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Abstract 

INTRODUCTION: Pathological complete response (pCR) following neoadjuvant chemotherapy (NAC) is a validated 
surrogate endpoint for long-term survival in breast cancer patients. However, conventional biomarkers exhibit limited 
predictive accuracy, with approximately 60-80% of patients failing to achieve pCR. Dynamic contrast-enhanced MRI 
(DCE-MRI) provides high-resolution information on tumor vascularization and heterogeneity, but prior radiomics models 
have predominantly relied on single-feature paradigms, which may not fully capture complex tumor phenotypes. 
METHODS: We developed a multimodal deep-learning radiomics (DLR) pipeline using the publicly available ACRIN 
6657/I-SPY1 dataset (n=163). After rigorous preprocessing (bias-field correction, isotropic resampling, Z-score 
normalization), we extracted a comprehensive set of 1,702 standardized radiomics features compliant with the Image 
Biomarker Standardization Initiative (IBSI), which quantitatively capture tumor morphology, texture, and intensity 
patterns. Additionally, 8,576 deep learning features were derived from five convolutional neural networks (ResNet50, 
DenseNet-169, InceptionV3, InceptionResNetV2, EfficientNetB0), enabling the model to learn complex, data-driven 
representations beyond human-defined features. The fusion of these complementary feature types provides a more holistic 
characterization of tumor phenotype, significantly enhancing predictive performance compared to single-modality 
approaches. A two-stage feature-selection strategy utilizing univariate analysis and the Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm was applied, followed by linear signature construction. Ten classifiers were 
evaluated under stratified cross-validation and independent testing. 
RESULTS: The fusion of handcrafted radiomics and deep learning features significantly enhanced predictive performance. 
The best-performing model, a multilayer perceptron (MLP), achieved an area under the receiver operating characteristic 
curve (AUC) of 0.98 on the independent test set, with an accuracy of 95.92%, sensitivity of 92.86%, and specificity of 
97.14%. Logistic regression also demonstrated strong performance (AUC = 0.980). Decision curve analysis confirmed the 
clinical utility of all models across a wide range of threshold probabilities. 
CONCLUSIONS: The integration of radiomics and deep learning features within a machine learning framework provides 
a robust, non-invasive tool for predicting pCR to NAC in breast cancer. This multimodal approach outperforms 
single-modality models and offers potential for clinical translation to personalize treatment strategies and avoid ineffective 
chemotherapy. Further multi-center validation is warranted to confirm its generalizability. 
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1. Introduction

Breast cancer remains a leading cause of cancer-related 
mortality in women worldwide, with an estimated 2.3 
million new cases and 685,000 deaths globally in 2023 [1]. 
pCR defined as the absence of invasive residual disease in 
the breast and lymph nodes following neoadjuvant 
chemotherapy (NAC), has been validated as a strong 
surrogate endpoint for improved long-term survival, 
particularly in aggressive molecular subtypes such as 
triple-negative and HER2-positive breast cancer [2], [3]. 
Recent large-scale analyses confirm that pCR achievement 
correlates with a 55–75% reduction in recurrence risk and a 
40–60% improvement in overall survival [4],[5]. However, 
only 20–40% of patients achieve pCR, while conventional 
clinical biomarkers—such as hormone receptor (HR) status 
and HER2 amplification—exhibit limited predictive 
accuracy (AUC: 0.60–0.70) [6], [7]. Consequently, 
non-invasive prediction of pCR is urgently needed to 
optimize treatment personalization, avoiding ineffective 
chemotherapy and its associated toxicities. 

Dynamic contrast-enhanced MRI (DCE-MRI) captures 
tumor vascularity, perfusion heterogeneity, and 
spatial-temporal kinetics, making it ideal for radiomics 
analysis [8]. Traditional radiomics relies on radiomics 
features (e.g., texture, shape) derived from predefined 
algorithms. However, these features often fail to capture 
complex tumor phenotypes and are sensitive to imaging 
protocols [9].  In contrast, deep learning radiomics (DLR) 
leverages convolutional neural networks (CNNs) to extract 
high-dimensional, data-driven features directly from images, 
offering superior representation of latent biological patterns 
[10], [11]. Recent studies demonstrate that CNN-based 
models can achieve AUCs of 0.85–0.89 for pCR prediction 
but remain constrained by single-feature paradigms [12], 
[13]. 

Multimodal DLR, which fuses radiomics features with 
deep learning features, represents an emerging paradigm to 
overcome these limitations. For instance, Jiang et al. [14] 
integrated radiomics MRI features with ResNet50-derived 
features, improving pCR prediction in triple-negative breast 
cancer (AUC: 0.92 vs. 0.86 for single-modality). Similarly, 
Wang et al. [15] reported that combining DCE-MRI 
radiomics and deep learning features enhanced predictive 
robustness across diverse molecular subtypes. Despite these 
advances, multimodal DLR for pCR prediction remains 
underexplored, particularly in large, publicly available 
cohorts. 

To address this gap, we propose a multimodal DLR 
pipeline leveraging the ACRIN 6657/I-SPY1 dataset. By 
fusing IBSI-compliant radiomics features with deep learning 
features from five state-of-the-art CNNs (ResNet50, 
DenseNet-169, InceptionV3, InceptionResNetV2, 
EfficientNetB0), and employing rigorous feature selection 
and ensemble classifiers, we aim to establish a robust, 
non-invasive model for NAC response prediction. Our 
approach aligns with recent calls for standardized, 
reproducible radiomics workflows [16] and integrates 

biological interpretability through feature contribution 
analysis [17]. 

2. Methodology

2.1 Overview 

The comprehensive framework of this study is illustrated in 
Figure 1, which encompasses five principal stages: data 
acquisition, feature extraction, feature selection, model 
development, and model evaluation. Initially, the data 
acquisition phase involved the procurement of case data, 
including MRI images and associated clinical information, 
followed by a preprocessing step to standardize and prepare 
the data for subsequent analysis. 

In the feature extraction phase, both radiomic and deep 
learning features were extracted. Radiomic features were 
derived from DCE-MRI images and included a diverse set 
of morphological, intensity, texture, and filter-based 
features. These features were calculated using established 
algorithms to quantify various aspects of the tumor's 
appearance in the images. Additionally, deep learning 
features were extracted using a pre-trained model, which 
processed the input images to produce high-level features 
that capture complex patterns and relationships within the 
data. The feature selection stage was crucial for identifying 
the most informative features and constructing a robust 
radiomics signature. This was achieved through univariate 
analysis and the application of the LASSO feature selection 
algorithm, which effectively reduced the dimensionality of 
the feature space while retaining the most relevant features 
for the classification task. In the model development phase, 
various classification algorithms were employed to integrate 
the extracted radiomics signatures and clinical features. The 
algorithms included linear models such as Logistic 
Regression and Linear Discriminant Analysis (LDA), 
tree-based ensembles like Random Forest and Extra Trees, 
neural networks and instance-based methods such as 
Multilayer Perceptron (MLP), k-Nearest Neighbors (k-NN), 
Support Vector Machines (SVM), and Adaptive Boosting 
(AdaBoost). Other advanced methods like XGBoost and 
CatBoost were also utilized to enhance the predictive 
performance of the models. Finally, the model evaluation 
phase involved the assessment of the developed models 
using various metrics and visualization techniques. This 
included the computation of confusion matrices, ROC 
curves, and other performance indicators to evaluate the 
accuracy, sensitivity, and specificity of the models. The 
results were visually represented through bar charts and 
heatmaps to facilitate a comprehensive understanding of the 
model's performance across different scenarios. 

The following sections will delve into each stage in 
greater detail, providing insights into the methodologies 
employed, the challenges encountered, and the outcomes 
achieved. 
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Figure 1. The overall workflow of this study. 

2.2  Radiomics features 

Radiomics feature extraction was performed using 
PyRadiomics v3.0.1 to convert medical images into 
mineable, high-dimensional data, allowing for the 
quantification of tumor phenotypes that may not be 
discernible to the human eye. The extraction was conducted 
in strict adherence to the Image Biomarker Standardization 
Initiative (IBSI) to ensure methodological rigor and 
reproducibility. For each patient, a total of 1,702 features 
were automatically extracted from each tumor region of 
interest (ROI) across all MRI sequences. The feature set was 
categorized into three hierarchical domains: (1) first-order 
statistics, which encode voxel-level intensity distributions, 
including skewness, kurtosis, entropy, and analogous 
histogram metrics; (2) morphologic descriptors, quantifying 
three-dimensional tumor architecture, such as volume, 
surface area, sphericity, and related geometric indices; and 
(3) high-order texture features, capturing spatial 
heterogeneity via Gray-Level Co-occurrence Matrix 
(GLCM), Gray-Level Run Length Matrix (GLRLM), 
Gray-Level Size Zone Matrix (GLSZM), Gray-Level 
Dependence Matrix (GLDM), and Neighborhood 
Gray-Tone Difference Matrix (NGTDM). All mathematical 
formulations, extraction parameters, and software 
implementations were meticulously aligned with IBSI 
specifications, thereby generating a standardized,

multidimensional radiomics space that is amenable to 
downstream predictive modeling. 

2.3 Deep learning features 

Complementing the handcrafted radiomics features, deep 
learning features were extracted to leverage the power of 
convolutional neural networks (CNNs) in automatically 
learning hierarchical and nuanced representations directly 
from the imaging data. Five established convolutional neural 
network (CNN) architectures: ResNet50, DenseNet-169, 
InceptionResNetV2, InceptionV3, and EfficientNetB0, 
which were utilized as foundational feature extractors in this 
research. These models were pre-trained on the extensively 
annotated ImageNet database, leveraging transfer learning 
to harness their representational capabilities. 

Pre-NAC DCE-MRI images were used as input to the 
deep learning models. For each patient, the slice containing 
the largest section of the breast tumor was selected for each 
DCE MRI sequence. The input ROI images encompassed 
the entire tumor region and its border region, which were 
manually cropped from the raw MRI images. The original 
DCE MRI images were normalized such that the pixel 
values ranged from 0 to 1000. The image box containing the 
lesion was resampled to a size of 224 × 224 pixels. The 
training process employed the Adam optimizer with a 
learning rate of 0.001 and a batch size of 32. To prevent 
overfitting, L2 regularization and early stopping were 
implemented. The loss rate was utilized to evaluate model 
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performance. Each slice was treated as an independent input 
during the deep learning process. Once the deep learning 
model training was completed, the features from the fully 
connected layer were extracted as the deep learning features 
(DLFs) and subsequently channeled into our machine 
learning pipeline for predictive model development. 

2.4 Feature selection and Radiomics 
signature Construction 

To identify the features most correlated with the pCR 
outcome, a rigorous two-stage feature selection 
methodology was employed to pinpoint the most 
discriminative radiomics features while mitigating 
overfitting in high-dimensional space. This hierarchical 
approach synergistically combines statistical filtering with 
regularized machine learning to ensure biological relevance 
and predictive robustness. 

2.4.1 Univariate Statistical Filtering. 
Initial feature screening was conducted using 
distribution-adaptive hypothesis testing. Features with 
near-zero variance (σ< 1×10⁻⁸) were excluded to eliminate 
non-informative predictors. For the remaining features, 
group-wise statistical analysis between the pathological 
(class 1) and control (class 0) cohorts was performed 
through sequential assessment: (1) Normality evaluation 
using the Shapiro-Wilk test (applied where 4 ≤ n ≤ 5000); 
(2) Variance homogeneity assessment using Levene's test (α
= 0.05); and (3) Group difference testing, employing the
independent t-test for normally distributed data with
homogeneous variance, Welch's t-test for normally
distributed data with heterogeneous variance, and the
Mann-Whitney U test for non-normally distributed data.
Features with insufficient group samples (n < 3) or
non-significant group differences (α > 0.05) were discarded.

2.4.2 Regularized Feature Selection via LASSO. 
Features that survived the univariate filtering were subjected 
to Z-score normalization prior to regularized selection using 
the least absolute shrinkage and selection operator (LASSO) 
regression. Parameter optimization included 100 log-spaced 
regularization values (α ∈ [10⁻⁴, 10⁰]), 10-fold stratified 
cross-validation preserving class distributions, with 
convergence criteria set at maximum iterations = 100,000 
and tolerance = 1 × 10⁻⁶. Features with non-zero coefficients 
in the optimal model were retained for signature 
construction. 

2.4.3 Radiomics Signature Construction. 
The final predictive signature was computed as a linear 
combination, expressed as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑖𝑖𝑁𝑁
𝑖𝑖=1 ⋅ 𝑥𝑥𝑖𝑖 (1) 

Where βi denotes the LASSO-derived coefficient, xi 
represents the standardized feature value, and N signifies 
the cardinality of selected features.   

2.5 Model development and evaluation 

A robust machine learning framework was implemented to 
develop and validate radiomics-based diagnostic models. 
The methodology encompassed systematic data partitioning, 
preprocessing, and evaluation of ten distinct classifiers 
through stratified cross-validation and independent testing 
protocols. 

2.5.1 Data Partitioning. 
The cohort was partitioned using stratified sampling to 
preserve the original class distributions: 70% of the samples 
were allocated to the training subset (for model development 
and hyperparameter tuning), while 30% were assigned to the 
testing subset (for independent performance validation). 
Patient identifiers were retained throughout the pipeline to 
ensure traceability and clinical relevance. A fixed random 
seed was employed to guarantee reproducible splits across 
experiments. 

2.5.2 Classification Algorithms. 
To systematically identify the most clinically actionable 
predictor of pCR, we benchmarked ten machine-learning 
classifiers that span five distinct algorithmic paradigms: 
linear or distance-based models, tree ensembles, 
gradient-boosted ensembles, kernel methods, and neural 
networks. All algorithms were implemented within a fully 
reproducible scikit-learn 1.3 pipeline (Python 3.9). This 
pipeline automatically imputed missing features via median 
imputation, applied Z-score normalization, and compensated 
for class imbalance using balanced class weights or their 
algorithm-specific equivalents. Hyper-parameters were 
intentionally fixed across models to ensure fair comparison, 
and nested five-fold stratified cross-validation on the 
training set followed by a single independent test set was 
used to assess generalizability. 

In this study, ten machine learning classifiers spanning 
diverse algorithmic paradigms were rigorously evaluated to 
identify the most clinically actionable predictor of 
pathological complete response (pCR). These included: (1) 
Logistic Regression (LR) with L2 regularization to handle 
multicollinearity and class imbalance; (2) Linear 
Discriminant Analysis (LDA), a generative classifier 
assuming Gaussian class-conditional densities; (3) Support 
Vector Machine with RBF kernel (SVM-RBF), a 
maximum-margin kernel method accommodating non-linear 
decision boundaries; (4) k-Nearest Neighbors (k-NN), a 
non-parametric instance-based learner using Euclidean 
distance; (5) Random Forest (RF), an ensemble of 500 
decision trees with Gini impurity splitting; (6) Extremely 
Randomized Trees (Extra Trees), a variant of RF with 
additional randomization in split selection; (7) Adaptive 
Boosting (AdaBoost), which sequentially builds an 
ensemble of weak classifiers; (8) XGBoost, a 
gradient-boosting framework optimized with second-order 
derivatives and L2 regularization; (9) CatBoost, designed to 
handle categorical features efficiently using ordered 
boosting; and (10) Multi-Layer Perceptron (MLP), a shallow 
neural network with one hidden layer of 100 ReLU neurons 
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optimized via L-BFGS. All models were implemented using 
scikit-learn 1.3 under Python 3.9, with consistent 
preprocessing including median imputation, Z-score 
normalization, and balanced class weighting to ensure fair 
and reproducible comparison. All classifiers were evaluated 
with identical random seeds, ensuring deterministic splits 
and reproducible results across comparative analyses. 

3. Results

3.1 Patient data 

3.1.1 Data Source and Cohort Construction.  
In this research, we applied the public clinical dataset 
published on The Cancer Imaging Archive (TCIA) [18], the 
ISPY 1 TRIAL MRI dataset, to confirm the effectiveness 
and generalization of the proposed models. Furthermore, 
Chitalia et al. [19] excluded incomplete pathologic data and 
missing pre-treatment DCE-MRI sequences to obtain 
uniformly quantitative images and tumor annotations, and 
163 patients were reserved. All women received 
neoadjuvant chemotherapy with an 
anthracycline-cyclophosphamide regimen alone or followed 

by taxane and underwent longitudinal DCE-MRI imaging 
using a 1.5T field-strength system. 

3.1.2 Image Preprocessing. 
During preprocessing, we first extracted the DCE-MRI 
sequences of each patient before NAC treatment. We then 
standardized the original sequences to unify image 
resolution and reduce computational resource consumption. 
The normalization process adjusted all sequences to a pixel 
value range of [0, 1] to conform to model specifications. 
The specific steps included: (1)Resampling: Raw I-SPY 
images with variable voxel resolutions were resampled to a 
standard 1 mm³ isotropic resolution. This resolution was 
chosen to facilitate cohesive computational analysis while 
fitting within GPU memory constraints. (2) Z-score 
normalization: After resampling, images were Z-score 
normalized using instance-level statistics (encompassing all 
timepoints for a given patient, rather than the entire dataset). 
This normalization adjusted multi-timepoint scans to zero 
mean and unit variance, enhancing algorithmic 
generalizability. 

3.1.3 Clinical characteristics. 
Baseline demographic, tumour–related and treatment 
variables of the 163 women with locally advanced breast 
cancer are summarized in Table 1 and detailed below.  

Table 1. Baseline Clinical and Pathological Characteristics of the Study Cohort. 

Characteristics 
Training cohort Testing cohort 

Non-pCR  
N = 821 

pCR  
N = 321 p-value2 Non-pCR 

N = 351 
pCR  
N = 141 p-value2

age 48.7 ± 9.6 44.8 ± 6.2 0.035 49.1 ± 8.1 51.2 ± 11.8 0.5 
race_id 0.3 0.3 
Caucasian 59 (72%) 23 (72%) 28 (80%) 11 (79%) 
African American 19 (23%) 5 (16%) 6 (17%) 1 (7%) 
Asian 3 (4%) 2 (6%) 1 (3%) 1 (7%) 
Native Hawaiian/PI 0 (0%) 0 (0%) 0 (0%) 1 (7%) 
Multiple 1 (1%) 2 (6%) 0 (0%) 0 (0%) 
ERpos <0.001 0.023 
Negative 26 (32%) 22 (69%) 14 (42%) 11 (79%) 
Positive 56 (68%) 10 (31%) 19 (58%) 3 (21%) 
PgRpos <0.001 0.027 
Negative 33 (40%) 26 (81%) 17 (52%) 12 (86%) 
Positive 49 (60%) 6 (19%) 16 (48%) 2 (14%) 
HR Pos <0.001 0.008 
Negative 24 (29%) 22 (69%) 12 (36%) 11 (79%) 
Positive 58 (71%) 10 (31%) 21 (64%) 3 (21%) 
Her2MostPos 0.023 0.036 
Negative 60 (74%) 16 (52%) 25 (76%) 5 (38%) 
Positive 21 (26%) 15 (48%) 8 (24%) 8 (62%) 
HR_HER2_STATUS 0.004 0.018 
HR+/HER2- 44 (54%) 6 (19%) 16 (48%) 1 (8%) 
HER2+ 21 (26%) 15 (48%) 8 (24%) 8 (62%) 
Triple Negative 16 (20%) 10 (32%) 9 (27%) 4 (31%) 
Laterality >0.9 0.5 
Left 40 (49%) 16 (50%) 19 (54%) 6 (43%) 
Right 42 (51%) 16 (50%) 16 (46%) 8 (57%) 
1Mean ± SD; n (%) 
2Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test 
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3.2  Feature extraction and selection 

A dual-stream framework was designed to capture the full 
spectrum of tumour phenotypic information from 
pre-treatment DCE-MRI. In the first stream, radiomics 
features were computed to quantify a priori defined 
morphologic and textural patterns; in the second, deep 
learning features (DLFs) were extracted from convolutional 
neural networks (CNNs) to model high-level, data-driven 
representations. To guarantee methodological rigour and 
enable unbiased downstream comparison, each modality 
underwent an identical, independent processing chain 
consisting of extraction, univariate filtering, LASSO-based 
selection, and linear signature construction. 

3.2.1 Radiomic Feature Extraction. 
Radiomic features were extracted with PyRadiomics 3.0.1 in 
strict accordance with the Image Biomarker Standardization 
Initiative (IBSI). A total of 1,702 features were calculated 
from the three-dimensional tumour ROI of each patient. 
These comprised 18 first-order statistics describing the 
global intensity distribution (e.g., median, entropy, kurtosis, 
skewness), 14 morphological descriptors quantifying 
three-dimensional geometry (volume, surface area, 
sphericity, maximum 3-D diameter), and 1,670 high-order 
texture features derived from grey-level co-occurrence, 
run-length, size-zone, dependence, and 
neighbourhood-difference matrices, including 
wavelet-decomposed counterparts. All features were 

z-standardised (mean = 0, SD = 1) prior to further analysis
to mitigate scale-dependent biases.

3.2.2 Deep Learning Feature Extraction. 
For DLF extraction, five ImageNet-pre-trained CNN 
architectures—ResNet50, DenseNet-169, InceptionV3, 
InceptionResNetV2, and EfficientNetB0—were employed 
as frozen feature extractors. The axial slice exhibiting the 
largest tumour cross-section was manually cropped and 
resized to 224 × 224 pixels; pixel intensities were 
normalized to the 0–1 range. Activations from the final 
fully-connected layer of each network were harvested, 
yielding feature vectors of 2,048, 1,664, 2,048, 1,536, and 
1,280 dimensions, respectively. 

3.2.3 Feature Selection and Signature 
Construction. 

To counter the high-dimensional-low-sample-size challenge 
while preserving biological interpretability, a two-stage 
selection protocol was applied to both radiomics features 
and deep learning features. The first stage removed 
descriptors exhibiting near-zero variance (σ < 1 × 10⁻⁸) and 
subjected the remainder to univariate statistical testing. 
Normality was assessed with the Shapiro-Wilk test; variance 
homogeneity with Levene’s test. Depending on data 
distribution, group-wise differences between pCR and 
non-pCR cases were evaluated using the independent t-test, 
Welch’s t-test, or Mann–Whitney U test at α = 0.05. The 
univariate analysis of radiomics features is depicted in 
Figure 2. 

Figure 2. Univariate analysis of Radiomics features. 

In the second stage, features surviving univariate filtering 
were z-standardized and entered into LASSO logistic 
regression. Regularisation strength was optimised over 100 
logarithmically spaced values (10⁻⁴-10⁰) via 10-fold 
stratified cross-validation, with convergence criteria set to 
100,000 iterations and a tolerance of 1×10⁻⁶. Features 

retaining non-zero coefficients in the optimal model were 
linearly combined to generate a compact signature.This 
procedure (Figure 3) yielded 20 Radiomics features from an 
initial pool of 1,702, and 30, 34, 24, 16, and 6 DLFs for 
ResNet50, DenseNet-169, InceptionV3,
InceptionResNetV2, and EfficientNetB0, respectively.  
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Figure 3. Feature selection using LASSO regression. 

Signature values ranged from -0.624 to 0.809 across the 
cohort, encapsulating inter-patient variability in pCR 
likelihood and providing a low-redundancy, 
high-information substrate for subsequent multimodal 
modelling. Figure 4 presents a comparison of the DenseNet 
signature values between the pCR group and the non-pCR 
group. The data, visualized using a box plot, demonstrates a 
clear distributional difference between the two cohorts. The 
DenseNet signature values are significantly higher in the 
pCR group compared to the non-pCR group, suggesting a 
strong association between this deep learning-derived 
radiomic feature and treatment response. This result 
indicates that the DenseNet signature holds potential as a 
non-invasive imaging biomarker for predicting and 
differentiating treatment outcomes prior to therapy. 

Figure 4. Comparison of DenseNet Signature Values 
between pCR and non-pCR Groups.  

3.3 Development and performance of 
models 

The predictive performance of ten machine learning 
classifiers was systematically evaluated using a rigorous 
framework incorporating both stratified 5-fold 
cross-validation on the training set and independent testing 
on a held-out test set. Key metrics—including accuracy, 
area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, precision, and 
F1-score—were computed to comprehensively assess model 
discrimination, calibration, and clinical applicability. 

3.3.1 Overall Performance. 
All models demonstrated robust performance during 
cross-validation, with mean accuracy ranging from 0.842 to 
0.877. Notably, KNN, Extra Trees, AdaBoost, and XGBoost 
achieved the highest cross-validated accuracy (0.868–
0.877). However, performance on the independent test set 
revealed variations in generalizability. The highest test 
accuracy (0.96) was attained by both XGBoost and MLP, 
followed by AdaBoost, Random Forest, CatBoost, LDA, 
and Logistic Regression (0.94). SVM and Extra Trees 
yielded an accuracy of 0.92, while KNN performed slightly 
lower (0.86). 

Notably, the fusion model significantly outperformed 
radiomics-only and deep-learning-only baseline models (see 
Supplementary Table S1), underscoring the value of 
integrating complementary feature types. 

Test AUC values were consistently high across most 
models, with MLP achieving the highest AUC (0.98), 
followed by Logistic Regression (0.98), LDA and Extra 
Trees (0.98), Random Forest (0.97), CatBoost (0.97), SVM 
(0.97), AdaBoost (0.96), and XGBoost and KNN (0.94). 
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These results indicate strong discriminatory power across 
multiple algorithms, as shown in Table 2. 

The Receiver Operating Characteristic (ROC) curves for 
all classifiers are depicted in Figure 5, revealing that the 

Multi-Layer Perceptron (AUC = 0.98) achieved the highest 
classification performance. 

Table 2.  Predictive performance of models. 

Model TestAccuracy TestAUC Recall(Sensitivity) Specificity Precision F1Score 

MLP 0.96 0.98 0.93 0.97 0.93 0.93 

Logistic Regression 0.94 0.98 0.93 0.94 0.87 0.90 

LDA 0.94 0.98 0.86 0.97 0.92 0.89 

Extra Trees 0.92 0.98 0.71 1.00 1.00 0.83 

Random Forest 0.94 0.97 0.79 1.00 1.00 0.88 

CatBoost 0.94 0.97 0.79 1.00 1.00 0.88 

SVM 0.92 0.97 0.86 0.94 0.86 0.86 

AdaBoost 0.94 0.96 0.79 1.00 1.00 0.88 

XGBoost 0.96 0.94 0.86 1.00 1.00 0.92 

KNN 0.86 0.94 0.71 0.91 0.77 0.74 

Figure 5. The ROC curves of ten classifiers. 

3.3.2 Decision Curve Analysis. 
Decision curve analysis (Figure 6) further confirmed the 
clinical utility of the models that all machine learning 
models provided higher net benefit than “treat-all” or 
“treat-none” strategies across threshold probabilities ranging 
from 0.1 to 0.8. Logistic Regression consistently achieved 
among the highest net benefits, supporting their clinical 
utility for decision-making across a wide range of risk 
thresholds. 

Figure 6. Decision curve analysis for ten classifiers. 

3.3.3 Summary of Top Performers. 
Logistic Regression and MLP emerged as the 
best-performing models, offering an optimal balance 
between accuracy, AUC, sensitivity, specificity, and net 
clinical benefit. Both models also exhibited strong 
calibration and stability, making them promising candidates 
for clinical translation. Tree-based ensembles and boosting 
algorithms showed commendable performance but were 
limited either by computational demand or slight overfitting 
tendencies. 

Overall, the results confirm that the fusion of radiomics 
features and deep learning features within a machine 
learning framework enables highly accurate prediction of 
pCR. The consistency between cross-validation and 
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independent test results underscores the generalizability of 
the models, with MLP representing the most promising 
candidates for future clinical translation. 

4. Discussion

In this study, we developed and validated a multimodal 
DLR pipeline for the non-invasive prediction of pCR to 
neoadjuvant chemotherapy (NAC) in breast cancer using 
DCE-MRI. By integrating radiomics features with deep 
learning features extracted from five state-of-the-art CNN 
architectures, we demonstrated that the fusion of 
complementary feature types significantly enhances 
predictive performance compared to single-modality 
approaches. Our best-performing model, based on a 
multilayer perceptron (MLP) classifier, achieved an AUC of 
0.982 on independent testing, underscoring the potential of 
multimodal DLR for clinical decision support. The superior 
performance of the fusion model underscores the 
complementary nature of these feature types: while 
radiomics features provide interpretable, quantitative 
descriptors of known tumor characteristics, deep learning 
features uncover subtle, latent patterns within the image data 
that are not predefined by human experts. 

The superior performance of our fused feature model 
aligns with emerging evidence that radiomics features and 
deep learning features capture distinct yet complementary 
aspects of tumor phenotype. Our ablation study confirmed 
that the fusion model (AUC: 0.982) outperformed both 
radiomics-only (AUC: 0.78) and deep-learning-only (AUC: 
0.94) models constructed using the same feature selection 
and classification pipeline.     The integration of 1,702 
radiomics features and 8,576 deep learning features enables 
a multi-scale representation of tumor phenotype: the former 
offers clinically interpretable biomarkers, while the latter 
uncovers subtle imaging patterns indicative of treatment 
response. This synergy explains the superior performance of 
our fusion model, underscoring the value of combining 
domain knowledge with data-driven learning. This synergy 
is consistent with prior studies by Jiang et al. [14] and Wang 
et al. [15], who also reported improved prediction accuracy 
through feature fusion. However, our study extends this 
paradigm by incorporating a broader array of CNN 
architectures and a rigorous, IBSI-compliant feature 
extraction protocol, thereby enhancing both reproducibility 
and generalizability. 

Our feature selection strategy-combining univariate 
filtering with LASSO regression-proved effective in 
reducing dimensionality while retaining biologically 
relevant features. The resulting radiomics signature, derived 
from a small subset of highly discriminative features, 
exhibited significant differences between pCR and non-pCR 
groups, as illustrated in Figure 4. To enhance 
interpretability, we employed SHAP (SHapley Additive 
exPlanations) analysis on the LR model (see Supplementary 
Figure S1). This analysis not only enhances model 
transparency but also identifies potential imaging 
biomarkers for further biological validation. 

The constructed radiomics signatures exhibited a wide 
range of values (e.g., -0.624 to 0.809 for the ResNet-based 
signature), which strongly correlated with pCR probability. 
This stratification capability could support clinical 
decision-making by identifying patients with a high 
likelihood of response, who may benefit from NAC, and 
those with resistant disease, for whom alternative or 
intensified therapies should be considered.   This 
underscores the potential utility of our model in 
biomarker-limited contexts where conventional predictors 
are less informative. 

Notably, the MLP and logistic regression models 
emerged as top performers, balancing high accuracy, 
robustness, and clinical interpretability. The strong 
performance of linear models like logistic regression 
suggests that the selected features exhibit approximately 
linear separability between responders and non-responders, 
which may facilitate easier clinical adoption. Conversely, 
the MLP’s superior AUC highlights the value of non-linear 
modeling in capturing complex interactions within 
high-dimensional feature spaces. The consistency between 
cross-validation and independent test results further 
validates the generalizability of our approach and mitigates 
concerns regarding overfitting. 

The strong predictive performance and positive decision 
curve analysis suggest clear clinical translatability. In 
practice, our model could be integrated into the clinical 
workflow to assist in treatment decision-making. For 
instance, for patients predicted with a high probability of 
pCR (e.g., above a certain threshold), clinicians could 
proceed with NAC with greater confidence. Conversely, for 
patients predicted to have a very low likelihood of response, 
the model could serve as a decision-support tool to avoid the 
toxicity and morbidity of ineffective chemotherapy and 
prompt earlier consideration of alternative therapeutic 
strategies, such as different chemo-regimens or upfront 
surgery. This aligns with the overarching goal of precision 
oncology—to personalize treatment and maximize benefit 
while minimizing harm. 

Despite these promising results, several limitations must 
be acknowledged. First, our study utilized a public dataset 
with a limited sample size (n=163), which may constrain the 
statistical power and generalizability of the findings. 
Although we employed stratified sampling and rigorous 
cross-validation, the small test set (n=49) limits the stability 
of performance estimates. Second, the retrospective nature 
of the data and its origin from a single clinical trial (despite 
public availability) introduce potential biases in patient 
selection and imaging protocols. Third, while we adhered to 
IBSI standards to ensure reproducibility, variations in MRI 
acquisition parameters across institutions may still affect 
feature stability. Future work should focus on external 
validation in multi-center cohorts to confirm robustness 
across diverse clinical settings. 

Additionally, the integration of genomic data (e.g., 
transcriptomic or mutational profiles) could further enhance 
predictive accuracy through multi-omics fusion, providing a 
more comprehensive understanding of treatment response 
mechanisms. Explainable AI techniques, such as feature 
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attribution methods [17], could also be employed to improve 
model interpretability and clinical trust. 

The strong performance of linear models like logistic 
regression suggests that the selected features exhibit 
approximately linear separability between responders and 
non-responders, which may facilitate easier clinical 
adoption. Conversely, the MLP's superior AUC highlights 
the value of non-linear modeling in capturing complex 
interactions within high-dimensional feature spaces. For 
clinical translation, we recommend initial deployment of the 
logistic regression model due to its simplicity and 
interpretability, while the MLP could be reserved for 
settings where maximum accuracy is required and 
computational resources are sufficient. The consistency 
between cross-validation and independent test results further 
validates the generalizability of our approach and mitigates 
concerns regarding overfitting. 

In conclusion, our study demonstrates that the fusion of 
radiomics features and deep learning features within a 
machine learning framework significantly improves the 
prediction of pCR to NAC in breast cancer. The proposed 
pipeline offers a standardized, reproducible, and highly 
accurate tool for non-invasive treatment response 
assessment, with clear potential to guide personalized 
therapy decisions and reduce unnecessary chemotherapy. 
Future efforts should focus on large-scale validation and 
integration with complementary data modalities to advance 
toward clinical implementation. 

5. Conclusions

In this study, we developed a multimodal deep learning 
radiomics (DLR) framework that integrates 
IBSI-standardized radiomics features with deep 
convolutional features from five CNN architectures to 
predict pathological complete response (pCR) to 
neoadjuvant chemotherapy in breast cancer. The fusion of 
these feature types significantly enhanced predictive 
performance, with the best model achieving an AUC of 0.98 
on an independent test set. Through rigorous feature 
selection and the construction of a highly discriminative 
signature, our approach provides a non-invasive, 
reproducible tool for early treatment response assessment, 
offering strong potential to guide personalized therapy, 
avoid ineffective chemotherapy, and reduce 
treatment-related toxicity. Future work will focus on 
large-scale, multi-center validation to confirm 
generalizability. Integration of genomic data could further 
enhance predictive accuracy, moving us closer to a robust 
multi-omics model for clinical precision oncology. 

Supplementary Material 

Supplementary Table S1. Number of Features Selected from Each Feature Set Following the Two-Stage Selection 
Process. 

Feature Set Initially Extracted After Univariate Filtering After LASSO Selection 

Radiomics 1,702 48 20 

ResNet50 2,048 101 30 

DenseNet-169 1,664 87 35 

InceptionV3 2,048 109 24 

InceptionResNetV2 1,536 79 16 

EfficientNetB0 1,280 245 6 

Supplementary Table S2. Performance Comparison of the Proposed Fusion Model Against Single-Modality 
Baselines on the Independent Test Set. 

Model Type Test AUC Test Accuracy Sensitivity Specificity 

Radiomics-only 0.777 0.735 0.714 0.743 

Deep Learning-only 0.943 0.939 0.786 0.914 

Fusion (Ours) 0.982 0.959 0.929 0.971 
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Supplementary Figure S1. SHAP Summary Plot for the 
Logistic Regression Model Predicting pCR to NAC. 

This beeswarm plot illustrates the feature importance and 
directionality of influence for each predictor incorporated in 
the logistic regression model, based on SHapley Additive 
exPlanations (SHAP) values. Each point represents an 
individual patient from the test cohort. Features are ranked 
vertically by their mean absolute SHAP value, denoting 
overall contribution to the model’s output. The horizontal 
axis corresponds to the impact on the predicted log-odds of 
pCR, with positive SHAP values (rightward) indicating an 
increased likelihood of pCR and negative values (leftward) 
indicating a decreased likelihood. Color intensity reflects the 
normalized value of the feature (red: high, blue: low). 
Notably, imaging-derived signatures from deep learning 
models (e.g., InceptionV3, ResNet, DenseNet) and key 
clinical variables (e.g., HR status, ER status) emerged as the 
most influential predictors. Higher values of most deep 
learning features and negative hormone receptor status were 
associated with an elevated probability of pCR, aligning 
with established clinical biomarkers. 

Figure S1. SHAP Beeswarm Plot for the Logistic 
Regression Model Predicting Pathological Complete 

Response (pCR) to Neoadjuvant Chemotherapy 
(NAC). 
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