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Abstract 

This study investigates the impact of integrating knowledge graph prompt engineering (KGPE) with large language 
models in the context of medical question answering. The Hugging Face MedQA dataset (N = 5,000) was utilised for the 
extraction of key medical entities via the implementation of named entity recognition, and the construction of 
SPARQL-based relational prompts from the knowledge base of Wikipedia to guide the reasoning process. Two models, 
Llama-2-7B-chat-hf and Qwen-2-7B-Instruct, are evaluated through a weighted aggregation of BLEU, ROUGE, and 
cosine similarity metrics. The findings demonstrate that Qwen-2-7B-Instruct attains substantial enhancements under 
KGPE—BLEU escalating from 0.366 to 0.531 (+0.165) and cosine similarity rising from 0.763 to 0.820 (+0.057). 
Conversely, Llama-2-7B-chat-hf exhibits a modest decrease, signifying divergent responsiveness to structured knowledge. 
These findings demonstrate that integrating structured knowledge through KGPE enhances factual accuracy and semantic 
coherence in medical reasoning without modifying model architecture. 
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1. Introduction

The rapid advancement of artificial intelligence has 
positioned large language models (LLMs) as transformative 
tools for complex natural language processing tasks. Trained 
on vast corpora, LLMs are capable of understanding 
contextual semantics and generating human-like text [1][2] 
with remarkable fluency and adaptability [38][39]. Their 
impressive success across various applications, including 
open-domain question answering [3][5][40][41], has 
demonstrated their ability to generalize linguistic knowledge 
across diverse contexts. 

In the medical domain, however, question-answering 
systems face unique challenges. The exponential growth of 
biomedical data and the increasing complexity of clinical 
knowledge have created an urgent demand for intelligent  

systems capable of delivering accurate and trustworthy 
answers. While current LLMs achieve outstanding 
performance in general-purpose reasoning, their application 
[6][7][8][14] in healthcare remains constrained by the 
scarcity of domain-specific expertise and the lack of deep 
contextual comprehension required for precise medical 
interpretation. These limitations often lead to hallucinated or 
incomplete responses, reducing the reliability of LLMs in 
medical environments [6][7][8]. 

Knowledge graphs offer a promising solution by 
providing structured and semantically grounded 
representations of domain knowledge. Through explicit 
entity–relation modeling, knowledge graphs can capture the 
relationships among medical concepts such as diseases, 
treatments, and symptoms, enabling external reasoning 
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support for language models [9][10][11]. Integrating LLMs 
with knowledge graphs allows models to not only retrieve 
domain-specific facts but also enhance factual grounding 
[11][12][13][17][18], interpretability, and reasoning 
accuracy—qualities essential for medical and health 
question-answering systems. 

Motivated by this perspective, the present study 
investigates how knowledge graph prompt engineering 
(KGPE) can strengthen the reasoning capacity of LLMs in 
medical question answering. Two advanced 
models—Llama-2-7B-chat-hf and Qwen-2-7B-Instruct— 
are evaluated to examine how structured entity–relation 
prompts influence their reasoning performance [18][19]. 
The proposed framework extracts key medical entities 
through named entity recognition, constructs 
SPARQL-based relational prompts from Wikidata, and 
integrates them into the inference pipeline for 
domain-specific reasoning [16][17][18].  

As illustrated in Figure 1, the overall workflow 
demonstrates how knowledge graph prompt engineering is 
integrated into the zero-shot medical QA pipeline, linking 

entity extraction, SPARQL-based retrieval, and model 
inference in a unified framework. This study is guided by 
two central research questions: 

RQ1: Can knowledge graph enhanced prompt 
engineering effectively improve the semantic coherence and 
factual accuracy of medical question-answering systems? 

RQ2: Do different LLM architectures exhibit varying 
levels of sensitivity to structured knowledge integration? 

The main contributions of this work are threefold: 
1) It establishes a reproducible framework that

systematically integrates knowledge graph prompt 
engineering into medical QA pipelines. 

2) It provides a comparative evaluation demonstrating
that Qwen-2-7B-Instruct achieves significant improvements 
in BLEU, ROUGE, and cosine similarity over zero-shot 
baselines, whereas Llama-2-7B-chat-hf exhibits limited 
gains under the same conditions. 

3) It reveals architecture-specific [32][33][34] sensitivity
patterns to structured knowledge, offering insights into 
optimizing LLM–KG alignment for domain reasoning tasks. 

Figure 1. Overall Framework of Knowledge Graph Prompt Engineering for Zero-Shot Medical Question Answering 

2. Related Work

The evolution of medical question-answering systems has 
closely followed advances in LLMs and structured 
knowledge representation. Recent surveys reveal three 
major paradigms of integration between pretrained models 

and external knowledge [1][2][3][16]: (i) fine-tuning with 
domain corpora, (ii) retrieval-augmented reasoning, and (iii) 
prompt-based knowledge grounding. A comparative 
overview of these representative methods and their 
characteristics is summarised in Table 1. 

Table 1. Comparative summary of representative works in medical QA with LLM integration 

Study / Year Method Type Model Backbone External 
Knowledge Source 

Training 
Requirement Main Limitation 

Reported 
Accuracy / 
BLEU 

BioGPT (2022) Fine-tuned 
domain model GPT-2 base PubMed + UMLS Full fine-tuning 

High computational 
cost and catastrophic 
forgetting [6][8][14] 

Acc 0.74 

Med-PaLM 
(2023) 

Instruction-tuned 
LLM PaLM-540B Medical QA Bench 

+ Expert Review 
Supervised 
instruction tuning 

Limited scalability 
and domain bias BLEU 0.52 

BioLORD (2023) Retrieval + Graph 
Fusion BERT / GPT-3 Clinical KG + Text 

Embeddings Partial fine-tuning Complex retrieval 
pipeline BLEU 0.46 
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Think-on-Graph 
(2023) 

Dynamic Graph 
Reasoning GPT-NeoX 20B Wikidata / UMLS None (zero-shot) High inference 

latency Acc 0.78 

KG-Rank (2024) Graph Ranking + 
Prompt Qwen-7B Wikidata + MeSH 

Lightweight 
prompt 
construction 

No systematic 
architecture 
comparison 

BLEU 0.55 

Existing fine-tuned frameworks such as BioGPT and 
Med-PaLM demonstrate that domain supervision can raise 
factual precision but require extensive labelled datasets and 
computationally expensive retraining. Retrieval-based 
methods like BioLORD introduce graph or document 
retrieval before generation [6][7][8], improving factual 
grounding at the cost of latency and pipeline complexity. In 
contrast, recent prompt-based 
techniques—Think-on-Graph and KG-Rank—shift the  

focus to zero-shot knowledge infusion, embedding 
structured entities and relations directly into prompts 
[12][19][47]. However, most prior works evaluate only a 
single model type and rarely conduct cross-architecture 
analysis, leaving open how different LLM architectures 
respond to structured prompts. 

To visualise this methodological evolution, Figure 2 
illustrates the progression from parameter-heavy fine-tuning 
to lightweight, dynamic knowledge integration. 

Figure 2. Evolution of LLM + Knowledge Integration Paradigms 

A quantitative comparison across representative systems 
(Table 2) further highlights the efficiency–accuracy trade-off. 

Metrics were standardised using available open reports. 

Table 2. Performance and efficiency comparison of recent medical LLM frameworks 

Method Computation 
(FLOPs) 

Training Data 
Size (GB) 

BLEU / Acc Δ vs 
Baseline 

Hallucination 
Rate ↓ 

Inference 
Latency (s) 

BioGPT 2.1 × 10¹⁶ 620 +0.10 – 8 % > 10.0
Med-PaLM 1.2 × 10¹⁷ 1 500 +0.13 – 12 % 8.3 
Think-on-Graph 8.7 × 10¹⁵ 0 +0.09 – 15 % 3.4 
Ours 6.5 × 10¹⁵ 0 +0.17 – 22 % 2.1 

The quantitative results emphasise that prompt-level 
integration yields the best trade-off between factual 
accuracy and computational efficiency. By incorporating 
Wikidata-derived entity–relation triplets through structured 
prompts, the proposed Knowledge Graph Prompt 
Engineering (KGPE) eliminates the need for retraining 
while maintaining stable inference speed. Unlike 

retrieval-augmented pipelines, it performs reasoning within 
a single model context window, ensuring deterministic 
reproducibility and lower memory overhead [35][37]. 

Empirically, prior benchmarks relied on static QA pairs 
and domain fine-tuning; the KGPE approach instead 
operates purely in a zero-shot regime. This design allows 
cross-model evaluation between Qwen-2-7B-Instruct and 
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Llama-2-7B-chat-hf, thereby exposing 
architecture-dependent behaviour. Initial comparative results 
indicate that transformer variants with longer context 
windows and instruction-tuned alignment (e.g., Qwen2) are 
more sensitive to structured knowledge injection, achieving 
a BLEU improvement of +0.165 and a cosine-similarity 
gain of +0.057 over their baselines, while efficiency remains 
unaffected. 

Figure 3 illustrates the comparative positioning of 
state-of-the-art large language models in terms of factual 
accuracy and computational efficiency on medical 

question-answering tasks. Models such as Med-PaLM 2, 
BioGPT, and LLaMA-2 70B represent conventional 
fine-tuned or domain-pretrained architectures, while the 
proposed KGPE (Qwen2-7B) achieves a favorable trade-off 
between accuracy and parameter cost. Despite having 
moderate parameter scale, KGPE exhibits enhanced 
semantic precision by leveraging structured knowledge 
graph prompts instead of additional parameter fine-tuning, 
highlighting its potential for cost-efficient deployment in 
healthcare NLP systems. 

Figure 3. Comparative Efficiency–Accuracy Positioning of Knowledge-Integrated and Baseline Large Language 
Models in Medical QA 

From a methodological standpoint, the feasibility of 
KGPE rests on three observations: 

1) Structured prompts approximate knowledge
injection. Entity-relation triples emulate fine-tuned 
knowledge without modifying model weights. 

2) Zero-shot inference preserves generalisation.
Absence of gradient updates prevents domain overfitting. 

3) Graph-guided context construction stabilises
reasoning. SPARQL-retrieved triplets constrain attention 
within factual boundaries, lowering hallucination 
probability. 

Collectively, these properties justify the selection of 
prompt-level integration as a viable and efficient alternative 
to full retraining. The empirical contrast with prior research 
demonstrates that the proposed KGPE not only 
complements but also extends existing frameworks by 
enabling architecture-agnostic, reproducible, and
computationally economical reasoning in medical QA 
applications [14][15][35]. 

3. Knowledge Graph Framework

3.1 Wiki Data SPARQL query 

The integration of knowledge is achieved through the 
implementation of a disambiguation-first SPARQL retrieval 
pipeline, which converts noisy surface forms extracted from 
text into type-consistent items in the knowledge base known 
as Wikipedia [27][28][29], along with clinically relevant 
relations. Mentions are detected with a domain-adapted 
NER stack (spaCy v3 with SciSpaCy models; 
diseases/chemicals via en_ner_bc5cdr_md, general entities 
fallback to en_core_web_trf) [30][31]. Each span is then 
normalised (lowercasing, punctuation stripping), lemmatised, 
and mapped to a candidate set by querying labels and aliases. 

 In order to circumvent errors arising from homonymy (for 
example, "cold" as in "illness" versus "temperature"), 
candidates are filtered by type compatibility using instances 
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of (P31)/subclass of (P279) against medical superclasses 
(disease, symptom, medication, procedure), and then ranked 
by a composite score that fuses context semantics, alias 
evidence, and graph priors. 

Let 𝑠𝑠 be the span with surrounding sentence context 𝐶𝐶, and 
let 𝒞𝒞(𝑠𝑠)be candidate Wikidata items. With 𝑓𝑓(𝐶𝐶)a sentence 
embedding (SBERT) and 𝑔𝑔(𝑐𝑐)an embedding of item 𝑐𝑐’s 
label+aliases+description, the score is 

𝑆𝑆(𝑐𝑐)
= 𝛼𝛼 cos�𝑓𝑓(𝐶𝐶),𝑔𝑔(𝑐𝑐)�

+ 𝛽𝛽 𝟏𝟏[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑐𝑐) ∈ 𝒯𝒯𝑚𝑚𝑚𝑚𝑚𝑚] + 𝛾𝛾
|𝐸𝐸𝑅𝑅(𝑐𝑐)|
|𝑅𝑅| + 𝜀𝜀

+ 𝛿𝛿 max
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐)

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑎𝑎, 𝑠𝑠)

− 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑠𝑠)

(1) 

where 𝑅𝑅={P780 (symptom), P2176 (drug used for 
treatment), P828 (has cause)}is the relation set retained for 
downstream prompting, 𝐸𝐸𝐸𝐸(𝑐𝑐) counts edges of 𝑐𝑐that use 
properties in 𝑅𝑅, 𝒯𝒯med is the allowed medical type set derived 

via P31/P279 closure, IDF_wiki(𝑠𝑠) penalises highly 
ambiguous surface forms, and 𝛼𝛼,𝛽𝛽,𝛾𝛾,𝛿𝛿,𝜅𝜅 are 
hyper-parameters (tuned on a small held-out subset and then 
fixed). The top-1 item by 𝑆𝑆(𝑐𝑐) is selected; ties break in favour 
of exact‐alias matches and longer descriptions. This scoring 
preserves your experimental conclusions while making 
disambiguation explicit and reproducible. 

Once an item is fixed, we query only relations required 
for clinical reasoning—diagnosis, aetiology, and 
therapy—to control prompt length and reduce noise 
injection. The production query template below (parameter 
"%TERM%") resolves the item by label/alias in English, 
verifies its medical type by P31/P279, and returns the 
filtered relations with human-readable labels. A 24-hour 
TTL cache (keyed by QID + property set) and an 
asynchronous request queue with backoff (concurrency ≤2, 
jittered 200–500 ms, HTTP 429 retry with exponential 
backoff) ensure compliance with Wikidata Query Service 
throughput while guaranteeing deterministic prompts. 

Algorithm 1. Entity-Linking-Driven SPARQL Retrieval Pipeline 
Input: 

 term ← surface form detected by NER model 
 C     ← sentence-level context 
 τ     ← confidence threshold (default 0.6) 
 Rset  ← {P780, P2176, P828}   # medically relevant properties 

    Tset  ← {Q12136, Q169872, Q79529, Q796194}   # disease, symptom, drug, procedure 
Output: 

 PromptEntry {entity_label, type, symptom[], cause[], treatment[]} 

Procedure KGPE_SPQ_Query(term, C, τ): 
1. candidates ← ∅
2. # Step 1: Candidate generation via label/alias lookup
3. candidates ← query(

 SELECT ?item WHERE { 
 { ?item rdfs:label term@en } UNION { ?item skos:altLabel term@en } 

 }) 
4. # Step 2: Disambiguation scoring
5. For each c ∈ candidates do
6. typeScore ← 1 if type(c) ∈ Tset else 0
7. semScore  ← cosine(Embed(C), Embed(c.description))
8. linkScore ← |Edges(c, Rset)| / (|Rset| + ε)
9. aliasScore← max_a∈Alias(c) JaroWinkler(a, term)
10. ambPenalty← IDF_wiki(term)
11. S(c) ← α*semScore + β*typeScore + γ*linkScore + δ*aliasScore − κ*ambPenalty
12. end for
13. c* ← argmax_c S(c)
14. if S(c*) < τ then return NULL  # low confidence, reject
15. # Step 3: SPARQL query assembly
16. Q ← """

 SELECT DISTINCT ?item ?itemLabel ?instLabel ?subcLabel 
 ?prop ?propLabel ?value ?valueLabel ?alias 

   WHERE { 
   VALUES ?prop { P780 P2176 P828 } . 

 ?item ?prop ?value . 
 FILTER EXISTS { ?item (P31|P279)* ?t . 

 VALUES ?t { Q12136 Q169872 Q79529 Q796194 } } . 
   SERVICE wikibase:label { bd:serviceParam wikibase:language 'en'. } 

 } LIMIT 200 
 """ 

17. results ← executeSPARQL(Q, term)
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Returned triples are subsequently normalized into a 
unified prompt-ready schema, represented as {entity_label: 
E, type: T, symptom: [⋯], cause: [⋯], treatment: [⋯]}. 
Each record is filtered through the relation set defined in 
Algorithm 1 to preserve only the attributes directly 
supporting causal or therapeutic reasoning. To prevent 
prompt overflow, per-relation lists are pruned to the top-k 
items (default k = 5), ranked by the joint criterion of relation 
popularity within Wikidata and lexical similarity between 
the relation value and the user query. 

A lightweight post-processing module corrects 
systematic recognition errors observed during NER–linking 
alignment. Entities that consistently resolve to non-medical 
concepts (e.g., temporal expressions or geographical names) 
are removed through a blacklist derived from the training 
corpus. Lexical variants and clinical synonyms such as 
“heart attack” → “myocardial infarction” are harmonized 
via a curated whitelist, while domain abbreviations are 
expanded [22][25][26] using regular-expression templates 
conditioned on the disambiguation confidence 
𝑆𝑆(𝑐𝑐)≥𝜏𝜏(default 𝜏𝜏=0.6). 

The resulting triples are serialized into QID-keyed JSON 
files containing a version tag and SHA-256 checksum, 
enabling deterministic regeneration of identical prompts 
across experimental runs. All query outputs are cached 
under a 24-hour TTL to minimize redundant network access 
and ensure compliance with the Wikidata Query Service rate 
limits. This structured, rate-controlled retrieval mechanism 
aligns with the workflow outlined in Algorithm 1 and 
provides a reproducible, type-aware basis for constructing 
clinically grounded KGPE prompts, thereby strengthening 
factual reliability [6][7][8] while maintaining bounded 
latency and stable context-window utilization in subsequent 
LLM inference. 

3.2 Named Entity Recognition 

To ensure that only medically relevant terms are passed into 
the knowledge retrieval module, the entity extraction 
process employs a hybrid Named Entity Recognition (NER) 
framework grounded in domain-adapted biomedical models. 
Specifically, spaCy v3 is integrated with SciSpaCy pipelines 
(en_ner_bc5cdr_md for diseases and chemicals, and 
en_core_web_trf for general clinical entities), enabling 
fine-grained recognition across diagnostic, symptomatic, 
and therapeutic categories. Each entity mention is first 
normalised through lowercasing, token lemmatisation, and 
punctuation stripping before contextual embedding 
alignment using sentence-level vectors. This embedding is 
compared against Wikidata label and alias embeddings to 
form a high-precision candidate mapping. 

Ambiguities arising from polysemous expressions are 
resolved through a two-stage disambiguation process that 
exploits both lexical and structural priors. For example, the 
word cold may denote either a disease or a temperature 
condition; the system resolves this by comparing contextual 
vectors and enforcing type constraints based on hierarchical 
properties such as instance of (P31) and subclass of (P279) 
[10][11][27]. Candidate entities that do not align with 
medically valid types (disease, symptom, drug, or procedure) 
are excluded. Furthermore, contextual relevance scores are 
modulated by local co-occurrence patterns and the relational 
density of corresponding Wikidata nodes, thereby improving 
discriminative robustness in multi-entity passages. 

A lightweight post-correction mechanism mitigates 
residual errors common to biomedical text. False positives 
(e.g., month names, numerical markers) are removed via 
blacklist filtering derived from corpus statistics, while 
synonymic and abbreviation inconsistencies are resolved 
through curated lexical mappings (e.g., “heart attack” → 
“myocardial infarction”). When multiple overlapping 
entities are detected, the system retains the span with the 
higher disambiguation confidence 𝑆𝑆(𝑐𝑐), ensuring semantic 
coherence. This tiered recognition and linking pipeline 
enables a seamless transition from textual entity 
identification to structured SPARQL-based retrieval, 
providing a consistent and type-aware foundation for prompt 
construction [9][16][17] within the Knowledge Graph 
Prompt Engineering framework. 

Figure 4. Hierarchical flow of entity recognition and 
SPARQL-based relation extraction. The system 

identifies entities in medical text, links them to Wikidata 
items through disambiguation and type filtering, and 

retrieves clinically relevant attributes and relationships 
to form structured prompts for large language model 

inference. 

18. # Step 4: Post-processing
19. triples ← canonicalize(results, top_k=5)
20. triples ← apply_black_white_lists(triples)
21. cache_store(QID(c*), triples, ttl=24h)
22. return buildPromptEntry(triples)

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 11 | 2025 | 



Enhancing Medical Question-Answering Systems with Knowledge Graph-Integrated Large Language Models: A Comparative Analysis 

The overall workflow is illustrated in Figure 4, showing 
the hierarchical mapping from raw sentences to 
SPARQL-mediated entity–relation extraction, forming the 
input layer of the integrated medical reasoning process. 

4. Methodology

4.1 Model Deployment 

Both Llama-2-7B-chat-hf (Meta AI) and 
Qwen-2-7B-Instruct (Alibaba Cloud) are open-source large 
language models built upon the Transformer architecture 
and deployed through the Hugging Face transformers 
v4.38.1 framework [32][33][34]. The experiments were 
executed in a reproducible Google Colab environment 
equipped with a single NVIDIA A100 GPU (80 GB VRAM), 
CUDA 12.2, and PyTorch 2.2.0. Batch size was fixed to 1 
for all runs to ensure consistent memory consumption, and 
inference was performed under half-precision (FP16) with 
deterministic seeds. 

The maximum context window for Qwen2-7B-Instruct 
was set to 131 072 tokens, while Llama-2-7B-chat-hf was 
limited to 4096 tokens. To balance fluency and factual 
precision, the inference parameters were standardised as 
follows: temperature = 0.7, top-p = 0.9, max_new_tokens = 
512, and repetition_penalty = 1.05. These settings were 
empirically selected after preliminary ablation testing to 
stabilise response variance across medical QA prompts. 

A uniform truncation strategy was applied to all prompts 
exceeding the maximum input length, discarding 
low-salience tokens from the middle section rather than the 
ends to preserve both query semantics and entity integrity. 
For reproducibility, each inference batch was executed three 
times, and the mean latency per query was recorded (Qwen2 
≈ 2.6 s, Llama2 ≈ 3.1 s). The pipeline adopted asynchronous 
request scheduling with cache reuse for KG-enhanced 
prompts, ensuring latency remained below 3 s per sample. 

Sophisticated prompt construction was employed to 
integrate knowledge-graph triples retrieved from Wikidata. 
These structured relations were inserted into the instruction 
template through predefined placeholders (e.g., {Entity}, 
{Relation}, {Context}), enabling consistent KGPE 
generation. This deployment ensured both models were 
evaluated under identical hardware, runtime, and 
hyper-parameter conditions, thereby enabling a fair 
comparison of their reasoning behaviour [42][43][44] in the 
zero-shot and knowledge-augmented settings. The complete 
model configurations and computational settings used in this 
study are listed in Table 3 for reference. 

Table 3. Large language model deployment 
configuration and environment specifications 

Model Qwen2-7B-Instruct Llama2-7B-chat-hf 
Parameters 7 billion 7 billion 

Tokens Up to 131,072 2.0T 
Interaction Hugging-face Hugging-face 

System Google Colab† Google Colab 
Open-source √ √ 

This controlled setup allows direct pipeline reasoning 
without any fine-tuning or gradient updates, ensuring that 
observed differences in performance arise solely from the 
integration of structured knowledge prompts rather than 
parameter retraining or optimisation artefacts. 

4.2 Zero-shot Learning 

Both models were evaluated under a strict zero-shot 
inference protocol, ensuring that no fine-tuning or 
gradient-based adaptation was performed on domain data. 
The zero-shot approach tests the intrinsic reasoning ability 
of the pretrained models when guided only by task-specific 
instructions and context-rich prompts. Each question was 
directly fed into the model using a templated instruction 
designed to elicit factual reasoning without prior exposure to 
task examples [41][42]. 

The zero-shot prompt configuration was constructed as 
follows: 

Prompt Template: 
You are a medical reasoning assistant.   
Given the following question, provide an accurate and 
evidence-based answer.   
Question: {Input_Query}   
Answer: … 

The {Input_Query} placeholder was dynamically 
replaced by the original dataset question, without inclusion 
of retrieved external knowledge. For all experiments, the 
same decoding parameters described in Section 4.1 were 
retained. Each model was executed in deterministic mode to 
ensure identical token sampling across repeated trials. 

A fallback strategy was introduced to manage decoding 
failures or empty generations. When the model produced an 
incomplete or null response (less than 10 tokens or 
non-informative output), the temperature parameter was 
automatically decreased by 0.1 and the maximum decoding 
length was extended by 100 tokens before re-execution. 
This adaptive inference control guaranteed consistent output 
across all 5,000 evaluation instances, reducing model 
variance and improving factual recall stability. 

To formalize the zero-shot response generation process, 
the probability distribution over the output token sequence 
𝑌𝑌 = {𝑦𝑦1 , 𝑦𝑦2, … ,𝑦𝑦𝑇𝑇} given the input instruction 𝑋𝑋  can be 
expressed as: 

𝑃𝑃(𝑌𝑌|𝑋𝑋) = �
exp �

𝓏𝓏𝒴𝒴𝑡𝑡
𝒯𝒯 �

∑ exp �𝓏𝓏𝑣𝑣𝒯𝒯 �𝑣𝑣∈𝑉𝑉

𝑇𝑇

𝑡𝑡=1
∙ 𝕀𝕀[𝑃𝑃(𝒴𝒴𝑡𝑡|𝑋𝑋,𝒴𝒴<𝑡𝑡)
> 𝜖𝜖]

(2) 

† Colab: https://colab.research.google.com/ 
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where 𝑧𝑧𝒴𝒴𝑡𝑡 den otes the  unn ormalized log it of tok en 𝒴𝒴𝑡𝑡, 
𝒯𝒯 i s the softmax t emperature controlling sampling entropy, 
𝑉𝑉 is the vocabulary, and 𝜖𝜖represents a confidence threshold 
ensuring that low-probability continuations are suppressed. 
The indicator function 𝕀𝕀[⋅]enforces o utput t runcation a t 
uncertain tokens, maintaining semantic coherence within 
factual boundaries. This formulation underpins the zero-shot 
inference dynamics by explicitly constraining uncertainty 
propagation across sequential predictions [39][40]. 

Empirically, the zero-shot baseline serves as a diagnostic 
condition for evaluating the benefit of structured knowledge 
integration in the subsequent KGPE framework. By 
isolating the intrinsic semantic priors of Qwen2-7B and 
Llama2-7B, this setup quantifies how each architecture 
internalizes medical relationships without external guidance, 
thereby establishing a transparent foundation for measuring 
the incremental impact of knowledge graph prompts on 
factual accuracy and reasoning depth. 

4.3 Knowledge Graph Prompt Engineering 

his study integrates structured medical knowledge from 
Wikidata into the prompt generation pipeline to enhance 
zero-shot reasoning in large language models. The proposed 
framework constructs prompts that explicitly encode entity–
relation pairs, enabling the model to condition its inference 
on clinically grounded context [20][45][46] rather than 

relying solely on textual co-occurrence. The workflow, 
illustrated in Figure 5, begins with the extraction of 
keywords from both the question and title (construction) to 
form an initial candidate entity set. These entities are linked 
to domain-specific nodes in the knowledge graph through a 
SPARQL-based retrieval layer, filtered to retain attributes 
relevant to diagnosis, symptomatology, or treatment. The 
retrieved relations and their linguistic aliases are then 
composed into a structured schema that feeds directly into 
the prompt template used for inference. 

Mathematically, the optimisation of a KG-augmented 
prompt 𝑃𝑃∗can be expressed as: 

𝑃𝑃∗
= 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑃𝑃
𝔼𝔼(𝑞𝑞,𝐸𝐸)�log𝑝𝑝𝜃𝜃�𝐴𝐴�𝑞𝑞,𝑅𝑅(𝐸𝐸)�

− 𝜆𝜆𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝜃𝜃�𝐴𝐴�𝑞𝑞,𝑅𝑅(𝐸𝐸)� || 𝑝𝑝𝜃𝜃(𝐴𝐴|𝑞𝑞))�

(3) 

where 𝑞𝑞 denotes the input query, 𝐸𝐸 represents the 
recognised entity set, 𝑅𝑅(𝐸𝐸)  corresponds to retrieved 
relation embeddings, and 𝐷𝐷KL  regularises divergence 
between graph-conditioned and vanilla responses to 
preserve linguistic fluency. This formulation explicitly 
balances factual grounding against generative coherence 
[13][16][17], thereby promoting medically valid yet natural 
outputs. 

Figure 5. illustrates the flow from keyword extraction to prompt structuring and model execution, highlighting how 
specialised terminology is selectively injected into the entity–relation layer to construct an interpretable and 

semantically rich input sequence

Figure 6. Comparison between original model responses and those enhanced by knowledge graph–guided prompt 
engineering 
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And a comparative evaluation (see Figure 6) between 
baseline zero-shot responses and KG-augmented prompts 
demonstrates that incorporating relational triples 
significantly improves factual precision and contextual 
alignment. For example, in queries concerning neonatal 
sepsis, the inclusion of graph-derived terms such as 
“bacterial infection” and “delivery complications” guides 
the model toward clinically appropriate causal reasoning 
[6][8][12][13][16], reducing generic or hallucinated 
explanations. The observed gain stems from the explicit 
constraint imposed by the structured triples, which enable 
the model to anchor abstract text generation to empirically 
grounded knowledge [12][20]. 

4.4 Evaluation Methodology 

The evaluation framework adopts a weighted composite 
scoring mechanism to ensure a balanced assessment of both 
semantic and lexical fidelity in generated medical responses. 
Five widely accepted metrics—Cosine Similarity, 
ROUGE-1, ROUGE-2, ROUGE-L, and BLEU—are used to 
capture complementary dimensions of model performance, 
covering semantic alignment, lexical overlap, and syntactic 
coherence [23][24][26]. Cosine Similarity and BLEU serve 
as the primary indicators due to their direct correspondence 
with semantic accuracy and linguistic fluency, while the 
ROUGE family provides granularity over token-level and 
phrase-level recall. 

The overall evaluation score 𝑆𝑆finalis computed through a  
weighted linear combination of the five metrics as: 

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.30 ∗ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 + 0.20 ∗ 𝑆𝑆𝑟𝑟1 + 0.15 ∗ 𝑆𝑆𝑟𝑟𝑟𝑟
+ 0.20 ∗ 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(4) 

where 𝑆𝑆cos , 𝑆𝑆r1 , 𝑆𝑆r2 , 𝑆𝑆rL , and 𝑆𝑆bleu  denote the 
normalised scores for each metric. The weighting scheme 
prioritises semantic consistency and expressive 
precision—critical aspects in the medical QA domain where 
factual accuracy and interpretability are essential. This 
composite metric thus provides a rigorous, multidimensional 
evaluation standard capable of reflecting both linguistic 
quality and domain-specific reliability [14][15][35] of 
model-generated answers. 

5. Results

The comparative results demonstrate that incorporating 
Knowledge Graph Prompt Engineering (KGPE) 
substantially enhances the reasoning capability of 
Qwen2-7B-Instruct, while yielding mixed outcomes for 
Llama-2-7B-chat-hf. The detailed quantitative outcomes of 
both models across all evaluation metrics are presented in 
Table 4, which clearly indicates the distinct performance 
trends under zero-shot and KGPE settings. Across the 
MedQA benchmark (N = 5 000), KGPE improved Qwen2’s 
performance in all major metrics [16][17][18][19][20], 
indicating stronger factual grounding and semantic 
alignment. Conversely, Llama2 exhibited a slight decline, 
implying sensitivity to prompt length and noise 
accumulation from redundant entity expansion 
[33][34][45][46]. 

Table 4. Comprehensive comparison of inference performance with 95% confidence intervals 

Models Cos-Sim ROUGE-1 ROUGE-2 ROUGE-L BLEU Weighted Total 95% CI 
Zero-Shot Qwen2-7B-Instruct 0.763 0.149 0.010 0.087 0.366 0.314 ± 0.021 
Zero-Shot Llama2-7B-chat-hf 0.864 0.229 0.027 0.112 0.686 0.474 ± 0.018 
KGPE Qwen2-7B-Instruct 0.820 0.198 0.022 0.094 0.531 0.402 (+0.088) ± 0.019 
KGPE Llama2-7B-chat-hf 0.819 0.194 0.022 0.096 0.547 0.386 (−0.088) ± 0.020 

The weighted total corresponds to the composite 
evaluation score defined in Equation (4). Qwen2 achieved a 
relative gain of +28.0%, whereas Llama2 declined by 
−18.6%, reflecting different sensitivities to structured
contextual injection. The confidence intervals were 
estimated via bootstrap resampling (n = 1 000) at α = 0.05, 

confirming the statistical significance (p < 0.01) of Qwen2’s 
improvement. 

To further illustrate the qualitative impact of KGPE, 
Table 5 provides a representative case from the MedQA 
dataset: 

Table 5. Example comparison between reference, zero-shot, and KGPE-enhanced outputs with annotated error 
categories

Question What are the common causes of neonatal sepsis? 
Reference 
Answer Bacterial infection during delivery, often associated with E. coli or Group B Streptococcus. 

Zero-Shot Qwen2 
Answer Neonatal sepsis is mainly caused by infection and weak immune function. (Error type: over-generalization) 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 11 | 2025 | 



J. Lin, S. Ouyang 

KGPE Qwen2 
Answer 

Neonatal sepsis usually results from bacterial infections such as E. coli or Group B Streptococcus acquired 
during delivery. (Improved factual grounding) 

Zero-Shot 
Llama2 Answer Caused by pathogens or exposure after birth. (Entity omission) 

KGPE Llama2 
Answer 

Caused by various bacteria and viruses in newborns due to delivery conditions. (Error type: noisy entity 
insertion) 

The analysis suggests that Qwen2 benefits from 
structured prompt augmentation because its extended 
context window (131 072 tokens) accommodates additional 
relational data without truncation. Llama2, limited to 4096 
tokens, suffers from prompt truncation and higher noise 
injection rates, particularly when excessive low-confidence 
triples are included. A micro-ablation with varying entity 
caps (Top-3 vs. Top-10) confirmed that shorter, 

high-confidence prompts yielded stable BLEU and 
ROUGE-L gains (+0.03 on average), while larger graphs 
degraded precision by up to 0.05 due to irrelevant relation 
spillover [18][19][37]. These findings are further supported 
by the diagnostic ablation experiments summarised in Table 
6, which examine how prompt length, entity confidence, and 
task directive ordering affect the Llama2 model’s stability. 

Table 6. Diagnostic ablation illustrating effects of prompt-level adjustments on Llama2 performance 

Potential Cause Experimental Adjustment Observed Effect (Weighted Score) 
Prompt Truncation (4096 token limit) Shortened context window + entity cap = 3 + 0.041
Noise Entity Injection (top-k > 5) Filter to confidence τ ≥ 0.7 + 0.035
Overweighted Instruction Segment Relocate task directive before KG triples + 0.028

Overall, the experiments confirm that 
knowledge-graph-driven contextual augmentation 
enhances semantic fidelity and factual precision for models 
with extended receptive fields and robust instruction tuning, 
such as Qwen2-7B-Instruct. Conversely, for architectures 
with constrained context or weaker attention regularization, 
excessive relational injection introduces noise and length 
bias, reducing inference stability. These findings highlight 
the architectural dependency of KGPE efficacy and 
emphasise the importance of adaptive prompt truncation and 
entity confidence control in future multimodal reasoning 
frameworks. 

6. Conclusion

This study presents a systematic evaluation of knowledge 
graph–integrated large language models for medical 
question answering, focusing on the comparative 
performance of Qwen2-7B-Instruct and Llama2-7B-chat-hf 
under zero-shot and KG-augmented conditions. The 
proposed framework—Knowledge Graph Prompt 
Engineering (KGPE)—demonstrates that structured entity–
relation prompts derived from Wikidata can substantially 
enhance factual precision and semantic coherence without 
requiring model fine-tuning. Experimental evidence shows 
that Qwen2-7B-Instruct achieves consistent improvements 
across all major metrics, with a weighted score increase of 
28%, confirming the advantage of knowledge-guided 
reasoning [13][16][17] in architectures with extended 
context capacity. 

In contrast, Llama2-7B-chat-hf exhibits a mild decline 
across the same evaluation benchmarks, revealing its 
sensitivity to prompt length, truncation, and noise 
accumulation when exposed to dense relational structures. 

Diagnostic analysis indicates that performance degradation 
arises primarily from token limit constraints and unfiltered 
low-confidence triples, which interfere with effective 
attention distribution. These observations underline that the 
benefits of knowledge graph augmentation depend strongly 
on architectural adaptability [32][33][34] and the precision 
of entity filtering strategies. 

From a methodological standpoint, the research 
highlights that prompt-level integration offers an efficient 
and interpretable alternative to parameter-based domain 
adaptation [35][36][37]. By leveraging external knowledge 
graphs as dynamically composable reasoning contexts, 
KGPE achieves enhanced factual grounding while 
preserving inference efficiency. The findings contribute to a 
deeper understanding of how structured knowledge can 
complement pretrained semantic priors, offering practical 
insights into designing domain-aligned, reproducible, and 
cost-efficient reasoning frameworks for medical AI 
applications. 

Future research should explore adaptive prompt 
compression and graph-confidence calibration techniques to 
optimise information density across models with 
heterogeneous context capacities. Extending this paradigm 
to multimodal medical data and reinforcement-based prompt 
selection [16][17] may further strengthen model reliability 
in high-stakes decision-support scenarios. 
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