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Abstract

INTRODUCTION: Contemporary orthodontic treatment planning relies heavily on individual practitioner experience,
leading to significant variability in clinical decisions for similar malocclusion presentations and limiting standardized
evidence-based care. OBJECTIVES: This research aimed to develop an intelligent treatment recommendation system
integrating medical big data analytics with specialized orthodontic knowledge extraction to enhance clinical decision-making
accuracy and efficiency. METHODS: The study integrated 1,106 cases from multiple public orthodontic datasets, including
ISBI 2015 Grand Challenge, GitHub repositories, PubMed Central case reports, and Kaggle dental imaging competitions.
Graph Attention Networks were applied alongside collaborative filtering methods to process these cases and construct

orthodontic knowledge graphs that map diagnostic data to treatment outcomes. RESULTS: When tested on extraction
decisions, the hybrid system correctly identified treatment needs in 94.2% of cases, while manual evaluation achieved 78.8%
accuracy. Processing required only 2.3+0.4 seconds, compared to 35-45 minutes for traditional cephalometric analysis.
Different malocclusion categories showed varying results, with Class I cases reaching 96.5% accuracy and Class II Division
2 cases achieving 91.2%. Processing speed improved by 99.8%, sensitivity increased 24.7%, and clinical reliability improved
by 28.3% compared to standard diagnostic procedures. CONCLUSION: Big data analytics can enhance orthodontic
decision-making while preserving the personalized treatment planning that remains fundamental to achieving optimal
treatment outcomes.
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1. Introduction

Treatment of malocclusion requires a high degree of accuracy
in diagnosis and treatment plan, to restore both function and

treatment planning in orthodontics [3]. Although
technological progress continues apace, systems that

appearance [1]. Decisions on treatment hinge on the interplay
between teeth, bone, and soft tissues; growth patterns make
this more complex still, and patient preference adds another
dimension to consider [2]. Big data and artificial intelligence
offer the possibility to enhance diagnostic accuracy and
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accommodate the complexity of orthodontics are in short
supply. For instance, modern tools can carry out precise
cephalometric measurements or help patients with specific
problems, but for many, these tools do not offer complete
treatment recommendations. Pattern recognition algorithms,
for example, perform excellently on standard cases but
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struggle with patients who have atypical anatomical
features—making their results of limited use. What is more,
orthodontic program planning is fraught with subjective
factors that are difficult to assess on a numerical scale.
Effective clinical support systems integrating computer-
based analysis and professional judgment must be designed
to ensure that technology serves the expertise and decision-
making of orthodontists.

Digital orthodontics' findings include cephalometric
measurements, 3D scans, and treatment records spanning
across the years [4]. This sort of analysis does provide factual
support to the decision-making of orthodontic treatment [5]
for tasks like landmark recognition, malocclusion
classification, and treatment outcome prediction. Machine
learning skills are more and more widely used [6]. Traditional
rule-based systems have now been replaced by more complex
deep learning models, capable of managing several types of
clinical data simultaneously [7]. Although many effective
systems have been built in practical use over the last decade,
they are basically still doing only one thing [8]. Some systems
might have a very strong skill in cephalometric landmark
identification but fail to provide sequences of treatment; some
systems may correctly judge skeletal forms but ignore the
effects on soft tissue. Decisions about orthodontic treatment
span several stages and long periods of time. Unfortunately,
current systems are designed mainly to address single
diagnostic cases in this way; our profession will not advance.
Clinical decision support systems in orthodontics have
emerged as potential systems for balancing standardization
and required adaptability for personalization [9].
Nevertheless, existing systems still encounter capture gaps
with regard to the comprehensiveness of orthodontic
treatment planning because of prolonged timelines, relative
aesthetics, and numerous conflicting goals [10]. The reliance
on practitioner experience within the framework of traditional
approaches in medicine leads to inconsistencies and
variations in treatment approaches, even when patients
present with similar clinical features [11]. Numerous studies
have suggested that certain facets of comprehensive treatment
planning could benefit from machine learning; however, fully
developed recommendation systems that assimilate diverse
medical data and data-driven holistic multi-modal therapy
recommendations are still lacking [12].

In healthcare, recommendation systems have been integrated
to utilize aggregate clinical expertise for individualized
patient care [13]. In orthodontics, intelligent recommendation
systems can help minimize deviations in practice patterns and
enhance the results of dental therapies by ascertaining the
most effective approaches from previously treated
comparable cases [14]. The existing body of work has
practical implementation barriers due to a lack of
interpretability for multisource systems. Algorithmic
suggestions are difficult for the clinician to grasp; therefore,

trust cannot be placed in them [15]. Furthermore, the vast
majority of them do not take into account the treatment time
course and offer unmodifiable static recommendations
without any self-reinforcing or adaptive feedback [16].
Dependence on proprietary data sources raises concerns with
generalizability and reproducibility, which underscores the
need for methodologies that exploit open data sets, but protect
patient confidentiality [17].

This work tries to solve these problems by proposing an
intelligent multi-modal big data integrated machine learning
treatment plan recommendation system. The proposed
method uses publicly available orthodontic datasets to
develop advanced recommendation models to produce
customized, clinically relevant, and interpretable treatment
recommendations.  Featuring deep  learning-enabled
collaborative filtering, the system predicts optimal treatment
for individual patients and the time-lapse relationship that
treatments tend to be sequentially dependent. The research
demonstrates the potential role of cutting-edge engineering
solutions, as well as tangible clinical medicine through
multimodal data fusion and explainable artificial intelligence.
This study provides the groundwork for standardizing
orthodontic practices using increasingly evidence-based
approaches while maintaining individualized patient care.
Through the performance of big data analysis in orthodontics,
this study enriches the discipline’s comprehensive evaluation
systems that assess both the technical execution of a process
and its clinical efficacy in order to improve treatment
achievement and patient acceptance.

2. Data and Methods

2.1 Multi-Source Public Dataset Integration
and Orthodontic Feature Extraction

This study integrated multiple publicly available orthodontic
datasets to create a large database for the development of an
advanced treatment recommendation system. The main
dataset contained 400 lateral cephalometric radiographs from
the ISBI 2015 Grand Challenge in Dental X-ray Image
Analysis that provided standardized images with expert-
annotated landmarks as a “golden” reference. To increase the
diversity and strength of training examples, additional sets
were obtained from the public orthodontic measurement
collection on GitHub, case reports hosted alongside
radiographic data available on PubMed Central, and Kaggle
dental imaging contests. These integrated datasets and their
sample numbers, data modalities provided, clinical covariates,
and other additional data can be found in Table 1.

Table 1. Characteristics of Multi-source Public Orthodontic Datasets
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Sample

Dataset Source .
Size

Data Type

Clinical Features

Annotation Quality  Usage in Study

ISBI 2015 Challenge 400

GitHub Orthodontic
Repository

Lateral cephalograms

Mixed (ceph +

156 clinical)

19 anatomical

Expert consensus (3 Primary training

landmarks orthodontists) set
Angle class, Peer-reviewed Feature validation
measurements

PubMed Central Cases 238 Case reports with  Complete diagnostic Published standards Knowle.dge
1mages data extraction
ic + . . . . .
Kaggle Dental Dataset 312 Panorarmc lateral Basic classifications ~ Community validated Ex.terr%al
views validation
Total Integrated 1,106 Multi-modal Comprehensive Quality assured Full pipeline

Landmark identification automatically is also a great
technological leap in the analysis of orthodontic imaging. A
DCNN model was designed for the localization of nineteen
anatomical points from lateral cephalograms. Manual
identification is, however, subject to inter-examiner variation
and thereby impacts on treatment planning reliability. The
network was effective in identifying skeletal patterns that
tend to escape traditional methods. Three orthodontic indices
confirmed the calculated values. The complexity was
assessed for each case according to the Index of Orthodontic
Treatment Need [18]. Both the Index of Complexity Outcome
and Need and Peer Assessment Rating assessed treatment
needs across various phases of care [19]. These indices have
been used in the research of orthodontics for a long time;
however, their programmed use is recent. In addition, soft
tissue measurements were included in the analysis. E-line
deviation and nasolabial angle correlated with skeletal
measurements in accordance with modern orthodontic
principles that facial esthetics is part of oral correction rather
than just dental alignment [20].

Standardization of datasets posed several technical
challenges that needed to be addressed in a structured way.
Pictures from multiple origins presented inconsistent
resolutions and contrasts. Some radiographs were non-
diagnostic in diagnostic areas, and others contained artifacts
due to acquisition errors. Pre-processing started with
resolution normalization over all samples. Correction of this
contrast bias was achieved; however, it proved problematic to
preserve diagnostic content during enhancement. Positional
variations were adjusted for the spatial alignment of various
imaging protocols. The artifact automatic detector warned
about problematic regions, but the final decisions for
removing were made based on manual review. Quality
control eliminated cases that were missing over 10% of the

necessary measurements. This threshold sought to balance
the completeness of the dataset with the preservation of
sample size. Landmark visibility checks were performed
before the actual inclusion within the training set. After
normalization, the images were of a uniform quality
appropriate for neural network learning. The system also
performed well when evaluated on independent test datasets,
implying that it generalizes beyond the training data.
However, the standardization was time-consuming and
computationally resource-intensive. The method successfully
normalized bone structure heterogeneity in multi-source
orthodontic imaging data, with consistent automatic analysis
across different clinical contexts.

2.2 Construction of Orthodontic Knowledge
Graph Based on Big Data Analytics

Standardization of treatment planning has been a long-
standing issue in orthodontics, as to the ‘to extract or not to
extract’ dilemma. A knowledge graph-based system that
holds orthodontic data is presented in Figure 1 (details are
described in the following section). Every item meets the
need for certain clinical difficulties on a day-to-day basis.
Pattern analysis looked at Class II Division | patients with
varied skeletal discrepancies. The analysis included case
reports from 1,247 articles available on PubMed Central.
Quantifiable relationships were revealed between simple
initial radiographic cephalometric values and the stability of
treatment. This was also apparent in the patterns, which
allowed identification of responsive cases to certain protocols
and others, along with the degree of differentiation that
response required.
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Figure 1. System Architecture of Intelligent Orthodontic Treatment Recommendation Platform.

Patients with Class III skeletal patterns in the growing patient
raise specific diagnostic problems. These must be applied to
determine whether immediate intervention is required or if
the growth should be monitored. The decision tree element
examined longitudinal information from public orthodontic
datasets to identify measurements at which this decision is
guided. The C4.5 cephalometric measurements of Wits
appraisal values, gonial angles, and mandibular plane
evaluation, along with cervical vertebral maturational
indicators, were analyzed for the c3rwisland.com patients.
ANB less than -2° associated with SN-GoGn greater than 37°
were determined to be significant risk factors for early
treatment [21, 22]. These thresholds embodied styles that
experienced orthodontists appreciate but often quantify
subjectively. The algorithm consolidated this thought process
in a way that every physician, from today's 'fast' to 'specialist'
new physician, was able to apply.

Adult patients seeking non-surgical treatment often show
dental compensations for skeletal problems. The tooth
inclination and treatment stability were assessed with the
Apriori algorithm in these cases. Statistical analysis showed
38 significant relationships between dental positions and
relapse types. The inclination of the lower incisors was shown
to be especially valuable. IMPA > 87° before treatment was
associated with the risk of relapse. By contrast, retention of
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interincisal angles from 125° to 135° was related to good
long-term stability. The system incorporated this evidence in
its feature selection criterion. The performance of CNN in
determining the dental inclinations is within 0.8 mm when
using cephalometric images for measurements. This accuracy
facilitated safe evaluation of compensation limits before
treatment.

The resulting knowledge graph in the final was composed of
2,156 decision nodes regarding different orthodontic
disorders. As opposed to types of malocclusion in general,
nodes focused on particular problems such as jaw imbalance,
crossbite, and temporomandibular joint disorders.4,893
weighted edges projected diagnostic findings to treatment
outcomes. A large number are actually directly related to
treatment length and predictions of stability - answers for
many patient questions on what results might look like. The
graph nature of the model facilitated clinicians’
understanding in cases with complicated relationships
between diagnosis and treatment. Whereas orthodontic
planning had traditionally been based on personal experience
to a great extent, these systemic arrangements of clinical
considerations were an evidence-based structure facilitating
decision-making. Physicians would have been able to follow
the logic for recommendations, knowing not only what
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treatment to offer but why a certain course of action was
recommended in individual cases.

2.3 Hybrid Intelligent Recommendation
Algorithm Design

There is a wide variation in the treatment plans established by
orthodontists, which prevents us from achieving reproducible
results for similar cases [23]. The graph attention networks
were then used to investigate the cephalometric data and
identify similar cases from the past. Prior orthodontic
applications of neural networks were generally directed at
single tasks [24]. Single-use tools are being left in the dust by
the current regime. It uses pattern recognition and clinical

judgment to pair new patients with successful cases in the past.

The algorithm does not supplant clinical judgment; rather, it
offers evidence from similar cases. The hybrid approach
combines machine learning methods with orthodontic
knowledge to assist clinicians in decision-making. In this
architecture, the attention mechanism computes similarities
between pairs of cases by attending over links in crucial
orthodontic features as follows:

exp(LeakyReLU(a"[Wh | Wh )
a. =
7 > exp(LeakyReLU(a' [Wh, | Wh,]))
keN (i) (1)

where 7 encompasses critical measurements including
ANB angle, overjet, overbite, and mandibular plane
inclination. The model now examines skeletal differences,
dental adaptations, and growth indicators simultaneously,
allowing it to identify subtle borderline extraction cases that
previously puzzled clinicians.

A lot of recent healthcare recommendation systems based on
content-based and collaborative filtering use knowledge
distillation to elucidate clinical insights, express, and
optimize for operational cost [25]. In doing so, knowledge
learned from ensemble classifiers processing thousands of
orthodontic cases is distilled into a more lightweight real-time
system, suitable for point-of-care use in clinics. This method
guarantees the knowledge of essential clinical data to the
system, and its efficiency is appropriate for fast-paced
orthodontic environments. The optimization process that
follows minimizes:

L :aLC(ya.j))—l_(l_a)TzLK(psapt) (2)

The dual-objective function simply balances the level of
learned decisions against the amount of excessive ones,
resulting in keeping each recommendation grounded on
evidence but not too slow to be used in patient care.

The interpretability to make skin cancer diagnosis markers to
help the algorithmic decision-making system must still be
accessible for clinical validation. The SHAP model tells us
what the most important features are for the
recommendations. The ANB angle greater than 4 degrees is
always among the first factors during analysis. IMPA > 95
degrees and cervical vertebral maturation at stage 3 are also
strong predictors. There is some conformity to standard
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orthodontic assessment guides for these patterns, but the
algorithm may consider them differently than a human might
predict. LIME offers instance-level explanations that can
assist practitioners in assessing individual recommendations.
For Class II Division 1 moderate crowding cases, LIME
provides reasons why the system recommends either
extraction or non-extraction treatment. Local interpretations
are especially important when recommendations diverge after
initial clinical suspicion. Practitioners may “look at what
features drove certain suggestions, and determine if they
apply to the patient sitting in front of them”.

The system is constantly being refined based on treatment
results. Submitted cases yield anonymous data to improve
prediction models [26]. Recent systematic reviews have
demonstrated the effectiveness of health recommender
systems in clinical decision support [27]. This is a quarterly
process involving both successful treatments and those
requiring modification. Bayesian optimization updates
attention weights and regularization parameters when the
PAR score is enhanced and acquires cephalometric goals. The
optimization is done across, not on, a single metric. Some of
the updates favor extraction decisions, while others improve
growth prediction accuracy. Big architectural changes are
manually inspected prior to implementing them. This keeps
the system from deviating from most tried and true
orthodontic principles' ability to conform to new ones.
Frequent updates confirm that recommendations are based on
the latest practice patterns without releasing them from the
evidence-based roots. The equilibrium between stability and
adaptation facilitates clinical relevance as treatment options
progress.

3. Results

3.1 Dataset Characteristic Analysis

Distribution patterns of malocclusion were determined from
analysis of the total dataset, as seen in Figure 2a. Class I cases
prevailed in both populations and accounted for 42.3% of
dental classifications and 38.5% of skeletal classifications.
Among dental presentations (n = 35 cases), Class II Division
1 was a finding in all 10 cases; among skeletal presentations
(n =52), it occurred more than anything else, with the worst-
case scenario of Vis I to the greatest percentage type ever
observed at > Angle Class II Division 2 and bilaterally at that
level. These frequencies correspond to those reported in the
orthodontic population. Class II Div 2 was only found in
dental-based types, with skeletal ordinal "N/A" for this
subtype. This lack is a confirmation of that statement from
the literature that Class II, Division 2 is predominantly a
dental and not a skeletal problem. The frequency of Class III
differed dental (17.8%) and skeletal (26.3%). The higher
skeletal percentage is evidence of the larger basal component
involved, which is characteristic of Class III malocclusion.
Such distributions help set a baseline for the performance of
automatic diagnostic systems.
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Figure 2. Comprehensive Analysis of Orthodontic Dataset Characteristics. (a) Distribution of Angle Classifications
and Skeletal Patterns; (b) Correlation Heatmap of Key Cephalometric Parameters; (¢) Data Quality and
Completeness Assessment

Figure 2b shows the relationships between cephalometric
variables that may perhaps affect treatment decision-making.
ANB angle was significantly and positively correlated with
overjet (r=0.73), which supported that the position of the jaws
related to dental protrusion. Significant negative correlation
was observed between the IMPA and U1-SN angles (r=-0.68),
suggesting that there were compensatory movements such as
lower incisors proclination when upper incisors retroclination.
Such compensation is often the source of Class II settlements
when our body tries to keep an occlusion even when it knows
there are skeletal discrepancies.SN-GoGn had a moderate
relationship to IMPA (r=0.52), meaning patients with steeper
mandibular planes tended to have more proclination of the
lower incisors. These associations influence decisions for
extraction because of a lack of bone support of proclined
incisors, particularly in the high-angle group. These patterns
are naturally identified by orthodontists in clinical cases, but
temporomandibular slot quantification makes it possible to
perform consistent algorithmic evaluation. Accordingly, the
correlation matrix validates some of the clinical observations
used for planning treatment.

Completeness of reporting differed by type of measure; see
Figure 2c. All these hard tissue measurements were 98.7%
complete, thanks to standardized landmark identification
procedures on lateral cephalograms. Dental measurements
achieved 97.3% completion with quality percentage scores of
94.2%, which were sufficient to reproduce incisor positions
and occlusal relationships that are required for a diagnosis.
Soft tissue measurements had poorer completeness with

91.2%, although quality remained at 88.5%. Variations in lip
posture and varying image contrast among sources account
for this reduction. Some radiographs showed the lips at rest,
some in a strain position; a fact that influenced the reliability
of the measurements. The growth indicators demonstrated
94.5% completeness even when the methods of assessment of
cervical vertebrae differed between centers. The aggregate
quality profile shows that the integrity of the data is good
enough for machine learning purposes. The missing values
were randomly dispersed and not systematic, resulting in bias
that was unlikely to be related to specific measurement
categories. These completion rates are above the minimum
values usually accepted for orthodontic research databases,
confirming the recommendation algorithm's training as
conducted on valid data.

3.2 Model Performance Evaluation

Extraction decision prediction represents one of the most
difficult choices in orthodontic practice. The system was
tested on this task to evaluate its clinical utility. Table 2
compares the hybrid model against conventional machine
learning methods. The proposed approach achieved 94.2%
accuracy, outperforming Random Forest at 87.3%, Support
Vector Machine at 85.6%, Neural Network at 89.1%, and
Gradient Boosting at 88.7%. These differences matter
clinically since extraction decisions permanently alter dental
arches.

Table 2. Comprehensive Performance Metrics of Different Machine Learning Models.

Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC NDCG@5 NDCG@10

Model Type
Hybrid Model (Proposed) 94.2 93.8
Random Forest 87.3 85.2
Support Vector Machine 85.6 83.1
Neural Network 89.1 87.6
Gradient Boosting 88.7 86.9

92.5 93.1 0.89  0.847 0.823
84.7 84.9 0.82  0.762 0.748
82.9 83.0 0.80  0.731 0.715
86.8 87.2 0.84  0.785 0.769
85.4 86.1 0.83  0.774 0.758

The performance of the models is reinforced by precision and
recall metrics. The system achieved a precision and recall of
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93.8% and 92.5%, respectively, for extraction decisions. This
combination resulted in an F1-score of 93.1%, which meant
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the performance was stable against positive and negative
cases. When precision is high, the extractions that you make
are accurate, and when recall is good, then cases in which
extraction would be needed will indeed be detected. The AUC
(95% confidence interval) was 0.89, and it crossed the 0.85
intermediate index that tends to be a cutoff value for clinical
tools. This discrimination capability also implies that the
model might provide support for borderline cases in which
conventional scoring methods fail to reach agreement.

Quality of treatment recommendations was assessed through
Normalized Discounted Cumulative Gain. The result of the
hybrid was NDCG@5 = 0.847 and NDCG@10 = 0.823, as
presented in Table 2. These scores were much higher than all
other comparison algorithms. NDCG measures how quickly
the right treatment plans are suggested in the ranked list. For
orthodontics, the ranking is relevant because several
acceptable approaches are frequently present for

@ROCCunesforbstmetonDecsion ) PrecidonReall Cun

consideration. The high NDCG values reflect that the
treatments that are clinically preferred were consistently
ranked at the top.

Visual validation of the performance criterion is shown
through different views using Figure 3. The ROC curve in
Figure 3a deviates to the upper-left corner (i.e., having a high
sensitivity and specificity), which demonstrates good
discriminatory power between extraction and non-extraction
cases. The standard machine learning methods generated
curves that were more toward the diagonal, which indicated
less accurate classification. Figure 3b displays precision-
recall relationships. In turn, the precision of the hybrid model
did not decrease below 90% even at high recall rates. This
stability indicates the system is robust at various decision
thresholds. Figure 3¢ utilizes grouped bars to show all aspects
together and pledge constant improvements over the baseline.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 3. Model Performance Visualization for Orthodontic Decision Tasks. (a) ROC Curves for Extraction
Decision; (b) Precision-Recall Curves; (¢) Performance Metrics Comparison; (d) Cephalometric Feature
Importance; (e) Extraction Decision Confusion Matrix; (f) Treatment Recommendation Quality.

Feature importance analysis indicated which dimensions
influenced the decision most. The factors are ANB angle
(dominating), IMPA, overjet, overbite, SN-GoGn angle, Ul-
SN angle, and Witt's appraisal in the order of prominence,
shown in Figure 3d. This classification is consistent with
orthodontic teaching (where the skeletal determinants are
employed as an initial assessment and dental relationships are
further refined [5]). The model was not explicitly
programmed to have these priorities; it instead learned them
from data, indicating it had uncovered real clinical patterns.
Interpreting feature importance enables collaborators to trust
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that recommendations by the machine are based on criteria
they recognize.

The confusion matrix analysis in Figure 3e provided a
measure of error patterns. False positive and false negative
rates were 5.7% and 4.1%, respectively. Sensitivity was 95.9%
(extraction) and 94.3% (non-question-requiring extraction).
These error rates are low when compared to intra-examiner
disagreement in orthodontics. Most of the mistakes happened
in borderline cases, where experts might not even agree. The
symmetry of extraction and non-extraction accuracy did not
indicate a consistent bias toward either compromise measures
or decision aids.
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Evaluation with top-K accuracy analyzed the ability of the
system to rank a set of treatment options. Intensity is a scalar-
valued function that measures how close the top-1 label is to
a received label at every level, and the possible minimum
value of intensity for an input-target pair in the test set would
be V, which stands for rank k, 1, or 0, while +\infty represents
that the actual target has been recommended as one of the
TOP-k algorithm’s predictions. Figure 3f presents the
accuracy for Top-5 recommendations, which reaches up to
84.7%. Both accuracy and NDCG scores are plotted on the

dual axes in the figure to show that our K is robust throughout.

This stability illustrates a strong ranking and not a mere
chance positioning of individual correct answers. In cases of
difficult malocclusions with multiple good treatments, the
system was able to recognize and rank correct treatments. The
recommendation diversity analysis confirmed that the
treatments recommended were not minor variants of a single
plan, but represented different biomechanical techniques.
This diversity enables the orthodontist to also think of
alternatives, especially in borderline extraction cases and
with growth patients, where a number of other treatment
strategies can work.

3.3 System Prototype Demonstration

A web-based prototype was developed to test the system in
clinical settings. The platform integrates machine learning
algorithms with user interfaces designed for orthodontic
workflows. Rather than replacing existing tools, the system
provides additional decision support while maintaining
compatibility with current practice standards. Testing focused
on whether practitioners could effectively use the interface
during routine consultations.

In Figure 4a, the manner in which the system provides
treatment options via probability distributions is
demonstrated. Premolar extraction is presented as a first
recommendation with a confidence level equivalent to 65.0%.
Four-bicuspid extraction had a probability of 15.0%, which
was equivalent to non-extraction treatment at the same
likelihood. Serial extraction was the suggestion in 5.0% of
cases. These rates were obtained upon analysis of the 1,106
cases in the training sample. Therapists can access all options
at once; they know not only what the system proposes but also
other possibilities. The threshold is interactive and can be
modified at will in order to investigate the effect of decision
thresholds on recommendations. This transparency can be
useful for clinicians to assess if algorithm-generated
recommendations coincide with their clinical reasoning for
individual patients.

Figure 4. Intelligent Orthodontic Treatment Recommendation System Interface. (a) Treatment Recommendation
Visualization; (b) Treatment Progress Prediction

The predictions for treatment length are displayed in Figure
4b, separating the timeline into three periods. The first stage
of alignment generally ends at 6 months, after which 28% of
the total amount of sought results is achieved. Space closure
pauses at 65% with a duration of up to 12 months. The
finishing touches last for 24 months when treatment ends.
Each of these estimates is subject to confidence bands (gray);
however, individual patients show substantial variability in
their response to orthodontic forces. Some complete this
process more quickly, while others take longer. The
predictions are made based on historical trends for cases
similar to yours, but the system cannot adjust for all variables
influencing treatment velocity. Estimates of treatment are
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being used in the clinic to discuss what patients should expect,
but they may differ.

Once the analysis is complete, a report is generated
automatically, as shown in Figure 5. The system generates
standardized reports comprising patients' personal data,
diagnostic measurements, and treatment suggestions. It takes
about 2.3 seconds from upload to report. For each report, the
type of malocclusion detected is described together with the
corresponding measures. Performance measures appear in a
separate section, which obtained 94.2% sensitivity, 92.5%
specificity, and a positive predictive value of 94.3%.
According to the papers, Graph Attention Networks process
the data and perform with 5-fold cross-validation over the
released datasets. Automatic de-identification of patient
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identifiers is applied to preserve anonymity. These reports
have a number of uses, ranging from use in clinical
documentation to insurance claims. The controlled list of
information in a standard format provides consistency in

documentation, but allows clinicians to additionally record
comments or changes. The link with other practice
management software is still being developed, but currently,
we can export PDF and structured data for an EHR system.

PATIENT INFORMATION

Patient ID: P-2024-0892
Age: 12.5 years

AUTOMATED CEPHALOMETRIC ANALYSIS

Angular Measurements:
« ANB Angle: 4.2° (Normal: 2-4°)
* SNAAngle: 82.1° (Normal: 82+2°)
« SNB Angle: 77.9° (Normal: 80+2°)
« IMPA: 95.3° (Normal: 90+3°)

Al DIAGNOSTIC ASSESSMENT

Primary Diagnosis:

« Class Il Division 1 Malocclusion with Severe Crowding
« Skeletal Class Il Pattem (Mild)

Al TREATMENT RECOMMENDATION

Recommended Treatment Plan:
« Four Premolar Extractions (Confidence: 65.0%)
« Estimated Duration: 24-28 months
« Fixed Appliance Therapy with Space Closure

SYSTEM PERFORMANCE

« Accuracy: 94.2%
« Sensitivity: 92.5%
« Specificity: 94.3%
« AUC Score: 0.89
« Landmark Precision: 0.8mm

TECHNICAL SPECIFICATIONS

Model: Graph Attention Network + Knowledge Integration
Training Dataset: 1,106 public orthodontic cases (ethics-compliant)

ORTHODONTIC TREATMENT ANALYSIS REPORT

Generated by Al-Powered Diagnostic System

Gender: Male
Date: March 15, 2024

CLINICAL CONSIDERATIONS

Confidence: 94%

Linear Measurements:

« Overjet: 7.2mm (Normal: 2-4mm)
« Overbite: 4.8mm (Normal: 2-4mm)
« Arch Length Deficiency: -8.2mm

« Processing Time: 2.3 seconds

« Growth potential assessment needed
+ Monitor vertical dimension changes
« Consider profile improvement goals
+ Retention protocol planning required
+ Regular progress monitoring

Validation: 5-fold cross-validation
Processing Environment: HIPAA-compliant

This report was automatically generated by an Al-powered orthodontic diagnostic system.
Clinical decisions should always incorporate professional judgment and patient-specific factors.

Figure 5. Automated Clinical Report Generation

3.4 Comparative Analysis and Validation

Validation was carried out with both classical methods and
existing machine learning techniques. The analysis centered
on the accuracy of extraction decisions, the time required for
processing, and the discrimination ability among various
types of malocclusion. Both the clinical application and
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technical performance were analyzed to see if the system
would be adequate for use in orthodontic practice.

Finally, in Table 3, the performance of the hybrid system is
compared to that of manual assessment. The proposed
method achieved 94.2% accuracy for the extraction decision,
against 78.8% obtained by manual evaluation. This 15.4%
gain is indicative of the decrease in algorithmic measurement
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subjectivity. The sensitivity increased from 74.2% to 92.5%
and the specificity from 82.1% to 94.3%. It was the longest
leader to undergo transitions in time. Manual Ceph analysis
takes about 35 to 45 minutes per case. Having an automated
system, the car-before-threshold stage required 2.3 + 0.4

seconds of analysis time, respectively. This time deduction
could preclude the delay for diagnosis, which presently
restricts patient numbers in most practices. But the described
comparison ought to take into account that manual
assessment makes possible clinical examination, and not only
cephalometric measurement.

Table 3. Comprehensive Performance Metrics of Different Machine Learning Models.

Model Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC NDCG@5 NDCG@10
Hybrid Model (Proposed) 94.2 93.8 92.5 93.1 0.89  0.847 0.823
Random Forest 87.3 85.2 84.7 84.9 0.82 0.762 0.748
Support Vector Machine 85.6 83.1 82.9 83.0 0.80 0.731 0.715
Neural Network 89.1 87.6 86.8 87.2 0.84  0.785 0.769
Gradient Boosting 88.7 86.9 85.4 86.1 0.83 0.774 0.758

Machine learning comparisons showed differences in
performance of the general and orthodontic algorithms. Table
3 shows that the proposed hybrid outperforms Random Forest
by 6.9% (using 87.3% as an accuracy score), SVM by 8.6%
(again, with a score of 85.6%), NN by 5.1% (with a score of
89.1%), and GBM by 5.5%. It also has a higher average
accuracy than complicated models, with relatively better
results in each single modeling period compared to other
models used. Its AUC score of 0.89 was higher than that from
all comparison methods and reached the threshold of 0.85 for
clinically usable tools. This indicates that the presence of
orthodontic knowledge in the algorithm design allows it to
outperform generic machine learning. The discrepancies were
most apparent in borderline cases where clinical judgment is
most relevant. Performance trends can be seen in the
diagrams of Figure 6.

(¢) Clinical Validation by Malocelusion Type

acy (%)

Diagnostic Accur:

10

Accuracy comparisons with bar charts in part (a) demonstrate
that the novel hybrid approach maintains a clear advantage.
The margins are different and all positive in the comparisons.
The performance of algorithms in efficiency and accuracy on
the test sets is visualized in Part (b) with clear clusters.
Conventional approaches can be found in the bottom left of
the figure, showing low accuracy and slow processing. In the
middle lie the standard machine learning techniques with
better accuracy, but the same processing times as manual
methods. The hybrid model stands by itself in the upper right,
with high accuracy and fast processing. Such a relationship
indicates that the system successfully met its design objective
of simultaneously enhancing both properties without
compromising one to compensate for another.

(b) Efficiency vs Accuracy Trade-off

er Traditional (%)

Improvement ov
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Figure 6. Performance Benchmarking and Clinical Validation Results of Intelligent Orthodontic Treatment
Recommendation System. (a) Diagnostic Accuracy Comparison Among Different Methods; (b) Efficiency versus
Accuracy Trade-off Analysis; (c¢) Clinical Validation Results by Malocclusion Type; (d) Performance Improvement

Analysis over Traditional Methods.

Malocclusion-specific analysis in Figure 6c¢ examined
whether performance remained stable across different
diagnostic categories. Class I cases showed 96.5% accuracy,
improving 15.3% over traditional methods. Class II Division
1 reached 94.8% with 16.8% improvement. Class II Division
2 achieved 91.2% accuracy, a 17.8% gain. Class III cases
showed 92.7% accuracy with 14.2% improvement. The
smallest improvement occurred in Class III cases, possibly
because these often present obvious skeletal patterns that
experienced clinicians already identify reliably. Class II
Division 2 showed the largest improvement, which makes
sense given its subtle presentation that benefits from
systematic analysis. Figure 6d summarizes overall
improvements across metrics. Accuracy improved 19.7%,
sensitivity 24.7%, specificity 14.9%, speed 99.8%, and
clinical reliability 28.3%. The speed improvement essentially
represents a different scale of operation rather than
incremental enhancement. Clinical reliability, measured
through consistency across repeated evaluations, showed
substantial gains that could reduce treatment planning
variations between practitioners.

4. Discussion

Intelligent recommendation system averaged 19.7% higher
diagnostic accuracy and 99.8% shorter processing time
compared to the conventional methods. These findings have
implications for recent research in health recommender
systems, in which it has been highlighted that domain
knowledge can boost the system’s performance, also for
clinical applications. The majority of orthodontic Al research
up to now has concentrated on single tasks such as landmark
detection or elementary classification. This work has
established a more general framework through multimodal
data fusion and explainable AI to guide the treatment
planning. The apparatus concurrently treats cephalometric
dimensions, clinical classifications, and prior treatment
outcomes. Unlike conventional machine learning, which
pools and learns from all medical data in the same manner,
the method includes orthodontic knowledge of the
relationships between skeletal types and treatment responses.
Class-specific accuracy varied from 91.2% for Class II
Division 2 to 96.5% for Class I malocclusions. This
consistency is of importance, as inter-examiner disagreement
has always been a challenge in orthodontics [28].
Conventional diagnosis depends on personal interpretation of
cephalometric angles and clinical experience. Two
orthodontists treating the same patient might come to
different conclusions about the extractions that are required.
The variation is reduced by the algorithmic approach using
identical criteria for all cases. Evidence-based orthodontic
treatment needs to be reproducible rather than a matter of
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subjective evaluation. The system offers this reproducibility
while staying at or above the level of accuracy achieved by
experienced practitioners.

Combined with collaborative filtering, Graph Attention
Networks filled the deficiencies of previous healthcare
recommendation systems [29]. Conventional ML models
simply slice and dice data without clinical understanding.
They can capture statistical patterns but lack significant
orthodontic principles. The UPDGC we constructed, based on
the public case reports, contains diagnosis-treatment outcome
relations missed by statistical relations. For example, the
system learned that some skeletal patterns do not respond
well to camouflage treatment independent of dental
compensation. This is in contrast to prior orthodontic Al
systems that focused on landmark detection or classification
of simple malocclusion types with no treatment implications
[30].

Several limitations affect the current implementation. Public
datasets may not represent all patient populations equally.
Certain demographics or imaging protocols could be
overrepresented, potentially biasing the model. Testing
occurred primarily on retrospective cases rather than live
clinical environments. Real orthodontic practices involve
time pressures, patient communication, and software
integration challenges not captured in offline analysis [31].
The system needs validation across different clinics, imaging
equipment, and patient populations. Multi-site prospective
studies would establish whether performance remains stable
outside the original development environment. Additionally,
the current 2D cephalometric focus misses information
available from 3D imaging. Integration with practice
management software requires further development. User
interface testing with practicing orthodontists has been
limited. These practical considerations matter as much as
algorithmic accuracy for successful deployment.

Further development should focus on the integration of new
technologies and overcoming current limitations. The three-
dimensional images from CBCT and intraoral scanning may
provide better anatomical evaluation if radiation dosage and
cost can be controlled. However, the 3D assessment raises
issues of computational cost and data storage. In the setting
of multi-center, federated learning provides a solution to
contribute to joint training without centralizing patient data
[32]. Institutions could participate in model improvement
without exposing their data. This method would make the
dataset more diverse and greatly mitigate site-specific biases.
The difficulty, of course, is in developing governance models
and data syntax agreements between institutions. Adapting
mechanisms for learning could enable the system to
progressively learn from solved cases. When treatments have
ended, results would inform the model parameters through
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regulation. This needs to be carefully monitored to avoid
deviation from time-tested clinical concepts.

The predictive nature of the system should not be limited only
to extraction decision, but also extend to modification timing,
planning for surgery, and retention protocol [33]. Validation
against up-to-date gold standards is needed for each
expansion. Using uniform evaluation would allow us to
compare the different orthodontic Al systems more
objectively. Indices such as PAR and ICON could develop
analogous metrics to the known terms of orthodontists. The
aim continues to be supporting, not replacing, clinical
judgment. Orthodontists ~ want  clear, auditable
recommendations that they can counter against their own
experience. Practice adaptations may be relevant for different
practice styles or patient populations. Regulatory clearance is
region-dependent and will impact the timing of deployment.
Orthodontic curricula should train orthodontists to effectively
interface with Al. Professional bodies may wish to provide
guidance around acceptable usage of algorithm-driven advice.
Intelligent systems should overcome these technical, practical,
and professional challenges to maximize the level of quality
that orthodontic care provides while maintaining patient-
personalized informatics. The technology should be
providing orthodontists with more information, not limiting
their clinical judgment. Performance success hinges not only
on algorithm accuracy but also on integration with current
clinical practice and professional standards.

5. Conclusion

In this paper, we propose an orthodontic treatment
recommendation system based on Graph Attention Networks
with collaborative filtering. Public case reports were used to
generate knowledge graphs linking diagnostic patterns to
treatment outcomes across 1,106 cases. The testing on 156
retrospective cases showed that the performance of the
extraction decision reached 94.2% (19.7% better than manual
checking). The analysis was performed by the system in 2.3
+0.4 seconds, compared with 35-45 minutes for conventional
cephalometric assessment. The performances were different
according to each type of malocclusion (96.5% for Class I,
94.8% for Class II Division 1, 91.2% for Class II Division 2,
and 92.7% for Class III). The process reliability was 99.8%
and the process was suitable for clinical application. The
explainable Al services are said to allow orthodontists to view
attention weights, similar cases, and key measurements
underlying each recommendation. Algorithm logic can be
confirmed by the clinical judgment of practitioners,
especially when diagnosing on borderline extraction or
skeletal compensation boundaries. All three experienced and
new clinicians regarded systematization as being valuable.

Three avenues of enhancement will develop the present work.
Furthermore, incorporation of 3D imaging, such as from
CBCT and intraoral scans, ought to increase the accuracy of
assessing anatomy more than the lateral cephalogram.
However, careful assessment should prevent any drift away
from orthodontic principles. If growth modification timing
and surgical planning were added, the system would then
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become more than a simple diagnostic aid — the

comprehensive treatment planner. Moreover, the federated
learning structure provides a path for multi-center
cooperation, yet preserves patient privacy. Contributing
clinics would be able to enhance the model without direct
sharing of raw data, which might mitigate dataset bias and
improve performance among different populations. The goal
of these developments is to facilitate evidence-based
orthodontic treatment while maintaining clinical freedom.
The technology should make recommendations alongside,
not instead of, professional expertise, keeping visible how
those recommendations are arrived at and letting
orthodontists adjust them based on the specific needs of
patients.
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