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Abstract 
OBJECTIVE: Leveraging multimodal data from the 2005-2023 National Health and Nutrition Examination Survey 
(NHANES) database, this study aims to develop a predictive method for the geriatric depression that combines high 
predictive accuracy with good interpretability, thereby providing support for in-depth exploration of the pathogenesis and 
risk factors of geriatric depression. 
METHODS: Data from 8760 participants aged 65 and older in the NHANES database from 2005-2023 are utilized to develop 
and validate the stacking ensemble predictive model. Depression is assessed using the Patient Health Questionnaire-9 (PHQ-
9) total score meeting or exceeding 10. Before the model construction, this work employs the normalization of training data
and test data, Synthetic Minority Over-sampling Technique - Random Under-Sampling (SMOTE-RUS) hybrid sampling
strategy to address the class imbalance, and the recursive feature elimination method based on the random forest (RFE-RF)
for feature selection. A stacking ensemble predictive framework for depression is constructed based on the primary learners
(Random Forest, SVM, XGBoost, and Logistic Regression) and meta-learners (SVM and Logistic Regression). Finally, the
interpretable machine learning technique SHapley Additive exPlanations (SHAP) is used to visualize the model predictive
outputs.
RESULTS:  The XGBoost model demonstrated outstanding performance on the test set in terms of AUC (83.92%), while
the Random Forest (RF) model excelled in sensitivity (71.05%). Subsequently, a specifically designed RFE-Stacking
ensemble model, using RF and XGBoost as the primary learner and the SVM as the meta-learner, is developed. In
comparison, this stacking ensemble model exhibits the best predictive performance with the biggest AUC (85.14%) and the
highest sensitivity (78.71%). The SHAP interpretation reveals that general health condition, frequency of oral pain in the
past year, marital status, history of mental health consultations in the past year, and frequency of urine leakage are the top
five most influential factors in predicting the depression risk.
CONCLUSION: This stacking ensemble model enhances the performance of both the primary learners and the meta-
learners. This verifies the feasibility and effectiveness of the proposed model in predicting the geriatric depression. This
work integrating the stacking ensemble model with SHAP offers valuable clinical references for assessing the risk of
depressive symptoms, which is beneficial to develop the personalized depression interventions and preventions in the elderly.
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1. Introduction 

As a prevalent mental disorder, depression exerts severe 
negative impacts on the health and life quality of the older  

adults, while significantly elevating their risks of suicide and 
the burden of comorbid physical illnesses, such as 
cardiovascular diseases [1]. Statistics indicate that the global 
prevalence of depression among the elderly reached a 
concerning 31.74% in 2021 [2]. In recent years, alongside the 
accelerating trend of global population aging, this rate 
continues to exhibit a strong upward trajectory [3]. The high 
incidence of geriatric depression and its serious 
consequences have garnered widespread attention from both 
the medical communities and the academic communities [4]-
[6]. Consequently, developing efficient and accurate risk 
prediction models for geriatric depression is crucial for 
enabling early intervention and alleviating the pressure on 
healthcare systems. 

Traditional researches on predicting the geriatric 
depression risk has predominantly relied on questionnaire-
based socio-structural analyses or conventional statistical 
methods. These approaches often focus on identifying 
individual risk factors and employ multivariate linear 
regression to explore their associations with the depression 
[7]-[8], followed by the theoretical analysis at the 
sociological level. However, these methods, largely based on 
linear assumptions, fail to adequately capture the complex, 
non-linear relationships among variables. Consequently, 
their predictive accuracy and generalization capability are 
greatly limited when handling the high-dimensional, non-
linear medical data. 

With advancements in artificial intelligence, machine 
learning techniques, leveraging their powerful pattern 
recognition and inherent ability to model non-linear 
relationships, have demonstrated significant potential in 
predicting the geriatric depression. Many current machine 
learning-based predictive models frequently utilize multiple 
machine learning algorithms and compare their performance. 
Literature reviews suggest that Logistic Regression, Support 
Vector Machines, Random Forest, and the eXtreme Gradient 
Boosting (XGBoost) model are among the most frequently 
applied algorithms [9]. Typically, ensemble models based on 
decision trees (such as Random Forest and the XGBoost 
model) exhibit superior performance [9], specially 
demonstrating particular advantages in handling high-
dimensional data and complex feature interactions [10]. 
Nonetheless, single models often face performance 
bottlenecks, including insufficient accuracy and limited 
generalization ability. Furthermore, the opaque "black-box" 
nature of their decision-making processes substantially 
hinders clinical trust and adoption of their outputs by 
healthcare practitioners [11]. 

To address these challenges, this study introduces an 
ensemble learning strategy and aims to develop an 
interpretable Stacking ensemble model that combines high 
sensitivity, strong generalization capability, and good 
interpretability, thereby providing a novel data-driven 
solution for the early prevention and control of the geriatric 
depression. Specifically, this work first trains multiple 

individual learners. The models demonstrating optimal 
performance in sensitivity (to minimize missed diagnoses) 
and AUC (reflecting overall discriminative power) are 
selected as the primary learner [4]. Their predictions are then 
aggregated to form a new feature space and input into the 
meta-learners composed of linear models for the final 
learning stage. At last, we obtain the optimal stacking 
ensemble model by comparing the performance metrics of 
meta-learners. This design not only harnesses the strengths of 
diverse non-linear models but also effectively controls the 
overall model complexity and overfitting risk through the 
linear meta-learner, thereby enhancing performance while 
ensuring robustness. To mitigate the impact of the "black-
box" decision process on the clinical translation and 
application of the predictive model, this paper employs the 
explainable AI tool SHapley Additive exPlanations (SHAP) 
[12] to provide both global explanations and local 
explanations for the aforementioned optimal Stacking 
ensemble model, enhancing transparency and trust in its 
outputs. Experimental results verify the feasibility and the 
effectiveness of the proposed model, indicating its great 
latent potential as a valuable tool for clinical practice in the 
geriatric depression.

2. Methods 

2.1 Data and Variables 

The study focuses on data from participants aged 65 and older 
in the NHANES database from 2005-2023. Depression is 
screened for using the Patient Health Questionnaire-9 (PHQ-
9) in NHANES. This questionnaire is widely used for the 
rapid screening and preliminary identification of depression, 
systematically assessing the participants' mental and 
psychological state over the past two weeks. Compared to 
similar screening tools, it demonstrates higher sensitivity and 
specificity in diagnostic efficacy. In this work, if any of the 9 
questions in the Patient Health Questionnaire-9 (PHQ-9) [13] 
had a missing response, the individual's data would be 
excluded. After applying these exclusions, a total of 9,060 
samples from individuals aged 65 and above are ultimately 
included. Specifically, depression would be defined based on 
whether the total score of the 9 PHQ-9 questions is greater 
than 10. Participants with a PHQ-9 total score meeting or 
exceeding 10 are classified into the depression group (coded 
as 1), while those below this threshold are classified into the 
non-depression group (coded as 0).

The variables incorporated into the study consisted of four 
parts: (1) Socio-demographic characteristics: such as age, 
gender, educational level, and marital status; (2) Dietary 
nutrition data: including energy, protein, vitamins, and 
carbohydrate intake; (3) Laboratory examination data: such 
as blood pressure, cholesterol levels, insulin levels, and Body 
Mass Index (BMI); (4) Questionnaire data: including hearing 
status, history of chronic diseases, alcohol consumption, and 
history of prescription drug use. It is noteworthy that the 
NHANES (National Health and Nutrition Examination 
Survey) database exhibits the following typical 
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characteristics: (1) High-dimensional features: It contains 
multi-dimensional data including demographics, diet, 
physical examinations, and laboratory tests. (2) Data 
complexity: It has diverse variable types (such as positively 
skewed distribution laboratory data and continuous variables) 
and contains missing values. (3) Class imbalance: The 
number of patients is usually much smaller than that of 
healthy individuals. Directly using such data for model 
training would cause the model to be severely biased towards 
the majority class, resulting in very poor predictive 
performance for the minority class.  

Therefore, a series of data preprocessing operations are 
required on the original dataset before model training. 
Specifically, this paper proposes a multi-stage data 
preprocessing process in Subsection 2.2 to reduce data 
complexity, applies a hybrid sampling method in Subsection 
2.3 to address the class imbalance problem, and introduces 
feature engineering in Subsection 2.4 to mitigate the 
overfitting risk caused by high-dimensional features, all 
while ensuring model predictive performance and reducing 
model complexity. 

2.2  Data Preprocessing 

To ensure data quality and model reliability, this study adopts 
a multi-stage data pretreatment process, primarily optimizing 
data quality through Removal of Duplicate Variables and 
Missing Values, Multiple Imputation by Chained Equations 
(MICE) [14], and Data Normalization. The specific process 
is illustrated in Figure 1. 

(1) Removal of Duplicate Variables and Missing Values:
In order to mitigate multicollinearity effects, duplicate 
variables representing the same information but with 
different units are deleted. Variables with missing values 
exceeding 50% across the four main database modules are 
also removed. 

(2) Multiple Imputation by Chained Equations (MICE) for
missing values in retained variables: In complex missing data 
scenarios, particularly with large-scale datasets, the data 
often exhibit multidimensional and missing-at-random 
characteristics. To fully leverage the available information 
and enhance data quality of the NHANES database, this study 
employs the Multiple Imputation by Chained Equations 
(MICE) [14] for handling missing values in preserved 
variables. The MICE operate by constructing conditional 
distribution models between variables to generate multiple 
imputed datasets for joint inference. Specifically, an iterative 
algorithm establishes regression models for each target 
variable based on other completely observed variables. 
During each iteration, the parameters of predictive models are 
updated using currently imputed variable values, thereby 
generating new imputations. This process iteratively refines 
the conditional distribution models across variables, 
producing multiple complete datasets through collaborative 
imputation. 

(3) Data Standardization: As abovementioned, the
NHANES database has diverse variable types. In order to 
improve the training efficiency and accuracy of machine 
learning models, this work performs a series of data 
standardization operations. On one hand, as to the positively 
skewed distribution laboratory data (such as cholesterol and 
blood components), we apply the logarithmic transformation 
to make the data distribution more uniform, presenting 
characteristics closer to normal distribution, thereby 
improving the performance of the model.  On the other hand, 
as to the continuous variables (like energy, protein, and 
dietary fiber intake) are subjected to Min-Max normalization, 
scaling the data to the [0, 1] interval while preserving the 
original data distribution characteristics, which aims at 
eliminating dimensional differences between data features 
and making the numerical ranges of different features 
consistent. 

Figure 1. Data Preprocessing and Feature Selection 

NHANES Multimodal Dataset (2005~2023)

Duplicate Variables (same 
information with different units)

Variables with Missing 
Values Exceeding 50%

Retained Variables 
with Missing Values

Multiple Imputation by 
Chained Equations

Logarithmic 
Transformation

Positively Skewed 
Distribution Data

Continuous VariablesMin-Max Normalization

Dataset Splitting
Training set:7060 samples(2005-2020)
Test set:1700samples(2021-2023)

SMOTE-RUS hybrid sampling
The training set with sample sizes for label class 0 
and class 1 being 6,322 and 5,058 respectively, 
achieving a relatively balanced class distribution

Removal 
Operation
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2.3  SMOTE-RUS Hybrid Sampling 

Class imbalance is a prevalent issue in healthcare datasets 
such as NHANES. Resampling techniques are pivotal in 
mitigating this challenge. Commonly employed methods 
include the Synthetic Minority Over-sampling Technique 
(SMOTE) [15], Random Under-Sampling (RUS) [16], and 
more advanced hybrid sampling methods like Synthetic 
Minority Over-sampling Technique-Edited Nearest 
Neighbours (SMOTE-ENN) and Adaptive Synthetic 
Sampling (ADASYN). However, it is important to note that 
SMOTE-ENN suffers from high computational costs in high-
dimensional spaces, where the "curse of dimensionality" 
destabilizes the very notion of nearest neighbors. Meanwhile, 
ADASYN is highly sensitive to noise due to its data-
generating mechanism. Given the high dimensionality, 
complexity, and inherent noise of the NHANES dataset, 
SMOTE-ENN and ADASYN methods are suboptimal for 
addressing imbalance in the NHANES dataset. 

To tackle the class imbalance in the NHANES training 
data, this study adopts a hybrid sampling strategy that 
combines SMOTE with RUS (SMOTE-RUS). In this 
framework, SMOTE enhances the representation of the 
minority class, while RUS counteracts the dominance of the 
majority class. The application of RUS not only rectifies the 
class distribution skew, thereby significantly improving 
subsequent model training speed, but also helps reduce the 
influence of potential noise and redundant samples within the 
majority class. Although RUS carries a risk of discarding 
some information, the introduced randomness can serve as a 
form of regularization. This helps prevent the model from 
overfitting to specific nuances of the majority class, 
ultimately enhancing the model's generalization capability. 

It should be noted that a preprocessing pipeline should be 
constructed to strictly confine the aforementioned sampling 
operations to the training set. Therefore, it could ensure the 
model to learn from a balanced data distribution, while 
simultaneously ensuring its final evaluation is performed on 
a test set that represents the real-world, unaltered distribution. 
This approach fundamentally prevents information leakage 
and evaluation bias attributable to improper data 
preprocessing. 

2.4 RFE-RF Feature Selection 

Despite of the data preprocessing, the dataset still contains 
147 feature variables. Such a high-dimensional feature set 
would not only significantly increase the computational 
burden and reduce training efficiency but also, due to the 
curse of dimensionality, introduce substantial noise and 
redundancy. This greatly heightens the risk of model 
overfitting and compromises its generalizability. Therefore, 
implementing effective feature dimensionality reduction 
becomes a critical step in building a robust predictive model. 

Compared with the Lasso regression, the recursive feature 
elimination (RFE) method [17] based on tree models is 
insensitive to feature collinearity, typically yielding more 
stable and reproducible screening results. Therefore, this 
work adopts a RFE method based on random forest (i.e., 
RFE-RF) for feature selection. Specifically, this method 
employs a systematic and iterative process, guided directly 
by model performance, to identify the most predictive feature 
subset. As depicted in Figure 2, the specific procedure is 
given as follows: 

(1) Establishing a Performance Benchmark: An initial
Random Forest model is trained using all 147 features, and 
its predictive accuracy is established as the performance 
benchmark. Then, we calculate the importance of all features 
according to their information gain and rank them based on 
the feature importance. 

(2) Iterative Feature Evaluation: The least important
features are temporarily removed at a time. A new Random 
Forest model is then trained using the remaining feature 
subset, and its predictive accuracy is recorded. 

(3) Performance-Based Elimination Decision: The
accuracy of the new model is compared against the current 
benchmark. If the removal of least important features resulted 
in an accuracy was higher than the current benchmark, that 
features would be permanently removed. Conversely, if the 
accuracy decreased, the features would be retained in the set. 

(4) Cycling and Convergence: Steps 2 and 3 are
repeated, and the highest achieved accuracy at each iteration 
is updated as the new performance benchmark. This process 
continues until the model's predictive accuracy could no 
longer be improved and stabilized, at which point the optimal 
feature subset is determined. 

Initialization(147 preprocessed features 
and the performance benchmark P0)

Pn<P0 or 
|Pn-P0|<Δ

Y

Output the optimal feature subset with 
feature importance > 0.005, achieving 

the highest predictive accuracy

Training & Testing the RF model 
with k features

N
Calculate its predictive performance 

Pn  in each round

RFE-RF Model
Train the Random Forest (RF) model, 
calculate its prediction performance

Calculate the importance of all 
features according to their information 

gain and then rank them 

Remove the least important features 
in each round 

The current number of feature 
subsets is k

Update the benchmark P0
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Figure 2. RFE-RF feature selection process 

Through the process, this refined feature set is retained and 
used for all subsequent model construction, ensuring the 
efficiency and robustness of the final model. 

2.5  Model Construction 

As illustrated in Figure 3, four individual learners are 
constructed based on Random Forest, Support Vector 
Machines (SVM), XGBoost, and Logistic Regression. The 
hyperparameters of each individual learner would be tuned 
through grid search and manual fine-tuning. In scenarios such 
as depression prediction, maximizing the clinical value of 
identifying potential patients (high sensitivity, i.e., high recall 
rate) is usually much higher than avoiding misjudgment of 

healthy individuals (high specificity). Given that, we select 
individual learners with optimal performance in the 
sensitivity and AUC to form the primary learner. The 
predictions from these primary learners are combined to 
create a new feature space. Notably, using linear models as 
meta-learners not only mitigates overfitting risks but also 
creates complementary synergy with the complex non-linear 
primary learners, thereby reducing overall system complexity 
[18]. Considering that, we then build stacking ensemble 
models by employing the Logistic Regression (LR) model 
and the SVM model as meta-learners, respectively, to 
identify the optimal predictive model. Finally, we apply 
SHAP, an explainable machine learning framework, to 
provide both global and local interpretations of the optimal 
model's predictions. 

Figure 3. The model construction process 

3. Experimental Results and Analysis 

In this section, four RFE-based individual learners (i.e., RFE-
based Logistic Regression, RFE-based Random Forest, RFE-
based SVM, and RFE-based XGBoost) are trained. Then two 
RFE-based stacking ensemble models are built by employing 
Logistic Regression and SVM as meta-learners, respectively. 
At last, the visualization analysis is given by the explainable 
machine learning framework SHAP, with both the global 
explanations and the local explanations of the optimal 
model's predictions.  

The model evaluation and output interpretation in this 
study are all implemented in PyCharm 2024. 

3.1 Dataset Splitting 

To evaluate the external validity and temporal 
generalizability of the proposed stacking ensemble model, we 
split the dataset with a rigorous temporal validation strategy. 
Specifically, data from the 2005-2020 NHANES cycle 
(n=7,060) are used as the training set for model development 
and hyperparameter tuning, while the temporally 
independent data from the 2021-2023 NHANES cycle 

(n=1,700) are designated as the test set. This approach 
simulates a realistic application scenario where the model is 
applied to a future population. All model performance 
metrics, including AUC, accuracy, and F1-score, are reported 
exclusively on this external test set. The performance on this 
temporally separate external data serves as the primary 
evidence for the model's external consistency. 

3.2 MICE, Hybrid Sampling and Feature 
Selection 

3.2.1 MICE 

To scientifically evaluate the appropriateness of the 
imputation method MICE, this study employs a combined 
approach of data visualization and statistical testing. At first, 
an intuitive assessment is conducted by plotting density 
comparison charts of the data before and after imputation. For 
cases where the density plots indicate noticeable 
discrepancies, the Kolmogorov-Smirnov (KS) non-
parametric test is further applied for quantitative validation. 

Prediction 
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Taking the variables DR1TP226 and INDFMPIR as 
examples, their density comparison charts reveal distinct 
patterns, as shown in Figure 4. For DR1TP226, the post-
imputation data curve (represented by a solid red line) shows 
a high degree of overlap with the original data curve 
(represented by a blue dashed line), indicating that the 
distribution of the imputed missing values is largely 
consistent with the non-missing portion of the original data. 
In contrast, the density comparison charts for INDFMPIR 
exhibits some observable differences. Consequently, the KS 
test is performed, calculating its D statistic (the maximum 
distance between the two sample cumulative distribution 
functions) and the corresponding p-value. The results show a 
very low D statistic of 0.001, accompanied by a p-value of 
0.126, which exceeds the common significance level of 0.05. 
This strongly suggests that the distributions before and after 
imputation are highly similar. It can therefore be concluded 
that the imputation method adopted in this study is effective 
and appropriate, as it successfully preserves the original 
statistical characteristics of the variables without introducing 
significant distributional bias due to the handling of missing 
values. 

3.2.2 Hybrid Sampling 

Following the application of the SMOTE-RUS hybrid 
sampling, the total sample size of the training set is adjusted 
to 11,380. The sample counts for class 0 and class 1 become 
6,322 and 5,058, respectively, achieving a state of relative 
class balance at the training set level. 

(a) DR1TP226 

(b) INDFMPIR

Figure 4. Density comparison charts and KS non-
parametric test 

3.2.3 Feature Selection 

After the RFE-RF feature selection, the study ultimately 
identifies an optimal feature subset composed of 24 key 
features (with the feature importance greater than 0.005). 
This specific feature combination yields the highest 
predictive accuracy of 83.05%.  The names and importance 
rankings of these features are detailed in Table 1. 

Table 1. Feature importance ranking 

Variable Name Variable Description Ranking Importance 
HUQ010 General health condition 1 0.189 
OHQ620 Frequency of oral pain in the past year 2 0.123 
KIQ005 Frequency of Urine leakage  3 0.077 

MCQ160A Diagnosis of Arthritis 4 0.052 
KIQ044 Urinary Leakage or Loss of Control due to urgency or pressure during urination 5 0.049 
KIQ042 Urinary Leakage due to coughing, or other physical activities 6 0.048 

DMDMARTZ Marital Status 7 0.046 
DMDEDUC2 Education Level 8 0.044 

HUQ00 History of  Mental Health Consultations in the past year 9 0.042 
LBXHA Hepatitis A Antibody 10 0.037 

INDFMMPC Monthly poverty line category for households 11 0.034 
LBDBANO Number of basophil granulocyte 12 0.019 
INDFMPIR Household income and poverty ratio 13 0.018 
DBQ095Z Types of salt used 14 0.017 
BPQ020 Does the patient have hypertension before 15 0.017 

DR1TTHEO Theobromine 16 0.016 
LBDEONO Number of eosinophils 17 0.015 

BPQ080 Blood cholesterol levels 18 0.013 
DIQ010 Whether the patient has diabetes 19 0.008 
MCQ010 Does the patient have asthma before 20 0.008 

INDFMMPI Monthly poverty level index of households 21 0.007 
HSQ590 Does the patient have the AIDS virus infection in the Blood 22 0.006 

MCQ160F Has the patient had a stroke before 23 0.006 
DR1TNIAC Niacin 24 0.006 
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In order to ensure the model robustness, this paper further 
calculates the Variance Inflation Factors (VIFs) of the 24 
selected key features to test the inter-feature 
multicollinearity. As shown in Figure 5, the vast majority of 
features exhibit VIF values close to 1, indicating negligible 
linear dependence among them. A small subset of features—
namely INDFMMPC, INDFMHR, and INDFMMPI, which 
are related to household income and poverty levels—show 

VIF values ranging from 2.14 to 3.47. This suggests mild 
multicollinearity among them. Nevertheless, this is an 
expected outcome given the inherent correlations between 
such socioeconomic indicators in reality. it should be noted 
that, since the degree of correlation is sufficiently low as to 
not pose a threat to model integrity, retaining these features 
helps capture a more comprehensive socioeconomic context. 

Figure 5. Variance Inflation Factor analysis 

3.3  Performance Indicators 

3.3.1 Accuracy 

Accuracy reflects the proportion of samples correctly 
classified by the model to the total number of samples. High 
accuracy means that the model has good overall classification 
ability. Its expression is as follows, 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

    (1) 

where TP is the number of True Positive, TN is the number 
of True Negative, FP is the number of False Positive, FN is 
the number of False Negative. 

3.3.2 Recall rate (Sensitivity) 

Recall rate, also known as sensitivity, refers to the probability 
of correctly predicting depression in all samples with actual 
depression. High recall rate contributes to reducing false 
negatives and lowering the risk of missed diagnosis. Its 
expression is as follows, 

𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

3.3.3 Specificity 

Specificity refers to the probability of correctly predicting 
healthy persons in all samples that does not actually have 
depressive symptoms. High specificity contributes to 
reducing false positives and avoiding unnecessary medical 
interventions. Its expression is as follows, 

𝑆𝑆𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (3) 

3.3.4 ROC curve 

ROC curve is  a curve graph with false positive rate (FPR) as the 
horizontal axis and true positive rate (TPR) as the vertical axis. Its 
derivative indicator AUC evaluates model performance by 
quantifying the area under the curve. High AUC value means that 
the model has good comprehensive performance. The expressions 
of FPR and TPR are  

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

,𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 (4) 

3.4  Model Evaluation 

The performance metrics of four RFE-based individual 
learners and two stacking ensemble models are compared in 
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Table 2. We first conduct a horizontal performance 
comparison of four individual learners to establish 
performance benchmarks. As shown, the RFE-based Random 
Forest learner attains a highest sensitivity of 71.05% and a 
higher AUC of 83.42% among these four individual learners; 
the RFE-based XGBoost learner has a superiority of AUC 
(83.92%), accuracy (85.22%), and specificity (88.41%), but 
with a lowest sensitivity (62.28%). Thus, the RFE-based 
Random Forest learner and the RFE-based XGBoost learner 
are naturally selected to form the primary learners. As 

aforementioned, the LR model and the SVM model are 
employed as meta-learners, respectively, to build two 
stacking ensemble models, i.e., the RFE-based Stacking LR 
learner and the RFE-based Stacking SVM learner. From 
Table 2, we can clearly see that, compared to the RFE-based 
Stacking LR learner, the RFE-based Stacking SVM learner 
has better performance in terms of sensitivity (78.71%) and 
AUC (85.14%), both of which are significant to the 
depression prediction. Therefore, we would employ the SVM 
model as the optimal meta-learner.  

Table 2. Comparison of performance metrics across models on the testing dataset 

Models Sensitivity  
(Recall Rate) AUC Accuracy Specificity 

RFE-based Logistic Regression (LR) 63.45 83.03 80.88 82.30 
RFE-based Random Forest 71.05 83.42 81.65 81.59 

RFE-based SVM 69.74 82.23 79.20 79.18 
RFE-based XGBoost 62.28 83.92 85.22 88.41 

RFE-based Stacking LR 73.54 84.87 80.27 78.62 
RFE-based Stacking SVM 78.71 85.14 82.12 80.46 

Then we conduct the vertical performance comparison 
between the primary learners and the stacking ensemble 
models. As shown, compared to the RFE-based Random 
Forest learner and the RFE-based XGBoost learner, the RFE-
based Stacking SVM learner can achieve a 7.66% and 16.43% 
improvement in sensitivity and a 1.71% and 1.22% 
improvement in AUC, respectively. In order to capture the 
true positives missed by XGBoost and improve the sensitivity, 
the meta-learner inevitably misjudges some of the true 
negatives (i.e., healthy individuals) correctly  

classified by XGBoost as the positives. Therefore, 
although the sensitivity of the RFE-based Stacking SVM 
learner has significantly increased, its specificity has 
plummeted from 88.41% of XGBoost to 80.46%. The 
significant decrease in the specificity of the RFE-based 
Stacking SVM learner means that more errors are made in the 
majority of healthy individuals, which directly lowers the 
overall accuracy. Figure 6 shows the comparison of ROC 
curves for the six RFE-based learners. 

Figure 6. ROC curves of six RFE-Based models on the test dataset 
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3.5 SHAP Visualization Analysis 

In this subsection, we would provide both global 
explanations and local explanations of the optimal model's 
predictive results. Based on the above analysis, the RFE-

based Stacking SVM learner as the optimal depression 
predictive model is selected for feature analysis.  

a) SHAP variable importance plot b) SHAP beeswarm plot 

Figure 7. Global SHAP explanation. a) SHAP variable importance plot, b) SHAP beeswarm plot. (Note: In the 
beeswarm plot, blue-colored points represent low assigned feature values, while red-colored points represent high 
assigned feature values. The following parentheses provide the corresponding encoding explanations for each 
feature: (i) HUQ010 denotes self-rated general health status (Excellent: 0 / Good: 0.25 / Fair: 0.5 / Poor: 0.75 / Very 
Poor: 1). (ii) OHQ620 indicates the frequency of oral pain in the past year (Very often: 0 / Fairly often: 0.25 / 
Occasionally: 0.5 / Hardly ever: 0.75 / Never: 1). (iii) DMDMARTZ describes marital status (Married/Living with 
partner: 0 / Widowed, divorced, or separated: 0.2 / Never married: 0.4). (iv) KIQ005 represents the frequency of 
urine leakage (Never: 0 / Less than once a month: 0.25 / A few times a month: 0.5 / A few times a week: 0.75 / 
Every day and/or night: 1). (v) HUQ00 indicates whether the individual saw a mental health professional in the past 
year (Yes: 0 / No: 1). (vi) KIQ044 specifies urine leakage due to urgency or pressure (Yes: 0 / No: 1). (vii) KIQ042 
indicates urine leakage associated with activities like coughing or exercise (Yes: 0 / No: 1). (viii) MCQ160A shows 
the diagnosis of arthritis (Yes: 0 / No: 1). (ix) LBXHA denotes Hepatitis A antibody test result (Positive: 0 / Negative: 
1). (x) DMDEDUC2 indicates the education level (No diploma: 0 / Junior high school: 0.25 / High school: 0.5 / 
College: 0.75 / Bachelor's degree or above: 1).) 

Figure 7 presents the global explanations based on SHAP, 
visualizing the impact of features on the overall model. 
Figure 7a) shows the SHAP variable importance plot, 
depicting the average impact of each feature on the model's 
prediction results from a global perspective. From Figure 6a), 
we can see that the top 10 variables influencing the geriatric 
depression status were: General Health Condition (HUQ010, 
+0.88); Frequency of Oral Pain in the past year (OHQ620,
+0.4); Marital Status (DMDMARTZ, +0.19); History of
Mental Health Consultations in the past year (HUQ00,
+0.16); Frequency of Urine Leakage (KIQ005, +0.15);
Urinary leakage or loss of control due to urgency or pressure
during urination (KIQ044, +0.14); Urinary leakage due to
coughing, exercise, or other activities (KIQ042, +0.14);
Diagnosis of Arthritis (MCQ160A, +0.1); Hepatitis A
Antibody (LBXHA, +0.1); and Education Level
(DMDEDUC2, +0.1). Among them, the SHAP importance
value of general health status (+0.88) far exceeds other

features and is the most important predictive basis for the 
model. This indicates that the subjective evaluation of one's 
own general health by the elderly is the strongest indicator of 
the risk of depression. In addition, the importance of “Sum of 
14 other features” reaches 0.32. This indicates that, although 
individual long tail features have a weak impact, their 
contributions to the model cannot be ignored, providing rich 
supplementary information. 

Figure 7b) gives the SHAP beeswarm plot, a deepening of 
the variable importance plot, depicting how each feature of 
each sample affects the model prediction and revealing the 
relationship between feature values and the direction of 
influence (positive/negative). From Figure 6b), it can be seen 
that (1) General Health Condition (HUQ010): The higher the 
assigned feature values (red representing poorer self-rated 
health), the more biased the SHAP values are towards the 
right, which indicates the positive impact of General Health 
Condition on pushing up the risk of depression. (2) 
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Frequency of Oral Pain in the past year (OHQ620): Similar 
to General Health Condition, high assigned feature values 
(red representing high pain frequency) are densely distributed 
in the positive SHAP value area. (3) Marital Status 
(DMDMARTZ): The distribution of these feature values 
(blue for unmarried/ divorced /widowed, red for married) is 
relatively scattered, but the blue dots appear more on the left 
side (protective effect), while red ones have a higher 
proportion on the right side (risk effect). (4) Education Level 
(DMDEDUC2): Low assigned feature values (blue 
representing low education level) are more distributed in the 
positive SHAP value area, while high eigenvalues (red 
representing high education level) are more distributed near 
the central axis or negative SHAP value area. (5) Other 
features: The different values of the 14 other features (blue 
and red) are widely distributed in the positive and negative 
SHAP value regions, and do not show a simple linear 
relationship.  

The SHAP force plot provides local explanations for 
individual predictions. The visualization results for two 
randomly selected samples are shown below in Figure 8. 
From Figure 8a), the 130389th individual has a predicted 
depression risk probability of 0.1, which is obviously lower 
than the model's base value (average predicted probability) of 
0.21. This indicates that the model predicts this sample as not 
having depressive symptoms, which is consistent with the 
sample's actual label. The SHAP force plot reveals that key 
features contributing to this prediction are stable Marital 
Status (DMDMARTZ=0.0), good General Health Condition 
(HUQ010=0.5), and no History of Mental Health 
Consultations (HUQ00=1), which increased the probability 
of being classified as non-depressed. While high frequency 
of Urine Leakage (KIQ005=0.0) and Urinary Leakage or 
Loss of Control upon Urgency (KIQ044=0.0) or Physical 
Activities (KIQ042=0.0) increase the probability of 
depression. 

a) SHAP force plot of the 130389th individual 

b) SHAP force plot of the 130413th individual 

Figure 8. Local SHAP Explanation 

From Figure 8b), the 130413th individual has a predicted 
depression risk probability of 0.41, which is 
significantly higher than the model's base value of 0.21. Thus 
this sample would be predicted as having a high risk of 
depressive symptoms. The SHAP force plot reveals that key 
features that increase the risk probability of depression are 
Frequency of oral pain in the past year (OHQ620 = 0.5), 
Urine Leakage upon Physical Activities (KIQ042=0.0), the 
lack of a stable Marital Status (DMDMARTZ = 0.2), while 
the key features that decrease the risk probability of 
depression are good General Health Condition 

(HUQ010=0.25), No Urine Leakage due to Urgency 
(KIQ044 = 1.0), No history of Arthritis (MCQ160A = 1.0), 
and No history of Mental Health Consultations (HUQ00 = 
1.0). 

4. Discussion 

This study focuses on the study of an interpretable predictive 
model for the geriatric depression and the explanation of its 
predictive mechanisms, systematically integrating a 
relatively comprehensive technical framework encompassing 
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data preprocessing, feature engineering, machine learning 
modeling, and interpretability analysis.  

4.1  Discussion of Data Processing and 
Feature Engineering 

To develop a predictive model with enhanced accuracy and 
robustness, we integrate the multi-source, heterogeneous data 
from the NHANES database (2005-2023). Beyond basic 
scale data, we incorporate enhanced modalities including 
proteomics, metabolomics, genomics, and environmental 
exposomics. This approach is designed to transcend the 
limitations of unimodal data, enabling the model to capture 
the complex feature space of depression through the 
integrated "Biopsychosocial" model [19], thereby improving 
the accuracy of assessing multi-risk factor contributions. For 
data preprocessing, we employ the MICE method to handle 
missing values and a hybrid sampling technique (SMOTE-
RUS) to mitigate class imbalance, ensuring a high-quality 
dataset for model training. Given the complex etiology of 
depression, which involves numerous non-linear 
relationships and intricate interaction effects between risk 
factors and clinical outcomes, we introduce the Random 
Forest algorithm to capture such complex patterns in the 
feature selection stage. In specific, we utilize a Random 
Forest-driven RFE process, not the Lasso regression which is 
constrained by its inherent linearity assumption and 
sensitivity to multicollinearity, to identify features involved 
in these non-linear and interactive associations with 
depression. Using the RFE-RF feature selection, this study 
predicts 24 key features.  

4.2  Discussion of Model Performance 

During the primary learner construction phase, the predictive 
performance metrics of four individual learners are compared 
in Table 2. As shown, the RFE-based Logistic Regression 
learner and the RFE-based XGBoost learner exhibit similar 
"high specificity, low sensitivity" patterns, indicating that 
they are more inclined to reduce misdiagnosis (False Positive) 
during the learning process, but at the cost of increasing 
misdiagnosis (False Negative); While the RFE-based 
Random Forest learner exhibits the opposite tendency, with 
its higher sensitivity indicating that it is more committed to 
identifying all potential patients, even if it may misjudge 
some healthy individuals.  In summary, no individual learners 
can simultaneously achieve the optimal values for both 
sensitivity and specificity.  

During the secondary learner construction phase, the RFE-
based stacking ensemble model combines multiple individual 
learners with different inductive biases, and the meta learner 
is able to identify samples that are incorrectly judged by one 
model but correctly judged by another model through 
learning from the outputs of the primary learners. Therefore, 
the stacking ensemble models could integrate the advantages 
of both "high specificity" model (i.e., the RFE-based 
XGBoost learner) and "high sensitivity" model (i.e., the RFE-

based Random Forest learner) for decision-making, thus 
forming a more robust and generalizable decision boundary 
and achieving optimal performance on AUC. Nevertheless, 
in order to achieve high sensitivity (reduce missed diagnoses), 
the stacking ensemble model has to relax the criteria for 
determining positive cases, which inevitably leads to more 
false positives and lowers the specificity. Given that healthy 
individuals make up the majority of the dataset, the 
significant decrease in the specificity directly lowers the 
overall accuracy.  

In the depression screening scenarios, high sensitivity is 
crucial. The RFE-based stacking SVM model has increased 
sensitivity from the optimal 71.05% of the individual learners 
to 78.71%, which is a significant clinical value improvement. 
In other words, the RFE-based stacking SVM model can 
identify approximately 7 more depression patients out of 
every 100 screened individuals. These patients who have 
been 'rescued' can receive timely intervention and treatment 
opportunities, avoiding the deterioration of their condition. It 
has immeasurable value for individuals, families, and even 
society. Although the accuracy and the specificity of the 
RFE-based stacking SVM model are not the highest, its 
clinical value cannot be simply denied. Its task is not to make 
a final diagnosis, but to efficiently screen as many high-risk 
individuals as possible from the population, and then hand 
them over to professional doctors for secondary diagnosis 
through interviews, scales, etc. Therefore, the RFE-based 
stacking SVM model could be regarded as an optimal tool for 
achieving the clinical goal of "maximizing the discovery of 
potential depression patients". 

4.3  Discussion of SHAP Visualization 
Analysis 

These SHAP-related figures together form a complete model 
interpretability system from global to local, from feature 
importance to individual predictive interpretation. 

As presented in Figure 7, the global feature importance 
analysis illustrates the core predictors identified by the model 
for depression risk. Consistent with the findings in Table 1, 
the model assigns the most importance to general health 
condition (HUQ010) (mean |SHAP| ≈ 0.88). This 
computationally validates the significant comorbidity 
between physical health and mental health in the elderly, 
establishing it as the primary basis for the model's risk 
assessment. Furthermore, the prominence of oral pain 
frequency (OHQ620) and marital status (DMDMARTZ) as 
key predictors underscores the critical roles of chronic pain 
as a physiological stressor and the social support system, 
respectively. It is noteworthy that several urinary 
incontinence-related features (KIQ005, KIQ044, KIQ042) 
rank within the top ten, revealing that functional impairment 
and diminished quality of life stemming from urological 
health issues constitute a strong, yet often overlooked, 
predictive signal for the geriatric depression. In summary, the 
feature importance extracted by the proposed data-driven 
model takes full considerations of biomedical, psychological, 

11



M. Cui, X. Li, W. Gong

and socio-environmental risk dimensions to form a more 
completed assessment framework. 

The SHAP beeswarm plot in Figure 7b) offers a global 
interpretation of the model's decision-making mechanism, 
revealing complex non-linear patterns between feature values 
and prediction output. Specifically, (1) The worse the self-
assessment results of General Health Condition (HUQ010), 
the higher the risk of depression. It shows a very clear and 
clinically intuitive monotonic positive correlation. This 
strong alignment with clinical consensus significantly 
improves the credibility of the proposed predictive model. (2) 
Oral Pain Frequency (OHQ620) also exhibits a distinct risk 
gradient: the frequency of oral pain is positively correlated 
with SHAP values, confirming the role of chronic physical 
discomfort as a physiological driver of depression risk. (3) 
The distribution pattern of Education Level (DMDEDUC2) 
reveals its protective role: low education levels (low feature 
values) are strongly associated with the high-risk region 
(positive SHAP values), while higher education levels (high 
feature values) are more concentrated in risk-neutral or 
protective regions. This suggests its positive influence 
potentially mediated through pathways like socioeconomic 
status and health literacy. (4) While some heterogeneity 
exists, the impact of Marital Status (DMDMARTZ) shows a 
clear overall trend: being married/in a partnership (blue) is 
significantly associated with negative SHAP values 
(protective effect), whereas non-married statuses (red/purple) 
clearly increase risk. This aligns with the theoretical model 
that views spousal support as a psychological resilience 
resource [20]. (5) For binary features (e.g., KIQ044, 
MCQ160A), the distinct separation of their feature values in 
the SHAP value space provides visual evidence that the 
corresponding disease states are clear sensitizing factors for 
increasing the depression risk. 

5. Conclusion 

This work proposed an interpretable stacking ensemble 
model with SHAP for depression prediction in the 
participants aged 65 and older of the NHANES database. In 
specific, the stacking ensemble model, with the RF model and 
the XGBoost model as the primary learners and SVM as the 
meta-learners, exhibited the best sensitivity and robustness 
performance. SHAP analysis revealed the five key factors for 
affecting the depression are general health condition, 
frequency of oral pain in the past year, marital status, history 
of mental health consultations in the past year, and frequency 
of urine leakage. This proposed model not only serves as a 
powerful tool to screen the geriatric depression, but also 
breaks through the "black-box" nature of the traditional 
model's decision-making processes, providing a reliable and 
transparent clinical decision-making basis. Future studies 
could adopt larger database to futher verify the effectiveness 
of the proposed model in the clinical applications. 
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