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Abstract

OBJECTIVE: Leveraging multimodal data from the 2005-2023 National Health and Nutrition Examination Survey
(NHANES) database, this study aims to develop a predictive method for the geriatric depression that combines high
predictive accuracy with good interpretability, thereby providing support for in-depth exploration of the pathogenesis and
risk factors of geriatric depression.

METHODS: Data from 8760 participants aged 65 and older in the NHANES database from 2005-2023 are utilized to develop
and validate the stacking ensemble predictive model. Depression is assessed using the Patient Health Questionnaire-9 (PHQ-
9) total score meeting or exceeding 10. Before the model construction, this work employs the normalization of training data
and test data, Synthetic Minority Over-sampling Technique - Random Under-Sampling (SMOTE-RUS) hybrid sampling
strategy to address the class imbalance, and the recursive feature elimination method based on the random forest (RFE-RF)
for feature selection. A stacking ensemble predictive framework for depression is constructed based on the primary learners
(Random Forest, SVM, XGBoost, and Logistic Regression) and meta-learners (SVM and Logistic Regression). Finally, the
interpretable machine learning technique SHapley Additive exPlanations (SHAP) is used to visualize the model predictive
outputs.

RESULTS: The XGBoost model demonstrated outstanding performance on the test set in terms of AUC (83.92%), while
the Random Forest (RF) model excelled in sensitivity (71.05%). Subsequently, a specifically designed RFE-Stacking
ensemble model, using RF and XGBoost as the primary learner and the SVM as the meta-learner, is developed. In
comparison, this stacking ensemble model exhibits the best predictive performance with the biggest AUC (85.14%) and the
highest sensitivity (78.71%). The SHAP interpretation reveals that general health condition, frequency of oral pain in the
past year, marital status, history of mental health consultations in the past year, and frequency of urine leakage are the top
five most influential factors in predicting the depression risk.

CONCLUSION: This stacking ensemble model enhances the performance of both the primary learners and the meta-
learners. This verifies the feasibility and effectiveness of the proposed model in predicting the geriatric depression. This
work integrating the stacking ensemble model with SHAP offers valuable clinical references for assessing the risk of]
depressive symptoms, which is beneficial to develop the personalized depression interventions and preventions in the elderly.

Keywords: Geriatric Depression, Predictive Model, Stacking Ensemble Learning, SHAP

Received on 14 May 2025, accepted on 10 December 2025, published on 28 January 2025
Copyright © 2026 Manman Cui et al., licensed to EAI This is an open access article distributed under the terms of the CC BY-NC-

SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi:10.4108/eetpht.11.11671

*These authors contributed equally to this work and should be considered co-first authors.
* Corresponding author: Gong Wei: gongwei@gzucm.edu.cn
‘emm@gzucm.edu.cn, “llixianlily@163.com


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:gongwei@gzucm.edu.cn
mailto:cmm@gzucm.edu.cn

M. Cui, X. Li, W. Gong

1. Introduction

As a prevalent mental disorder, depression exerts severe
negative impacts on the health and life quality of the older

adults, while significantly elevating their risks of suicide and
the burden of comorbid physical illnesses, such as
cardiovascular diseases [1]. Statistics indicate that the global
prevalence of depression among the elderly reached a
concerning 31.74% in 2021 [2]. In recent years, alongside the
accelerating trend of global population aging, this rate
continues to exhibit a strong upward trajectory [3]. The high
incidence of geriatric depression and its serious
consequences have garnered widespread attention from both
the medical communities and the academic communities [4]-
[6]. Consequently, developing efficient and accurate risk
prediction models for geriatric depression is crucial for
enabling early intervention and alleviating the pressure on
healthcare systems.

Traditional researches on predicting the geriatric
depression risk has predominantly relied on questionnaire-
based socio-structural analyses or conventional statistical
methods. These approaches often focus on identifying
individual risk factors and employ multivariate linear
regression to explore their associations with the depression
[7]-[8], followed by the theoretical analysis at the
sociological level. However, these methods, largely based on
linear assumptions, fail to adequately capture the complex,
non-linear relationships among variables. Consequently,
their predictive accuracy and generalization capability are
greatly limited when handling the high-dimensional, non-
linear medical data.

With advancements in artificial intelligence, machine
learning techniques, leveraging their powerful pattern
recognition and inherent ability to model non-linear
relationships, have demonstrated significant potential in
predicting the geriatric depression. Many current machine
learning-based predictive models frequently utilize multiple
machine learning algorithms and compare their performance.
Literature reviews suggest that Logistic Regression, Support
Vector Machines, Random Forest, and the eXtreme Gradient
Boosting (XGBoost) model are among the most frequently
applied algorithms [9]. Typically, ensemble models based on
decision trees (such as Random Forest and the XGBoost
model) exhibit superior performance [9], specially
demonstrating particular advantages in handling high-
dimensional data and complex feature interactions [10].
Nonetheless, single models often face performance
bottlenecks, including insufficient accuracy and limited
generalization ability. Furthermore, the opaque "black-box"
nature of their decision-making processes substantially
hinders clinical trust and adoption of their outputs by
healthcare practitioners [11].

To address these challenges, this study introduces an
ensemble learning strategy and aims to develop an
interpretable Stacking ensemble model that combines high
sensitivity, strong generalization capability, and good
interpretability, thereby providing a novel data-driven
solution for the early prevention and control of the geriatric
depression. Specifically, this work first trains multiple

individual learners. The models demonstrating optimal
performance in sensitivity (to minimize missed diagnoses)
and AUC (reflecting overall discriminative power) are
selected as the primary learner [4]. Their predictions are then
aggregated to form a new feature space and input into the
meta-learners composed of linear models for the final
learning stage. At last, we obtain the optimal stacking
ensemble model by comparing the performance metrics of
meta-learners. This design not only harnesses the strengths of
diverse non-linear models but also effectively controls the
overall model complexity and overfitting risk through the
linear meta-learner, thereby enhancing performance while
ensuring robustness. To mitigate the impact of the "black-
box" decision process on the clinical translation and
application of the predictive model, this paper employs the
explainable Al tool SHapley Additive exPlanations (SHAP)
[12] to provide both global explanations and local
explanations for the aforementioned optimal Stacking
ensemble model, enhancing transparency and trust in its
outputs. Experimental results verify the feasibility and the
effectiveness of the proposed model, indicating its great
latent potential as a valuable tool for clinical practice in the
geriatric depression.

2. Methods

2.1Data and Variables

The study focuses on data from participants aged 65 and older
in the NHANES database from 2005-2023. Depression is
screened for using the Patient Health Questionnaire-9 (PHQ-
9) in NHANES. This questionnaire is widely used for the
rapid screening and preliminary identification of depression,
systematically assessing the participants’ mental and
psychological state over the past two weeks. Compared to
similar screening tools, it demonstrates higher sensitivity and
specificity in diagnostic efficacy. In this work, if any of the 9
questions in the Patient Health Questionnaire-9 (PHQ-9) [13]
had a missing response, the individual's data would be
excluded. After applying these exclusions, a total of 9,060
samples from individuals aged 65 and above are ultimately
included. Specifically, depression would be defined based on
whether the total score of the 9 PHQ-9 questions is greater
than 10. Participants with a PHQ-9 total score meeting or
exceeding 10 are classified into the depression group (coded
as 1), while those below this threshold are classified into the
non-depression group (coded as 0).

The variables incorporated into the study consisted of four
parts: (1) Socio-demographic characteristics: such as age,
gender, educational level, and marital status; (2) Dietary
nutrition data: including energy, protein, vitamins, and
carbohydrate intake; (3) Laboratory examination data: such
as blood pressure, cholesterol levels, insulin levels, and Body
Mass Index (BMI); (4) Questionnaire data: including hearing
status, history of chronic diseases, alcohol consumption, and
history of prescription drug use. It is noteworthy that the
NHANES (National Health and Nutrition Examination
Survey) database exhibits the following typical
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characteristics: (1) High-dimensional features: It contains
multi-dimensional data including demographics, diet,
physical examinations, and laboratory tests. (2) Data
complexity: It has diverse variable types (such as positively
skewed distribution laboratory data and continuous variables)
and contains missing values. (3) Class imbalance: The
number of patients is usually much smaller than that of
healthy individuals. Directly using such data for model
training would cause the model to be severely biased towards
the majority class, resulting in very poor predictive
performance for the minority class.

Therefore, a series of data preprocessing operations are
required on the original dataset before model training.
Specifically, this paper proposes a multi-stage data
preprocessing process in Subsection 2.2 to reduce data
complexity, applies a hybrid sampling method in Subsection
2.3 to address the class imbalance problem, and introduces
feature engineering in Subsection 2.4 to mitigate the
overfitting risk caused by high-dimensional features, all
while ensuring model predictive performance and reducing
model complexity.

2.2 Data Preprocessing

To ensure data quality and model reliability, this study adopts
a multi-stage data pretreatment process, primarily optimizing
data quality through Removal of Duplicate Variables and
Missing Values, Multiple Imputation by Chained Equations
(MICE) [14], and Data Normalization. The specific process
is illustrated in Figure 1.

(1) Removal of Duplicate Variables and Missing Values:
In order to mitigate multicollinearity effects, duplicate
variables representing the same information but with
different units are deleted. Variables with missing values
exceeding 50% across the four main database modules are
also removed.

(2) Multiple Imputation by Chained Equations (MICE) for
missing values in retained variables: In complex missing data
scenarios, particularly with large-scale datasets, the data
often exhibit multidimensional and missing-at-random
characteristics. To fully leverage the available information
and enhance data quality of the NHANES database, this study
employs the Multiple Imputation by Chained Equations
(MICE) [14] for handling missing values in preserved
variables. The MICE operate by constructing conditional
distribution models between variables to generate multiple
imputed datasets for joint inference. Specifically, an iterative
algorithm establishes regression models for each target
variable based on other completely observed variables.
During each iteration, the parameters of predictive models are
updated using currently imputed variable values, thereby
generating new imputations. This process iteratively refines
the conditional distribution models across variables,
producing multiple complete datasets through collaborative
imputation.

(3) Data Standardization: As abovementioned, the
NHANES database has diverse variable types. In order to
improve the training efficiency and accuracy of machine
learning models, this work performs a series of data
standardization operations. On one hand, as to the positively
skewed distribution laboratory data (such as cholesterol and
blood components), we apply the logarithmic transformation
to make the data distribution more uniform, presenting
characteristics closer to normal distribution, thereby
improving the performance of the model. On the other hand,
as to the continuous variables (like energy, protein, and
dietary fiber intake) are subjected to Min-Max normalization,
scaling the data to the [0, 1] interval while preserving the
original data distribution characteristics, which aims at
eliminating dimensional differences between data features
and making the numerical ranges of different features
consistent.
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Figure 1. Data Preprocessing and Feature Selection
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2.3 SMOTE-RUS Hybrid Sampling

Class imbalance is a prevalent issue in healthcare datasets
such as NHANES. Resampling techniques are pivotal in
mitigating this challenge. Commonly employed methods
include the Synthetic Minority Over-sampling Technique
(SMOTE) [15], Random Under-Sampling (RUS) [16], and
more advanced hybrid sampling methods like Synthetic
Minority ~ Over-sampling  Technique-Edited  Nearest
Neighbours (SMOTE-ENN) and Adaptive Synthetic
Sampling (ADASYN). However, it is important to note that
SMOTE-ENN suffers from high computational costs in high-
dimensional spaces, where the "curse of dimensionality"”
destabilizes the very notion of nearest neighbors. Meanwhile,
ADASYN is highly sensitive to noise due to its data-
generating mechanism. Given the high dimensionality,
complexity, and inherent noise of the NHANES dataset,
SMOTE-ENN and ADASYN methods are suboptimal for
addressing imbalance in the NHANES dataset.

To tackle the class imbalance in the NHANES training
data, this study adopts a hybrid sampling strategy that
combines SMOTE with RUS (SMOTE-RUS). In this
framework, SMOTE enhances the representation of the
minority class, while RUS counteracts the dominance of the
majority class. The application of RUS not only rectifies the
class distribution skew, thereby significantly improving
subsequent model training speed, but also helps reduce the
influence of potential noise and redundant samples within the
majority class. Although RUS carries a risk of discarding
some information, the introduced randomness can serve as a
form of regularization. This helps prevent the model from
overfitting to specific nuances of the majority class,
ultimately enhancing the model's generalization capability.

It should be noted that a preprocessing pipeline should be
constructed to strictly confine the aforementioned sampling
operations to the training set. Therefore, it could ensure the
model to learn from a balanced data distribution, while
simultaneously ensuring its final evaluation is performed on
a test set that represents the real-world, unaltered distribution.
This approach fundamentally prevents information leakage
and evaluation bias attributable to improper data
preprocessing.

Initialization(147 preprocessed features

2.4RFE-RF Feature Selection

Despite of the data preprocessing, the dataset still contains
147 feature variables. Such a high-dimensional feature set
would not only significantly increase the computational
burden and reduce training efficiency but also, due to the
curse of dimensionality, introduce substantial noise and
redundancy. This greatly heightens the risk of model
overfitting and compromises its generalizability. Therefore,
implementing effective feature dimensionality reduction
becomes a critical step in building a robust predictive model.

Compared with the Lasso regression, the recursive feature
elimination (RFE) method [17] based on tree models is
insensitive to feature collinearity, typically yielding more
stable and reproducible screening results. Therefore, this
work adopts a RFE method based on random forest (i.e.,
RFE-RF) for feature selection. Specifically, this method
employs a systematic and iterative process, guided directly
by model performance, to identify the most predictive feature
subset. As depicted in Figure 2, the specific procedure is
given as follows:

(1) Establishing a Performance Benchmark: An initial
Random Forest model is trained using all 147 features, and
its predictive accuracy is established as the performance
benchmark. Then, we calculate the importance of all features
according to their information gain and rank them based on
the feature importance.

(2) Iterative Feature Evaluation: The least important
features are temporarily removed at a time. A new Random
Forest model is then trained using the remaining feature
subset, and its predictive accuracy is recorded.

(3) Performance-Based Elimination Decision: The
accuracy of the new model is compared against the current
benchmark. If the removal of least important features resulted
in an accuracy was higher than the current benchmark, that
features would be permanently removed. Conversely, if the
accuracy decreased, the features would be retained in the set.

(4) Cycling and Convergence: Steps 2 and 3 are
repeated, and the highest achieved accuracy at each iteration
is updated as the new performance benchmark. This process
continues until the model's predictive accuracy could no
longer be improved and stabilized, at which point the optimal
feature subset is determined.

and the performance benchmark Pg)

A

Train the Random Forest (RF) model,
calculate its prediction performance

v

Update the benchmark P,

Calculate the importance of all
features according to their information
gain and then rank them

RFE-RF Model K
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v

Calculate its predictive performance
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Remove the least important features
in each round
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Figure 2. RFE-RF feature selection process

Through the process, this refined feature set is retained and
used for all subsequent model construction, ensuring the
efficiency and robustness of the final model.

2.5 Model Construction

As illustrated in Figure 3, four individual learners are
constructed based on Random Forest, Support Vector
Machines (SVM), XGBoost, and Logistic Regression. The
hyperparameters of each individual learner would be tuned
through grid search and manual fine-tuning. In scenarios such
as depression prediction, maximizing the clinical value of
identifying potential patients (high sensitivity, i.e., high recall
rate) is usually much higher than avoiding misjudgment of

healthy individuals (high specificity). Given that, we select
individual learners with optimal performance in the
sensitivity and AUC to form the primary learner. The
predictions from these primary learners are combined to
create a new feature space. Notably, using linear models as
meta-learners not only mitigates overfitting risks but also
creates complementary synergy with the complex non-linear
primary learners, thereby reducing overall system complexity
[18]. Considering that, we then build stacking ensemble
models by employing the Logistic Regression (LR) model
and the SVM model as meta-learners, respectively, to
identify the optimal predictive model. Finally, we apply
SHAP, an explainable machine learning framework, to
provide both global and local interpretations of the optimal
model's predictions.
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Forest Random Logistic Performance ! values
Forest Regression Evaluation '
Prediction - . -
of > SVMm GridSearchCV ' Global Explanation
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Figure 3. The model construction process

3. Experimental Results and Analysis

In this section, four RFE-based individual learners (i.e., RFE-
based Logistic Regression, RFE-based Random Forest, RFE-
based SVM, and RFE-based XGBoost) are trained. Then two
RFE-based stacking ensemble models are built by employing
Logistic Regression and SVM as meta-learners, respectively.
At last, the visualization analysis is given by the explainable
machine learning framework SHAP, with both the global
explanations and the local explanations of the optimal
model's predictions.

The model evaluation and output interpretation in this
study are all implemented in PyCharm 2024.

3.1 Dataset Splitting

To evaluate the external validity and temporal
generalizability of the proposed stacking ensemble model, we
split the dataset with a rigorous temporal validation strategy.
Specifically, data from the 2005-2020 NHANES cycle
(n=7,060) are used as the training set for model development
and hyperparameter tuning, while the temporally
independent data from the 2021-2023 NHANES cycle

(n=1,700) are designated as the test set. This approach
simulates a realistic application scenario where the model is
applied to a future population. All model performance
metrics, including AUC, accuracy, and F1-score, are reported
exclusively on this external test set. The performance on this
temporally separate external data serves as the primary
evidence for the model's external consistency.

3.2MICE, Hybrid Sampling and Feature
Selection

3.2.1 MICE

To scientifically evaluate the appropriateness of the
imputation method MICE, this study employs a combined
approach of data visualization and statistical testing. At first,
an intuitive assessment is conducted by plotting density
comparison charts of the data before and after imputation. For
cases where the density plots indicate noticeable
discrepancies, the Kolmogorov-Smirnov (KS) non-
parametric test is further applied for quantitative validation.



M. Cui, X. Li, W. Gong

Taking the variables DR1TP226 and INDFMPIR as
examples, their density comparison charts reveal distinct
patterns, as shown in Figure 4. For DR1TP226, the post-
imputation data curve (represented by a solid red line) shows
a high degree of overlap with the original data curve
(represented by a blue dashed line), indicating that the
distribution of the imputed missing values is largely
consistent with the non-missing portion of the original data.
In contrast, the density comparison charts for INDFMPIR
exhibits some observable differences. Consequently, the KS
test is performed, calculating its D statistic (the maximum
distance between the two sample cumulative distribution
functions) and the corresponding p-value. The results show a
very low D statistic of 0.001, accompanied by a p-value of
0.126, which exceeds the common significance level of 0.05.
This strongly suggests that the distributions before and after
imputation are highly similar. It can therefore be concluded
that the imputation method adopted in this study is effective
and appropriate, as it successfully preserves the original
statistical characteristics of the variables without introducing
significant distributional bias due to the handling of missing
values.

3.2.2 Hybrid Sampling

Following the application of the SMOTE-RUS hybrid
sampling, the total sample size of the training set is adjusted
to 11,380. The sample counts for class 0 and class 1 become
6,322 and 5,058, respectively, achieving a state of relative
class balance at the training set level.

Distribution: DR1TP226

--- Original (Non-missing)
Imputed (Missing)

Density

’ DR1TP226
(a) DR1TP226

Distribution: INDFMPIR

= KS p-value: 0.126

=== Original (Non-missing)

—— Imputed (Missing)
-~
A

. I

0.25 v

! INDFMP IR ’
(b) INDFMPIR

Figure 4. Density comparison charts and KS non-
parametric test

3.2.3 Feature Selection

After the RFE-RF feature selection, the study ultimately
identifies an optimal feature subset composed of 24 key
features (with the feature importance greater than 0.005).
This specific feature combination yields the highest
predictive accuracy of 83.05%. The names and importance
rankings of these features are detailed in Table 1.

Table 1. Feature importance ranking

Variable Name Variable Description Ranking Importance
HUQO10 General health condition 1 0.189
OHQ620 Frequency of oral pain in the past year 2 0.123
KIQ005 Frequency of Urine leakage 3 0.077

MCQI160A Diagnosis of Arthritis 4 0.052
KIQ044 Urinary Leakage or Loss of Control due to urgency or pressure during urination 5 0.049
KIQ042 Urinary Leakage due to coughing, or other physical activities 6 0.048

DMDMARTZ Marital Status 7 0.046
DMDEDUC2 Education Level 8 0.044
HUQO00 History of Mental Health Consultations in the past year 9 0.042
LBXHA Hepatitis A Antibody 10 0.037
INDFMMPC Monthly poverty line category for households 11 0.034

LBDBANO Number of basophil granulocyte 12 0.019

INDFMPIR Household income and poverty ratio 13 0.018

DBQ095Z Types of salt used 14 0.017
BPQO020 Does the patient have hypertension before 15 0.017

DRITTHEO Theobromine 16 0.016

LBDEONO Number of eosinophils 17 0.015
BPQO80 Blood cholesterol levels 18 0.013
DIQO10 Whether the patient has diabetes 19 0.008
MCQO010 Does the patient have asthma before 20 0.008

INDFMMPI Monthly poverty level index of households 21 0.007
HSQ590 Does the patient have the AIDS virus infection in the Blood 22 0.006

MCQI160F Has the patient had a stroke before 23 0.006

DRITNIAC Niacin 24 0.006
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In order to ensure the model robustness, this paper further
calculates the Variance Inflation Factors (VIFs) of the 24
selected key features to test the inter-feature
multicollinearity. As shown in Figure 5, the vast majority of
features exhibit VIF values close to 1, indicating negligible
linear dependence among them. A small subset of features—
namely INDFMMPC, INDFMHR, and INDFMMPI, which
are related to household income and poverty levels—show

Feature Multicollinearity Analysis - Variance Inflation Factor (VIF)
T

VIF values ranging from 2.14 to 3.47. This suggests mild
multicollinearity among them. Nevertheless, this is an
expected outcome given the inherent correlations between
such socioeconomic indicators in reality. it should be noted
that, since the degree of correlation is sufficiently low as to
not pose a threat to model integrity, retaining these features
helps capture a more comprehensive socioeconomic context.

DBOOSZ
DRITTHED
LEDBAND
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MCO160F
LADEOND
DMOMARTZ
MCQO10
HSQS50
BRODBO
HUQDO
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MCOLE0A
KGOz
KIQD44
OMOEDUCE
KIQDOS
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S

Variance Inflation Factor (VIF)

Figure 5. Variance Inflation Factor analysis

3.3 Performance Indicators

3.3.1 Accuracy

Accuracy reflects the proportion of samples correctly
classified by the model to the total number of samples. High
accuracy means that the model has good overall classification
ability. Its expression is as follows,

TP+TN

Acc = —————
TP+TN+FP+FN

ey

where TP is the number of True Positive, TN is the number
of True Negative, FP is the number of False Positive, FN is
the number of False Negative.

3.3.2 Recall rate (Sensitivity)

Recall rate, also known as sensitivity, refers to the probability
of correctly predicting depression in all samples with actual
depression. High recall rate contributes to reducing false
negatives and lowering the risk of missed diagnosis. Its
expression is as follows,

TP
TP+FN

@

3.3.3 Specificity

Specificity refers to the probability of correctly predicting
healthy persons in all samples that does not actually have
depressive symptoms. High specificity contributes to
reducing false positives and avoiding unnecessary medical
interventions. Its expression is as follows,

TN
Sp =
TN+FP

)

3.3.4 ROC curve

ROC curve is a curve graph with false positive rate (FPR) as the
horizontal axis and true positive rate (TPR) as the vertical axis. Its
derivative indicator AUC evaluates model performance by
quantifying the area under the curve. High AUC value means that
the model has good comprehensive performance. The expressions
of FPR and TPR are

TP

FPR = —"— TPR =
FN+TP

TN+FP

“4)

3.4 Model Evaluation

The performance metrics of four RFE-based individual
learners and two stacking ensemble models are compared in
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Table 2. We first conduct a horizontal performance
comparison of four individual learners to establish
performance benchmarks. As shown, the RFE-based Random
Forest learner attains a highest sensitivity of 71.05% and a
higher AUC of 83.42% among these four individual learners;
the RFE-based XGBoost learner has a superiority of AUC
(83.92%), accuracy (85.22%), and specificity (88.41%), but
with a lowest sensitivity (62.28%). Thus, the RFE-based
Random Forest learner and the RFE-based XGBoost learner
are naturally selected to form the primary learners. As

aforementioned, the LR model and the SVM model are
employed as meta-learners, respectively, to build two
stacking ensemble models, i.e., the RFE-based Stacking LR
learner and the RFE-based Stacking SVM learner. From
Table 2, we can clearly see that, compared to the RFE-based
Stacking LR learner, the RFE-based Stacking SVM learner
has better performance in terms of sensitivity (78.71%) and
AUC (85.14%), both of which are significant to the
depression prediction. Therefore, we would employ the SVM
model as the optimal meta-learner.

Table 2. Comparison of performance metrics across models on the testing dataset

Models (I?::;lllt l;;:ze) AUC Accuracy Specificity
RFE-based Logistic Regression (LR) 63.45 83.03 80.88 82.30
RFE-based Random Forest 71.05 83.42 81.65 81.59
RFE-based SVM 69.74 82.23 79.20 79.18
RFE-based XGBoost 62.28 83.92 85.22 88.41
RFE-based Stacking LR 73.54 84.87 80.27 78.62
RFE-based Stacking SVM 78.71 85.14 82.12 80.46

Then we conduct the vertical performance comparison
between the primary learners and the stacking ensemble
models. As shown, compared to the RFE-based Random
Forest learner and the RFE-based XGBoost learner, the RFE-

based Stacking SVM learner can achieve a 7.66% and 16.43%

improvement in sensitivity and a 1.71% and 1.22%
improvement in AUC, respectively. In order to capture the
true positives missed by XGBoost and improve the sensitivity,
the meta-learner inevitably misjudges some of the true
negatives (i.e., healthy individuals) correctly

classified by XGBoost as the positives. Therefore,
although the sensitivity of the RFE-based Stacking SVM
learner has significantly increased, its specificity has
plummeted from 88.41% of XGBoost to 80.46%. The
significant decrease in the specificity of the RFE-based
Stacking SVM learner means that more errors are made in the
majority of healthy individuals, which directly lowers the
overall accuracy. Figure 6 shows the comparison of ROC
curves for the six RFE-based learners.

True Positive Rate

--- Random Guess

—— RFE-Random Forest (AUC=0.833)
RFE-SVM (AUC=0.822)

—— RFE-XGBoost (AUC=0.839)

—— RFE-Logistic Regression (AUC=0.830)

—— RFE-Stacking LR (AUC=0.849)

—— RFE-Stacking SVM (AUC=0.851)

0.0 0.2 0.4

0.6 0.8 1.0

False Positive Rate

Figure 6. ROC curves of six RFE-Based models on the test dataset
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3.5SHAP Visualization Analysis

In this subsection, we would provide both global
explanations and local explanations of the optimal model's
predictive results. Based on the above analysis, the RFE-

HUQO10 +0.88
OHQ620
DMDMARTZ
HUQOO
KIQo05
KiQo44
KiQo42
MCQ160A
LBXHA
DMDEDUC2

Sum of 14 other features

0.0 0.2 0.4 0.6 0.8
mean(|SHAP value|)

a) SHAP variable importance plot

based Stacking SVM learner as the optimal depression
predictive model is selected for feature analysis.
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HUQo10 *—-——-- —dl R
0HQE20 ) — s
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HUQOO ' —_—
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MCQ160A - '
LEXHA -h’ i
DMDEDUC2 =~
Sum of 14 gther features *

Low
-15 =10 =0.5 0.0 0.5 1.0 15

SHAP value (impact on model output)

b) SHAP beeswarm plot

Figure 7. Global SHAP explanation. a) SHAP variable importance plot, b) SHAP beeswarm plot. (Note: In the
beeswarm plot, blue-colored points represent low assigned feature values, while red-colored points represent high
assigned feature values. The following parentheses provide the corresponding encoding explanations for each
feature: (i) HUQO10 denotes self-rated general health status (Excellent: 0 / Good: 0.25 / Fair: 0.5/ Poor: 0.75 / Very
Poor: 1). (ii) OHQ620 indicates the frequency of oral pain in the past year (Very often: 0 / Fairly often: 0.25 /
Occasionally: 0.5 / Hardly ever: 0.75 / Never: 1). (iii) DMDMARTZ describes marital status (Married/Living with
partner: 0 / Widowed, divorced, or separated: 0.2 / Never married: 0.4). (iv) KIQ005 represents the frequency of
urine leakage (Never: 0 / Less than once a month: 0.25 / A few times a month: 0.5 / A few times a week: 0.75 /
Every day and/or night: 1). (v) HUQOO indicates whether the individual saw a mental health professional in the past
year (Yes: 0/ No: 1). (vi) KIQ044 specifies urine leakage due to urgency or pressure (Yes: 0/ No: 1). (vii) KIQ042
indicates urine leakage associated with activities like coughing or exercise (Yes: 0 / No: 1). (viii) MCQ160A shows
the diagnosis of arthritis (Yes: 0/ No: 1). (ix) LBXHA denotes Hepatitis A antibody test result (Positive: 0 / Negative:
1). (x) DMDEDUC?2 indicates the education level (No diploma: 0 / Junior high school: 0.25 / High school: 0.5 /

College: 0.75 / Bachelor's degree or above: 1).)

Figure 7 presents the global explanations based on SHAP,
visualizing the impact of features on the overall model.
Figure 7a) shows the SHAP variable importance plot,
depicting the average impact of each feature on the model's
prediction results from a global perspective. From Figure 6a),
we can see that the top 10 variables influencing the geriatric
depression status were: General Health Condition (HUQO10,
+0.88); Frequency of Oral Pain in the past year (OHQ620,
+0.4); Marital Status (DMDMARTZ, +0.19); History of
Mental Health Consultations in the past year (HUQOO,
+0.16); Frequency of Urine Leakage (KIQO005, +0.15);
Urinary leakage or loss of control due to urgency or pressure
during urination (KIQ044, +0.14); Urinary leakage due to
coughing, exercise, or other activities (KIQ042, +0.14);
Diagnosis of Arthritis (MCQ160A, +0.1); Hepatitis A
Antibody (LBXHA, +0.1); and Education Level
(DMDEDUC2, +0.1). Among them, the SHAP importance
value of general health status (+0.88) far exceeds other

features and is the most important predictive basis for the
model. This indicates that the subjective evaluation of one's
own general health by the elderly is the strongest indicator of
the risk of depression. In addition, the importance of “Sum of
14 other features” reaches 0.32. This indicates that, although
individual long tail features have a weak impact, their
contributions to the model cannot be ignored, providing rich
supplementary information.

Figure 7b) gives the SHAP beeswarm plot, a deepening of
the variable importance plot, depicting how each feature of
each sample affects the model prediction and revealing the
relationship between feature values and the direction of
influence (positive/negative). From Figure 6b), it can be seen
that (1) General Health Condition (HUQO10): The higher the
assigned feature values (red representing poorer self-rated
health), the more biased the SHAP values are towards the
right, which indicates the positive impact of General Health
Condition on pushing up the risk of depression. (2)
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Frequency of Oral Pain in the past year (OHQ620): Similar
to General Health Condition, high assigned feature values
(red representing high pain frequency) are densely distributed
in the positive SHAP value area. (3) Marital Status
(DMDMARTZ): The distribution of these feature values
(blue for unmarried/ divorced /widowed, red for married) is
relatively scattered, but the blue dots appear more on the left
side (protective effect), while red ones have a higher
proportion on the right side (risk effect). (4) Education Level
(DMDEDUC2): Low assigned feature values (blue
representing low education level) are more distributed in the
positive SHAP value area, while high eigenvalues (red
representing high education level) are more distributed near
the central axis or negative SHAP value area. (5) Other
features: The different values of the 14 other features (blue
and red) are widely distributed in the positive and negative
SHAP value regions, and do not show a simple linear
relationship.

) -
higher . lower
fx)

0.10

base

value =

The SHAP force plot provides local explanations for
individual predictions. The visualization results for two
randomly selected samples are shown below in Figure 8.
From Figure 8a), the 130389 individual has a predicted
depression risk probability of 0.1, which is obviously lower
than the model's base value (average predicted probability) of
0.21. This indicates that the model predicts this sample as not
having depressive symptoms, which is consistent with the
sample's actual label. The SHAP force plot reveals that key
features contributing to this prediction are stable Marital
Status (DMDMARTZ=0.0), good General Health Condition
(HUQO010=0.5), and no History of Mental Health
Consultations (HUQO0=1), which increased the probability
of being classified as non-depressed. While high frequency
of Urine Leakage (KIQ005=0.0) and Urinary Leakage or
Loss of Control upon Urgency (KIQ044=0.0) or Physical
Activities (KIQ042=0.0) increase the probability of
depression.
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a) SHAP force plot of the 130389th individual
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b) SHAP force plot of the 130413th individual

Figure 8. Local SHAP Explanation

From Figure 8b), the 130413" individual has a predicted
depression  risk  probability of 0.41, which s
significantly higher than the model's base value of 0.21. Thus
this sample would be predicted as having a high risk of
depressive symptoms. The SHAP force plot reveals that key
features that increase the risk probability of depression are
Frequency of oral pain in the past year (OHQ620 = 0.5),
Urine Leakage upon Physical Activities (KIQ042=0.0), the
lack of a stable Marital Status (DMDMARTZ = 0.2), while
the key features that decrease the risk probability of
depression are good General Health Condition
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(HUQO010=0.25), No Urine Leakage due to Urgency
(KIQ044 = 1.0), No history of Arthritis (MCQ160A = 1.0),
and No history of Mental Health Consultations (HUQO0O0 =
1.0).

4. Discussion

This study focuses on the study of an interpretable predictive
model for the geriatric depression and the explanation of its
predictive mechanisms, systematically integrating a
relatively comprehensive technical framework encompassing
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data preprocessing, feature engineering, machine learning
modeling, and interpretability analysis.

4.1 Discussion of Data Processing and
Feature Engineering

To develop a predictive model with enhanced accuracy and
robustness, we integrate the multi-source, heterogeneous data
from the NHANES database (2005-2023). Beyond basic
scale data, we incorporate enhanced modalities including
proteomics, metabolomics, genomics, and environmental
exposomics. This approach is designed to transcend the
limitations of unimodal data, enabling the model to capture
the complex feature space of depression through the
integrated "Biopsychosocial" model [19], thereby improving
the accuracy of assessing multi-risk factor contributions. For
data preprocessing, we employ the MICE method to handle
missing values and a hybrid sampling technique (SMOTE-
RUS) to mitigate class imbalance, ensuring a high-quality
dataset for model training. Given the complex etiology of
depression, which involves numerous non-linear
relationships and intricate interaction effects between risk
factors and clinical outcomes, we introduce the Random
Forest algorithm to capture such complex patterns in the
feature selection stage. In specific, we utilize a Random
Forest-driven RFE process, not the Lasso regression which is
constrained by its inherent linearity assumption and
sensitivity to multicollinearity, to identify features involved
in these non-linear and interactive associations with
depression. Using the RFE-RF feature selection, this study
predicts 24 key features.

4.2 Discussion of Model Performance

During the primary learner construction phase, the predictive
performance metrics of four individual learners are compared
in Table 2. As shown, the RFE-based Logistic Regression
learner and the RFE-based XGBoost learner exhibit similar
"high specificity, low sensitivity" patterns, indicating that
they are more inclined to reduce misdiagnosis (False Positive)
during the learning process, but at the cost of increasing
misdiagnosis (False Negative); While the RFE-based
Random Forest learner exhibits the opposite tendency, with
its higher sensitivity indicating that it is more committed to
identifying all potential patients, even if it may misjudge
some healthy individuals. In summary, no individual learners
can simultaneously achieve the optimal values for both
sensitivity and specificity.

During the secondary learner construction phase, the RFE-
based stacking ensemble model combines multiple individual
learners with different inductive biases, and the meta learner
is able to identify samples that are incorrectly judged by one
model but correctly judged by another model through
learning from the outputs of the primary learners. Therefore,
the stacking ensemble models could integrate the advantages
of both "high specificity" model (i.e., the RFE-based
XGBoost learner) and "high sensitivity" model (i.e., the RFE-
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based Random Forest learner) for decision-making, thus
forming a more robust and generalizable decision boundary
and achieving optimal performance on AUC. Nevertheless,
in order to achieve high sensitivity (reduce missed diagnoses),
the stacking ensemble model has to relax the criteria for
determining positive cases, which inevitably leads to more
false positives and lowers the specificity. Given that healthy
individuals make up the majority of the dataset, the
significant decrease in the specificity directly lowers the
overall accuracy.

In the depression screening scenarios, high sensitivity is
crucial. The RFE-based stacking SVM model has increased
sensitivity from the optimal 71.05% of the individual learners
to 78.71%, which is a significant clinical value improvement.
In other words, the RFE-based stacking SVM model can
identify approximately 7 more depression patients out of
every 100 screened individuals. These patients who have
been 'rescued' can receive timely intervention and treatment
opportunities, avoiding the deterioration of their condition. It
has immeasurable value for individuals, families, and even
society. Although the accuracy and the specificity of the
RFE-based stacking SVM model are not the highest, its
clinical value cannot be simply denied. Its task is not to make
a final diagnosis, but to efficiently screen as many high-risk
individuals as possible from the population, and then hand
them over to professional doctors for secondary diagnosis
through interviews, scales, etc. Therefore, the RFE-based
stacking SVM model could be regarded as an optimal tool for
achieving the clinical goal of "maximizing the discovery of
potential depression patients".

4.3 Discussion of SHAP Visualization
Analysis

These SHAP-related figures together form a complete model
interpretability system from global to local, from feature
importance to individual predictive interpretation.

As presented in Figure 7, the global feature importance
analysis illustrates the core predictors identified by the model
for depression risk. Consistent with the findings in Table 1,
the model assigns the most importance to general health
condition (HUQO10) (mean |[SHAP| 0.88). This
computationally validates the significant comorbidity
between physical health and mental health in the elderly,
establishing it as the primary basis for the model's risk
assessment. Furthermore, the prominence of oral pain
frequency (OHQ620) and marital status (DMDMARTZ) as
key predictors underscores the critical roles of chronic pain
as a physiological stressor and the social support system,
respectively. It is noteworthy that several urinary
incontinence-related features (KIQ005, KIQ044, KIQ042)
rank within the top ten, revealing that functional impairment
and diminished quality of life stemming from urological
health issues constitute a strong, yet often overlooked,
predictive signal for the geriatric depression. In summary, the
feature importance extracted by the proposed data-driven
model takes full considerations of biomedical, psychological,
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and socio-environmental risk dimensions to form a more
completed assessment framework.

The SHAP beeswarm plot in Figure 7b) offers a global
interpretation of the model's decision-making mechanism,
revealing complex non-linear patterns between feature values
and prediction output. Specifically, (1) The worse the self-
assessment results of General Health Condition (HUQO10),
the higher the risk of depression. It shows a very clear and
clinically intuitive monotonic positive correlation. This
strong alignment with clinical consensus significantly
improves the credibility of the proposed predictive model. (2)
Oral Pain Frequency (OHQ620) also exhibits a distinct risk
gradient: the frequency of oral pain is positively correlated
with SHAP values, confirming the role of chronic physical
discomfort as a physiological driver of depression risk. (3)
The distribution pattern of Education Level (DMDEDUC?2)
reveals its protective role: low education levels (low feature
values) are strongly associated with the high-risk region
(positive SHAP values), while higher education levels (high
feature values) are more concentrated in risk-neutral or
protective regions. This suggests its positive influence
potentially mediated through pathways like socioeconomic
status and health literacy. (4) While some heterogeneity
exists, the impact of Marital Status (DMDMARTZ) shows a
clear overall trend: being married/in a partnership (blue) is
significantly associated with negative SHAP values
(protective effect), whereas non-married statuses (red/purple)
clearly increase risk. This aligns with the theoretical model
that views spousal support as a psychological resilience
resource [20]. (5) For binary features (e.g., KIQO044,
MCQ160A), the distinct separation of their feature values in
the SHAP value space provides visual evidence that the
corresponding disease states are clear sensitizing factors for
increasing the depression risk.

5. Conclusion

This work proposed an interpretable stacking ensemble
model with SHAP for depression prediction in the
participants aged 65 and older of the NHANES database. In
specific, the stacking ensemble model, with the RF model and
the XGBoost model as the primary learners and SVM as the
meta-learners, exhibited the best sensitivity and robustness
performance. SHAP analysis revealed the five key factors for
affecting the depression are general health condition,
frequency of oral pain in the past year, marital status, history
of mental health consultations in the past year, and frequency
of urine leakage. This proposed model not only serves as a
powerful tool to screen the geriatric depression, but also
breaks through the "black-box" nature of the traditional
model's decision-making processes, providing a reliable and
transparent clinical decision-making basis. Future studies
could adopt larger database to futher verify the effectiveness
of the proposed model in the clinical applications.
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