective chemotherapy and
prompt earlier consideration of alternative therapeutic
strategies, such as different chemo-regimens or upfront
surgery. This aligns with the overarching goal of precision
oncology—to personalize treatment and maximize benefit
while minimizing harm.

Despite these promising results, several limitations must
be acknowledged. First, our study utilized a public dataset
with a limited sample size (n=163), which may constrain the
statistical power and generalizability of the findings.
Although we employed stratified sampling and rigorous
cross-validation, the small test set (n=49) limits the stability
of performance estimates. Second, the retrospective nature
of the data and its origin from a single clinical trial (despite
public availability) introduce potential biases in patient
selection and imaging protocols. Third, while we adhered to
IBSI standards to ensure reproducibility, variations in MRI
acquisition parameters across institutions may still affect
feature stability. Future work should focus on external
validation in multi-center cohorts to confirm robustness
across diverse clinical settings.

Additionally, the integration of genomic data (e.g.,
transcriptomic or mutational profiles) could further enhance
predictive accuracy through multi-omics fusion, providing a
more comprehensive understanding of treatment response
mechanisms. Explainable Al techniques, such as feature
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attribution methods [17], could also be employed to improve
model interpretability and clinical trust.

The strong performance of linear models like logistic
regression suggests that the selected features exhibit
approximately linear separability between responders and
non-responders, which may facilitate easier clinical
adoption. Conversely, the MLP's superior AUC highlights
the value of non-linear modeling in capturing complex
interactions within high-dimensional feature spaces. For
clinical translation, we recommend initial deployment of the
logistic regression model due to its simplicity and
interpretability, while the MLP could be reserved for
settings where maximum accuracy is required and
computational resources are sufficient. The consistency
between cross-validation and independent test results further
validates the generalizability of our approach and mitigates
concerns regarding overfitting.

In conclusion, our study demonstrates that the fusion of
radiomics features and deep learning features within a
machine learning framework significantly improves the
prediction of pCR to NAC in breast cancer. The proposed
pipeline offers a standardized, reproducible, and highly
accurate tool for non-invasive treatment response
assessment, with clear potential to guide personalized
therapy decisions and reduce unnecessary chemotherapy.
Future efforts should focus on large-scale validation and
integration with complementary data modalities to advance
toward clinical implementation.

5.Conclusions

In this study, we developed a multimodal deep learning
radiomics (DLR) framework that integrates
IBSI-standardized  radiomics  features  with  deep
convolutional features from five CNN architectures to
predict pathological complete response (pCR) to
neoadjuvant chemotherapy in breast cancer. The fusion of
these feature types significantly enhanced predictive
performance, with the best model achieving an AUC of 0.98
on an independent test set. Through rigorous feature
selection and the construction of a highly discriminative
signature, our approach provides a non-invasive,
reproducible tool for early treatment response assessment,
offering strong potential to guide personalized therapy,
avoid ineffective chemotherapy, and reduce
treatment-related toxicity. Future work will focus on
large-scale, = multi-center ~ validation to  confirm
generalizability. Integration of genomic data could further
enhance predictive accuracy, moving us closer to a robust
multi-omics model for clinical precision oncology.

Supplementary Material

Supplementary Table S1. Number of Features Selected from Each Feature Set Following the Two-Stage Selection
Process.

Feature Set Initially Extracted After Univariate Filtering After LASSO Selection
Radiomics 1,702 48 20

ResNet50 2,048 101 30

DenseNet-169 1,664 87 35

InceptionV3 2,048 109 24

InceptionResNetV2 1,536 79 16

EfficientNetB0 1,280 245 6

Supplementary Table S2. Performance Comparison of the Proposed Fusion Model Against Single-Modality
Baselines on the Independent Test Set.

Model Type Test AUC Test Accuracy Sensitivity Specificity
Radiomics-only 0.777 0.735 0.714 0.743
Deep Learning-only 0.943 0.939 0.786 0914
Fusion (Ours) 0.982 0.959 0.929 0.971
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Supplementary Figure S1. SHAP Summary Plot for the
Logistic Regression Model Predicting pCR to NAC.

This beeswarm plot illustrates the feature importance and
directionality of influence for each predictor incorporated in
the logistic regression model, based on SHapley Additive
exPlanations (SHAP) values. Each point represents an
individual patient from the test cohort. Features are ranked
vertically by their mean absolute SHAP value, denoting
overall contribution to the model’s output. The horizontal
axis corresponds to the impact on the predicted log-odds of
pCR, with positive SHAP values (rightward) indicating an
increased likelihood of pCR and negative values (leftward)
indicating a decreased likelihood. Color intensity reflects the
normalized value of the feature (red: high, blue: low).
Notably, imaging-derived signatures from deep learning
models (e.g., InceptionV3, ResNet, DenseNet) and key
clinical variables (e.g., HR status, ER status) emerged as the
most influential predictors. Higher values of most deep
learning features and negative hormone receptor status were
associated with an elevated probability of pCR, aligning
with established clinical biomarkers.

SHAP Beeswarm Plot - Logistic Regression
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Figure S1. SHAP Beeswarm Plot for the Logistic
Regression Model Predicting Pathological Complete
Response (pCR) to Neoadjuvant Chemotherapy
(NAC).
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