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Abstract 

INTRODUCTION: Contemporary orthodontic treatment planning relies heavily on individual practitioner experience, 
leading to significant variability in clinical decisions for similar malocclusion presentations and limiting standardized 
evidence-based care. OBJECTIVES: This research aimed to develop an intelligent treatment recommendation system 
integrating medical big data analytics with specialized orthodontic knowledge extraction to enhance clinical decision-making 
accuracy and efficiency. METHODS: The study integrated 1,106 cases from multiple public orthodontic datasets, including 
ISBI 2015 Grand Challenge, GitHub repositories, PubMed Central case reports, and Kaggle dental imaging competitions. 
Graph Attention Networks were applied alongside collaborative filtering methods to process these cases and construct 
orthodontic knowledge graphs that map diagnostic data to treatment outcomes. RESULTS: When tested on extraction 
decisions, the hybrid system correctly identified treatment needs in 94.2% of cases, while manual evaluation achieved 78.8% 
accuracy. Processing required only 2.3±0.4 seconds, compared to 35-45 minutes for traditional cephalometric analysis. 
Different malocclusion categories showed varying results, with Class I cases reaching 96.5% accuracy and Class II Division 
2 cases achieving 91.2%. Processing speed improved by 99.8%, sensitivity increased 24.7%, and clinical reliability improved 
by 28.3% compared to standard diagnostic procedures. CONCLUSION: Big data analytics can enhance orthodontic 
decision-making while preserving the personalized treatment planning that remains fundamental to achieving optimal 
treatment outcomes. 
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1. Introduction

Treatment of malocclusion requires a high degree of accuracy 
in diagnosis and treatment plan, to restore both function and 
appearance [1]. Decisions on treatment hinge on the interplay 
between teeth, bone, and soft tissues; growth patterns make 
this more complex still, and patient preference adds another 
dimension to consider [2]. Big data and artificial intelligence 
offer the possibility to enhance diagnostic accuracy and  
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treatment planning in orthodontics [3]. Although 
technological progress continues apace, systems that 
accommodate the complexity of orthodontics are in short 
supply. For instance, modern tools can carry out precise 
cephalometric measurements or help patients with specific 
problems, but for many, these tools do not offer complete 
treatment recommendations. Pattern recognition algorithms, 
for example, perform excellently on standard cases but 
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struggle with patients who have atypical anatomical 
features—making their results of limited use. What is more, 
orthodontic program planning is fraught with subjective 
factors that are difficult to assess on a numerical scale. 
Effective clinical support systems integrating computer-
based analysis and professional judgment must be designed 
to ensure that technology serves the expertise and decision-
making of orthodontists. 
Digital orthodontics' findings include cephalometric 
measurements, 3D scans, and treatment records spanning 
across the years [4]. This sort of analysis does provide factual 
support to the decision-making of orthodontic treatment [5] 
for tasks like landmark recognition, malocclusion 
classification, and treatment outcome prediction. Machine 
learning skills are more and more widely used [6]. Traditional 
rule-based systems have now been replaced by more complex 
deep learning models, capable of managing several types of 
clinical data simultaneously [7]. Although many effective 
systems have been built in practical use over the last decade, 
they are basically still doing only one thing [8]. Some systems 
might have a very strong skill in cephalometric landmark 
identification but fail to provide sequences of treatment; some 
systems may correctly judge skeletal forms but ignore the 
effects on soft tissue. Decisions about orthodontic treatment 
span several stages and long periods of time. Unfortunately, 
current systems are designed mainly to address single 
diagnostic cases in this way; our profession will not advance. 
Clinical decision support systems in orthodontics have 
emerged as potential systems for balancing standardization 
and required adaptability for personalization [9]. 
Nevertheless, existing systems still encounter capture gaps 
with regard to the comprehensiveness of orthodontic 
treatment planning because of prolonged timelines, relative 
aesthetics, and numerous conflicting goals [10]. The reliance 
on practitioner experience within the framework of traditional 
approaches in medicine leads to inconsistencies and 
variations in treatment approaches, even when patients 
present with similar clinical features [11]. Numerous studies 
have suggested that certain facets of comprehensive treatment 
planning could benefit from machine learning; however, fully 
developed recommendation systems that assimilate diverse 
medical data and data-driven holistic multi-modal therapy 
recommendations are still lacking [12]. 
In healthcare, recommendation systems have been integrated 
to utilize aggregate clinical expertise for individualized 
patient care [13]. In orthodontics, intelligent recommendation 
systems can help minimize deviations in practice patterns and 
enhance the results of dental therapies by ascertaining the 
most effective approaches from previously treated 
comparable cases [14]. The existing body of work has 
practical implementation barriers due to a lack of 
interpretability for multisource systems. Algorithmic 
suggestions are difficult for the clinician to grasp; therefore, 

trust cannot be placed in them [15]. Furthermore, the vast 
majority of them do not take into account the treatment time 
course and offer unmodifiable static recommendations 
without any self-reinforcing or adaptive feedback [16]. 
Dependence on proprietary data sources raises concerns with 
generalizability and reproducibility, which underscores the 
need for methodologies that exploit open data sets, but protect 
patient confidentiality [17]. 
This work tries to solve these problems by proposing an 
intelligent multi-modal big data integrated machine learning 
treatment plan recommendation system. The proposed 
method uses publicly available orthodontic datasets to 
develop advanced recommendation models to produce 
customized, clinically relevant, and interpretable treatment 
recommendations. Featuring deep learning-enabled 
collaborative filtering, the system predicts optimal treatment 
for individual patients and the time-lapse relationship that 
treatments tend to be sequentially dependent. The research 
demonstrates the potential role of cutting-edge engineering 
solutions, as well as tangible clinical medicine through 
multimodal data fusion and explainable artificial intelligence. 
This study provides the groundwork for standardizing 
orthodontic practices using increasingly evidence-based 
approaches while maintaining individualized patient care. 
Through the performance of big data analysis in orthodontics, 
this study enriches the discipline’s comprehensive evaluation 
systems that assess both the technical execution of a process 
and its clinical efficacy in order to improve treatment 
achievement and patient acceptance.  

2. Data and Methods

2.1 Multi-Source Public Dataset Integration 
and Orthodontic Feature Extraction 

This study integrated multiple publicly available orthodontic 
datasets to create a large database for the development of an 
advanced treatment recommendation system. The main 
dataset contained 400 lateral cephalometric radiographs from 
the ISBI 2015 Grand Challenge in Dental X-ray Image 
Analysis that provided standardized images with expert-
annotated landmarks as a “golden” reference. To increase the 
diversity and strength of training examples, additional sets 
were obtained from the public orthodontic measurement 
collection on GitHub, case reports hosted alongside 
radiographic data available on PubMed Central, and Kaggle 
dental imaging contests. These integrated datasets and their 
sample numbers, data modalities provided, clinical covariates, 
and other additional data can be found in Table 1. 

Table 1. Characteristics of Multi-source Public Orthodontic Datasets 
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Dataset Source Sample 
Size Data Type Clinical Features Annotation Quality Usage in Study 

ISBI 2015 Challenge 400 Lateral cephalograms 19 anatomical 
landmarks 

Expert consensus (3 
orthodontists) 

Primary training 
set 

GitHub Orthodontic 
Repository 156 Mixed (ceph + 

clinical) 
Angle class, 

measurements Peer-reviewed Feature validation 

PubMed Central Cases 238 Case reports with 
images 

Complete diagnostic 
data Published standards Knowledge 

extraction 

Kaggle Dental Dataset 312 Panoramic + lateral 
views Basic classifications Community validated External 

validation 
Total Integrated 1,106 Multi-modal Comprehensive Quality assured Full pipeline 

Landmark identification automatically is also a great 
technological leap in the analysis of orthodontic imaging. A 
DCNN model was designed for the localization of nineteen 
anatomical points from lateral cephalograms. Manual 
identification is, however, subject to inter-examiner variation 
and thereby impacts on treatment planning reliability. The 
network was effective in identifying skeletal patterns that 
tend to escape traditional methods. Three orthodontic indices 
confirmed the calculated values. The complexity was 
assessed for each case according to the Index of Orthodontic 
Treatment Need [18]. Both the Index of Complexity Outcome 
and Need and Peer Assessment Rating assessed treatment 
needs across various phases of care [19]. These indices have 
been used in the research of orthodontics for a long time; 
however, their programmed use is recent. In addition, soft 
tissue measurements were included in the analysis. E-line 
deviation and nasolabial angle correlated with skeletal 
measurements in accordance with modern orthodontic 
principles that facial esthetics is part of oral correction rather 
than just dental alignment [20].  
Standardization of datasets posed several technical 
challenges that needed to be addressed in a structured way. 
Pictures from multiple origins presented inconsistent 
resolutions and contrasts. Some radiographs were non-
diagnostic in diagnostic areas, and others contained artifacts 
due to acquisition errors. Pre-processing started with 
resolution normalization over all samples. Correction of this 
contrast bias was achieved; however, it proved problematic to 
preserve diagnostic content during enhancement. Positional 
variations were adjusted for the spatial alignment of various 
imaging protocols. The artifact automatic detector warned 
about problematic regions, but the final decisions for 
removing were made based on manual review. Quality 
control eliminated cases that were missing over 10% of the 

necessary measurements. This threshold sought to balance 
the completeness of the dataset with the preservation of 
sample size. Landmark visibility checks were performed 
before the actual inclusion within the training set. After 
normalization, the images were of a uniform quality 
appropriate for neural network learning. The system also 
performed well when evaluated on independent test datasets, 
implying that it generalizes beyond the training data. 
However, the standardization was time-consuming and 
computationally resource-intensive. The method successfully 
normalized bone structure heterogeneity in multi-source 
orthodontic imaging data, with consistent automatic analysis 
across different clinical contexts. 

2.2 Construction of Orthodontic Knowledge 
Graph Based on Big Data Analytics 

Standardization of treatment planning has been a long-
standing issue in orthodontics, as to the ‘to extract or not to 
extract ’  dilemma. A knowledge graph-based system that 
holds orthodontic data is presented in Figure 1 (details are 
described in the following section). Every item meets the 
need for certain clinical difficulties on a day-to-day basis. 
Pattern analysis looked at Class II Division 1 patients with 
varied skeletal discrepancies. The analysis included case 
reports from 1,247 articles available on PubMed Central. 
Quantifiable relationships were revealed between simple 
initial radiographic cephalometric values and the stability of 
treatment. This was also apparent in the patterns, which 
allowed identification of responsive cases to certain protocols 
and others, along with the degree of differentiation that 
response required. 
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Figure 1. System Architecture of Intelligent Orthodontic Treatment Recommendation Platform. 

Patients with Class III skeletal patterns in the growing patient 
raise specific diagnostic problems. These must be applied to 
determine whether immediate intervention is required or if 
the growth should be monitored. The decision tree element 
examined longitudinal information from public orthodontic 
datasets to identify measurements at which this decision is 
guided. The C4.5 cephalometric measurements of Wits 
appraisal values, gonial angles, and mandibular plane 
evaluation, along with cervical vertebral maturational 
indicators, were analyzed for the c3rwisland.com patients. 
ANB less than -2° associated with SN-GoGn greater than 37° 
were determined to be significant risk factors for early 
treatment [21, 22]. These thresholds embodied styles that 
experienced orthodontists appreciate but often quantify 
subjectively. The algorithm consolidated this thought process 
in a way that every physician, from today's 'fast' to 'specialist' 
new physician, was able to apply. 
Adult patients seeking non-surgical treatment often show 
dental compensations for skeletal problems. The tooth 
inclination and treatment stability were assessed with the 
Apriori algorithm in these cases. Statistical analysis showed 
38 significant relationships between dental positions and 
relapse types. The inclination of the lower incisors was shown 
to be especially valuable. IMPA > 87° before treatment was 
associated with the risk of relapse. By contrast, retention of 

interincisal angles from 125° to 135° was related to good 
long-term stability. The system incorporated this evidence in 
its feature selection criterion. The performance of CNN in 
determining the dental inclinations is within 0.8 mm when 
using cephalometric images for measurements. This accuracy 
facilitated safe evaluation of compensation limits before 
treatment. 
The resulting knowledge graph in the final was composed of 
2,156 decision nodes regarding different orthodontic 
disorders. As opposed to types of malocclusion in general, 
nodes focused on particular problems such as jaw imbalance, 
crossbite, and temporomandibular joint disorders.4,893 
weighted edges projected diagnostic findings to treatment 
outcomes. A large number are actually directly related to 
treatment length and predictions of stability - answers for 
many patient questions on what results might look like. The 
graph nature of the model facilitated clinicians’ 
understanding in cases with complicated relationships 
between diagnosis and treatment. Whereas orthodontic 
planning had traditionally been based on personal experience 
to a great extent, these systemic arrangements of clinical 
considerations were an evidence-based structure facilitating 
decision-making. Physicians would have been able to follow 
the logic for recommendations, knowing not only what 
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treatment to offer but why a certain course of action was 
recommended in individual cases.  

2.3 Hybrid Intelligent Recommendation 
Algorithm Design 

There is a wide variation in the treatment plans established by 
orthodontists, which prevents us from achieving reproducible 
results for similar cases [23]. The graph attention networks 
were then used to investigate the cephalometric data and 
identify similar cases from the past. Prior orthodontic 
applications of neural networks were generally directed at 
single tasks [24]. Single-use tools are being left in the dust by 
the current regime. It uses pattern recognition and clinical 
judgment to pair new patients with successful cases in the past. 
The algorithm does not supplant clinical judgment; rather, it 
offers evidence from similar cases. The hybrid approach 
combines machine learning methods with orthodontic 
knowledge to assist clinicians in decision-making. In this 
architecture, the attention mechanism computes similarities 
between pairs of cases by attending over links in crucial 
orthodontic features as follows: 

( )

exp(LeakyReLU( [ | ]))
exp(LeakyReLU( [ | ]))
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k i
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∈
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where ih  encompasses critical measurements including
ANB angle, overjet, overbite, and mandibular plane 
inclination. The model now examines skeletal differences, 
dental adaptations, and growth indicators simultaneously, 
allowing it to identify subtle borderline extraction cases that 
previously puzzled clinicians. 
A lot of recent healthcare recommendation systems based on 
content-based and collaborative filtering use knowledge 
distillation to elucidate clinical insights, express, and 
optimize for operational cost [25]. In doing so, knowledge 
learned from ensemble classifiers processing thousands of 
orthodontic cases is distilled into a more lightweight real-time 
system, suitable for point-of-care use in clinics. This method 
guarantees the knowledge of essential clinical data to the 
system, and its efficiency is appropriate for fast-paced 
orthodontic environments. The optimization process that 
follows minimizes: 

2ˆ( , ) (1 ) ( , )s t
C Ky y T p pα α= + −L L L  (2)

The dual-objective function simply balances the level of 
learned decisions against the amount of excessive ones, 
resulting in keeping each recommendation grounded on 
evidence but not too slow to be used in patient care.  
The interpretability to make skin cancer diagnosis markers to 
help the algorithmic decision-making system must still be 
accessible for clinical validation. The SHAP model tells us 
what the most important features are for the 
recommendations. The ANB angle greater than 4 degrees is 
always among the first factors during analysis. IMPA > 95 
degrees and cervical vertebral maturation at stage 3 are also 
strong predictors. There is some conformity to standard 

orthodontic assessment guides for these patterns, but the 
algorithm may consider them differently than a human might 
predict. LIME offers instance-level explanations that can 
assist practitioners in assessing individual recommendations. 
For Class II Division 1 moderate crowding cases, LIME 
provides reasons why the system recommends either 
extraction or non-extraction treatment. Local interpretations 
are especially important when recommendations diverge after 
initial clinical suspicion. Practitioners may “look at what 
features drove certain suggestions, and determine if they 
apply to the patient sitting in front of them”. 
The system is constantly being refined based on treatment 
results. Submitted cases yield anonymous data to improve 
prediction models [26]. Recent systematic reviews have 
demonstrated the effectiveness of health recommender 
systems in clinical decision support [27]. This is a quarterly 
process involving both successful treatments and those 
requiring modification. Bayesian optimization updates 
attention weights and regularization parameters when the 
PAR score is enhanced and acquires cephalometric goals. The 
optimization is done across, not on, a single metric. Some of 
the updates favor extraction decisions, while others improve 
growth prediction accuracy. Big architectural changes are 
manually inspected prior to implementing them. This keeps 
the system from deviating from most tried and true 
orthodontic principles' ability to conform to new ones. 
Frequent updates confirm that recommendations are based on 
the latest practice patterns without releasing them from the 
evidence-based roots. The equilibrium between stability and 
adaptation facilitates clinical relevance as treatment options 
progress. 

3. Results

3.1 Dataset Characteristic Analysis 

Distribution patterns of malocclusion were determined from 
analysis of the total dataset, as seen in Figure 2a. Class I cases 
prevailed in both populations and accounted for 42.3% of 
dental classifications and 38.5% of skeletal classifications. 
Among dental presentations (n = 35 cases), Class II Division 
1 was a finding in all 10 cases; among skeletal presentations 
(n = 52), it occurred more than anything else, with the worst-
case scenario of Vis I to the greatest percentage type ever 
observed at ≥ Angle Class II Division 2 and bilaterally at that 
level. These frequencies correspond to those reported in the 
orthodontic population. Class II Div 2 was only found in 
dental-based types, with skeletal ordinal "N/A" for this 
subtype. This lack is a confirmation of that statement from 
the literature that Class II, Division 2 is predominantly a 
dental and not a skeletal problem. The frequency of Class III 
differed dental (17.8%) and skeletal (26.3%). The higher 
skeletal percentage is evidence of the larger basal component 
involved, which is characteristic of Class III malocclusion. 
Such distributions help set a baseline for the performance of 
automatic diagnostic systems. 
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Figure 2. Comprehensive Analysis of Orthodontic Dataset Characteristics. (a) Distribution of Angle Classifications 
and Skeletal Patterns; (b) Correlation Heatmap of Key Cephalometric Parameters; (c) Data Quality and 

Completeness Assessment  

Figure 2b shows the relationships between cephalometric 
variables that may perhaps affect treatment decision-making. 
ANB angle was significantly and positively correlated with 
overjet (r=0.73), which supported that the position of the jaws 
related to dental protrusion. Significant negative correlation 
was observed between the IMPA and U1-SN angles (r=-0.68), 
suggesting that there were compensatory movements such as 
lower incisors proclination when upper incisors retroclination. 
Such compensation is often the source of Class II settlements 
when our body tries to keep an occlusion even when it knows 
there are skeletal discrepancies.SN-GoGn had a moderate 
relationship to IMPA (r=0.52), meaning patients with steeper 
mandibular planes tended to have more proclination of the 
lower incisors. These associations influence decisions for 
extraction because of a lack of bone support of proclined 
incisors, particularly in the high-angle group. These patterns 
are naturally identified by orthodontists in clinical cases, but 
temporomandibular slot quantification makes it possible to 
perform consistent algorithmic evaluation. Accordingly, the 
correlation matrix validates some of the clinical observations 
used for planning treatment. 
Completeness of reporting differed by type of measure; see 
Figure 2c. All these hard tissue measurements were 98.7% 
complete, thanks to standardized landmark identification 
procedures on lateral cephalograms. Dental measurements 
achieved 97.3% completion with quality percentage scores of 
94.2%, which were sufficient to reproduce incisor positions 
and occlusal relationships that are required for a diagnosis. 
Soft tissue measurements had poorer completeness with 

91.2%, although quality remained at 88.5%. Variations in lip 
posture and varying image contrast among sources account 
for this reduction. Some radiographs showed the lips at rest, 
some in a strain position; a fact that influenced the reliability 
of the measurements. The growth indicators demonstrated 
94.5% completeness even when the methods of assessment of 
cervical vertebrae differed between centers. The aggregate 
quality profile shows that the integrity of the data is good 
enough for machine learning purposes. The missing values 
were randomly dispersed and not systematic, resulting in bias 
that was unlikely to be related to specific measurement 
categories. These completion rates are above the minimum 
values usually accepted for orthodontic research databases, 
confirming the recommendation algorithm ’ s training as 
conducted on valid data. 

3.2 Model Performance Evaluation 

Extraction decision prediction represents one of the most 
difficult choices in orthodontic practice. The system was 
tested on this task to evaluate its clinical utility. Table 2 
compares the hybrid model against conventional machine 
learning methods. The proposed approach achieved 94.2% 
accuracy, outperforming Random Forest at 87.3%, Support 
Vector Machine at 85.6%, Neural Network at 89.1%, and 
Gradient Boosting at 88.7%. These differences matter 
clinically since extraction decisions permanently alter dental 
arches.

Table 2. Comprehensive Performance Metrics of Different Machine Learning Models. 

Model Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC NDCG@5 NDCG@10 
Hybrid Model (Proposed) 94.2 93.8 92.5 93.1 0.89 0.847 0.823 

Random Forest 87.3 85.2 84.7 84.9 0.82 0.762 0.748 
Support Vector Machine 85.6 83.1 82.9 83.0 0.80 0.731 0.715 

Neural Network 89.1 87.6 86.8 87.2 0.84 0.785 0.769 
Gradient Boosting 88.7 86.9 85.4 86.1 0.83 0.774 0.758 

The performance of the models is reinforced by precision and 
recall metrics. The system achieved a precision and recall of 

93.8% and 92.5%, respectively, for extraction decisions. This 
combination resulted in an F1-score of 93.1%, which meant 
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the performance was stable against positive and negative 
cases. When precision is high, the extractions that you make 
are accurate, and when recall is good, then cases in which 
extraction would be needed will indeed be detected. The AUC 
(95% confidence interval) was 0.89, and it crossed the 0.85 
intermediate index that tends to be a cutoff value for clinical 
tools. This discrimination capability also implies that the 
model might provide support for borderline cases in which 
conventional scoring methods fail to reach agreement. 
Quality of treatment recommendations was assessed through 
Normalized Discounted Cumulative Gain. The result of the 
hybrid was NDCG@5 = 0.847 and NDCG@10 = 0.823, as 
presented in Table 2. These scores were much higher than all 
other comparison algorithms. NDCG measures how quickly 
the right treatment plans are suggested in the ranked list. For 
orthodontics, the ranking is relevant because several 
acceptable approaches are frequently present for 

consideration. The high NDCG values reflect that the 
treatments that are clinically preferred were consistently 
ranked at the top. 
Visual validation of the performance criterion is shown 
through different views using Figure 3. The ROC curve in 
Figure 3a deviates to the upper-left corner (i.e., having a high 
sensitivity and specificity), which demonstrates good 
discriminatory power between extraction and non-extraction 
cases. The standard machine learning methods generated 
curves that were more toward the diagonal, which indicated 
less accurate classification. Figure 3b displays precision-
recall relationships. In turn, the precision of the hybrid model 
did not decrease below 90% even at high recall rates. This 
stability indicates the system is robust at various decision 
thresholds. Figure 3c utilizes grouped bars to show all aspects 
together and pledge constant improvements over the baseline. 

Figure 3. Model Performance Visualization for Orthodontic Decision Tasks. (a) ROC Curves for Extraction 
Decision; (b) Precision-Recall Curves; (c) Performance Metrics Comparison; (d) Cephalometric Feature 

Importance; (e) Extraction Decision Confusion Matrix; (f) Treatment Recommendation Quality. 

Feature importance analysis indicated which dimensions 
influenced the decision most. The factors are ANB angle 
(dominating), IMPA, overjet, overbite, SN-GoGn angle, U1-
SN angle, and Witt's appraisal in the order of prominence, 
shown in Figure 3d. This classification is consistent with 
orthodontic teaching (where the skeletal determinants are 
employed as an initial assessment and dental relationships are 
further refined [5]). The model was not explicitly 
programmed to have these priorities; it instead learned them 
from data, indicating it had uncovered real clinical patterns. 
Interpreting feature importance enables collaborators to trust 

that recommendations by the machine are based on criteria 
they recognize. 
The confusion matrix analysis in Figure 3e provided a 
measure of error patterns. False positive and false negative 
rates were 5.7% and 4.1%, respectively. Sensitivity was 95.9% 
(extraction) and 94.3% (non-question-requiring extraction). 
These error rates are low when compared to intra-examiner 
disagreement in orthodontics. Most of the mistakes happened 
in borderline cases, where experts might not even agree. The 
symmetry of extraction and non-extraction accuracy did not 
indicate a consistent bias toward either compromise measures 
or decision aids. 
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Evaluation with top-K accuracy analyzed the ability of the 
system to rank a set of treatment options. Intensity is a scalar-
valued function that measures how close the top-1 label is to 
a received label at every level, and the possible minimum 
value of intensity for an input-target pair in the test set would 
be V, which stands for rank k, 1, or 0, while +\infty represents 
that the actual target has been recommended as one of the 
TOP-k algorithm’s predictions. Figure 3f presents the 
accuracy for Top-5 recommendations, which reaches up to 
84.7%. Both accuracy and NDCG scores are plotted on the 
dual axes in the figure to show that our K is robust throughout. 
This stability illustrates a strong ranking and not a mere 
chance positioning of individual correct answers. In cases of 
difficult malocclusions with multiple good treatments, the 
system was able to recognize and rank correct treatments. The 
recommendation diversity analysis confirmed that the 
treatments recommended were not minor variants of a single 
plan, but represented different biomechanical techniques. 
This diversity enables the orthodontist to also think of 
alternatives, especially in borderline extraction cases and 
with growth patients, where a number of other treatment 
strategies can work. 

3.3 System Prototype Demonstration 

A web-based prototype was developed to test the system in 
clinical settings. The platform integrates machine learning 
algorithms with user interfaces designed for orthodontic 
workflows. Rather than replacing existing tools, the system 
provides additional decision support while maintaining 
compatibility with current practice standards. Testing focused 
on whether practitioners could effectively use the interface 
during routine consultations. 
In Figure 4a, the manner in which the system provides 
treatment options via probability distributions is 
demonstrated. Premolar extraction is presented as a first 
recommendation with a confidence level equivalent to 65.0%. 
Four-bicuspid extraction had a probability of 15.0%, which 
was equivalent to non-extraction treatment at the same 
likelihood. Serial extraction was the suggestion in 5.0% of 
cases. These rates were obtained upon analysis of the 1,106 
cases in the training sample. Therapists can access all options 
at once; they know not only what the system proposes but also 
other possibilities. The threshold is interactive and can be 
modified at will in order to investigate the effect of decision 
thresholds on recommendations. This transparency can be 
useful for clinicians to assess if algorithm-generated 
recommendations coincide with their clinical reasoning for 
individual patients. 

Figure 4. Intelligent Orthodontic Treatment Recommendation System Interface. (a) Treatment Recommendation 
Visualization; (b) Treatment Progress Prediction 

The predictions for treatment length are displayed in Figure 
4b, separating the timeline into three periods. The first stage 
of alignment generally ends at 6 months, after which 28% of 
the total amount of sought results is achieved. Space closure 
pauses at 65% with a duration of up to 12 months. The 
finishing touches last for 24 months when treatment ends. 
Each of these estimates is subject to confidence bands (gray); 
however, individual patients show substantial variability in 
their response to orthodontic forces. Some complete this 
process more quickly, while others take longer. The 
predictions are made based on historical trends for cases 
similar to yours, but the system cannot adjust for all variables 
influencing treatment velocity. Estimates of treatment are 

being used in the clinic to discuss what patients should expect, 
but they may differ. 
Once the analysis is complete, a report is generated 
automatically, as shown in Figure 5. The system generates 
standardized reports comprising patients' personal data, 
diagnostic measurements, and treatment suggestions. It takes 
about 2.3 seconds from upload to report. For each report, the 
type of malocclusion detected is described together with the 
corresponding measures. Performance measures appear in a 
separate section, which obtained 94.2% sensitivity, 92.5% 
specificity, and a positive predictive value of 94.3%. 
According to the papers, Graph Attention Networks process 
the data and perform with 5-fold cross-validation over the 
released datasets. Automatic de-identification of patient 

(a) Treatment Recommendation Visualization

15.0%

65.0%

15.0%

5.0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recommendation Probability

Non-Extraction

Premolar Extraction

4-Bicuspid Extraction

Serial Extraction

(b) Treatment Progress Prediction

Initial Alignment

Space Closure

Finishing

Retention

Phase I Phase II Phase III

Space Closure &

Canine Retraction

Finishing &

Detailing

0 5 10 15 20

Treatment Duration (months)

0

10

20

30

40

50

60

70

80

90

100

110

T
re

at
m

en
t P

ro
gr

es
s (

%
)

Confidence Interval

Predicted Progress

Key Milestones

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 11 | 2025 | 



 Design and Implementation of Intelligent Treatment Plan Recommendation System Based on Big Data of Orthodontic Cases 

9 

identifiers is applied to preserve anonymity. These reports 
have a number of uses, ranging from use in clinical 
documentation to insurance claims. The controlled list of 
information in a standard format provides consistency in 

documentation, but allows clinicians to additionally record 
comments or changes. The link with other practice 
management software is still being developed, but currently, 
we can export PDF and structured data for an EHR system. 

Figure 5. Automated Clinical Report Generation 

3.4 Comparative Analysis and Validation 

Validation was carried out with both classical methods and 
existing machine learning techniques. The analysis centered 
on the accuracy of extraction decisions, the time required for 
processing, and the discrimination ability among various 
types of malocclusion. Both the clinical application and 

technical performance were analyzed to see if the system 
would be adequate for use in orthodontic practice. 
Finally, in Table 3, the performance of the hybrid system is 
compared to that of manual assessment. The proposed 
method achieved 94.2% accuracy for the extraction decision, 
against 78.8% obtained by manual evaluation. This 15.4% 
gain is indicative of the decrease in algorithmic measurement 

ORTHODONTIC TREATMENT ANALYSIS REPORT
Generated by AI-Powered Diagnostic System

PATIENT INFORMATION
Patient ID: P-2024-0892
Age: 12.5 years

Gender: Male
Date: March 15, 2024

AUTOMATED CEPHALOMETRIC ANALYSIS

Angular Measurements:
• ANB Angle: 4.2° (Normal: 2-4°)
• SNA Angle: 82.1° (Normal: 82±2°)
• SNB Angle: 77.9° (Normal: 80±2°)
• IMPA: 95.3° (Normal: 90±3°)

Linear Measurements:
• Overjet: 7.2mm (Normal: 2-4mm)
• Overbite: 4.8mm (Normal: 2-4mm)
• Arch Length Deficiency: -8.2mm
• Processing Time: 2.3 seconds

AI DIAGNOSTIC ASSESSMENT
Primary Diagnosis:

• Class II Division 1 Malocclusion with Severe Crowding
• Skeletal Class II Pattern (Mild)

AI TREATMENT RECOMMENDATION
Recommended Treatment Plan:

• Four Premolar Extractions (Confidence: 65.0%)
• Estimated Duration: 24-28 months
• Fixed Appliance Therapy with Space Closure

SYSTEM PERFORMANCE

• Accuracy: 94.2%
• Sensitivity: 92.5%
• Specificity: 94.3%
• AUC Score: 0.89
• Landmark Precision: 0.8mm

CLINICAL CONSIDERATIONS

• Growth potential assessment needed
• Monitor vertical dimension changes
• Consider profile improvement goals
• Retention protocol planning required
• Regular progress monitoring

TECHNICAL SPECIFICATIONS

Model: Graph Attention Network + Knowledge Integration
Training Dataset: 1,106 public orthodontic cases (ethics-compliant)

Validation: 5-fold cross-validation
Processing Environment: HIPAA-compliant

This report was automatically generated by an AI-powered orthodontic diagnostic system.
Clinical decisions should always incorporate professional judgment and patient-specific factors.

AI
VERIFIED

Confidence: 94%
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subjectivity. The sensitivity increased from 74.2% to 92.5% 
and the specificity from 82.1% to 94.3%. It was the longest 
leader to undergo transitions in time. Manual Ceph analysis 
takes about 35 to 45 minutes per case. Having an automated 
system, the car-before-threshold stage required 2.3 ± 0.4 

seconds of analysis time, respectively. This time deduction 
could preclude the delay for diagnosis, which presently 
restricts patient numbers in most practices. But the described 
comparison ought to take into account that manual 
assessment makes possible clinical examination, and not only 
cephalometric measurement.

Table 3. Comprehensive Performance Metrics of Different Machine Learning Models. 

Model Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC NDCG@5 NDCG@10 
Hybrid Model (Proposed) 94.2 93.8 92.5 93.1 0.89 0.847 0.823 

Random Forest 87.3 85.2 84.7 84.9 0.82 0.762 0.748 
Support Vector Machine 85.6 83.1 82.9 83.0 0.80 0.731 0.715 

Neural Network 89.1 87.6 86.8 87.2 0.84 0.785 0.769 
Gradient Boosting 88.7 86.9 85.4 86.1 0.83 0.774 0.758 

Machine learning comparisons showed differences in 
performance of the general and orthodontic algorithms. Table 
3 shows that the proposed hybrid outperforms Random Forest 
by 6.9% (using 87.3% as an accuracy score), SVM by 8.6% 
(again, with a score of 85.6%), NN by 5.1% (with a score of 
89.1%), and GBM by 5.5%. It also has a higher average 
accuracy than complicated models, with relatively better 
results in each single modeling period compared to other 
models used. Its AUC score of 0.89 was higher than that from 
all comparison methods and reached the threshold of 0.85 for 
clinically usable tools. This indicates that the presence of 
orthodontic knowledge in the algorithm design allows it to 
outperform generic machine learning. The discrepancies were 
most apparent in borderline cases where clinical judgment is 
most relevant. Performance trends can be seen in the 
diagrams of Figure 6.   

Accuracy comparisons with bar charts in part (a) demonstrate 
that the novel hybrid approach maintains a clear advantage. 
The margins are different and all positive in the comparisons. 
The performance of algorithms in efficiency and accuracy on 
the test sets is visualized in Part (b) with clear clusters. 
Conventional approaches can be found in the bottom left of 
the figure, showing low accuracy and slow processing. In the 
middle lie the standard machine learning techniques with 
better accuracy, but the same processing times as manual 
methods. The hybrid model stands by itself in the upper right, 
with high accuracy and fast processing. Such a relationship 
indicates that the system successfully met its design objective 
of simultaneously enhancing both properties without 
compromising one to compensate for another.
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Figure 6. Performance Benchmarking and Clinical Validation Results of Intelligent Orthodontic Treatment 
Recommendation System. (a) Diagnostic Accuracy Comparison Among Different Methods; (b) Efficiency versus 
Accuracy Trade-off Analysis; (c) Clinical Validation Results by Malocclusion Type; (d) Performance Improvement 

Analysis over Traditional Methods.  

Malocclusion-specific analysis in Figure 6c examined 
whether performance remained stable across different 
diagnostic categories. Class I cases showed 96.5% accuracy, 
improving 15.3% over traditional methods. Class II Division 
1 reached 94.8% with 16.8% improvement. Class II Division 
2 achieved 91.2% accuracy, a 17.8% gain. Class III cases 
showed 92.7% accuracy with 14.2% improvement. The 
smallest improvement occurred in Class III cases, possibly 
because these often present obvious skeletal patterns that 
experienced clinicians already identify reliably. Class II 
Division 2 showed the largest improvement, which makes 
sense given its subtle presentation that benefits from 
systematic analysis. Figure 6d summarizes overall 
improvements across metrics. Accuracy improved 19.7%, 
sensitivity 24.7%, specificity 14.9%, speed 99.8%, and 
clinical reliability 28.3%. The speed improvement essentially 
represents a different scale of operation rather than 
incremental enhancement. Clinical reliability, measured 
through consistency across repeated evaluations, showed 
substantial gains that could reduce treatment planning 
variations between practitioners. 

4. Discussion

Intelligent recommendation system averaged 19.7% higher 
diagnostic accuracy and 99.8% shorter processing time 
compared to the conventional methods. These findings have 
implications for recent research in health recommender 
systems, in which it has been highlighted that domain 
knowledge can boost the system’s performance, also for 
clinical applications. The majority of orthodontic AI research 
up to now has concentrated on single tasks such as landmark 
detection or elementary classification. This work has 
established a more general framework through multimodal 
data fusion and explainable AI to guide the treatment 
planning. The apparatus concurrently treats cephalometric 
dimensions, clinical classifications, and prior treatment 
outcomes. Unlike conventional machine learning, which 
pools and learns from all medical data in the same manner, 
the method includes orthodontic knowledge of the 
relationships between skeletal types and treatment responses. 
Class-specific accuracy varied from 91.2% for Class II 
Division 2 to 96.5% for Class I malocclusions. This 
consistency is of importance, as inter-examiner disagreement 
has always been a challenge in orthodontics [28]. 
Conventional diagnosis depends on personal interpretation of 
cephalometric angles and clinical experience. Two 
orthodontists treating the same patient might come to 
different conclusions about the extractions that are required. 
The variation is reduced by the algorithmic approach using 
identical criteria for all cases. Evidence-based orthodontic 
treatment needs to be reproducible rather than a matter of 

subjective evaluation. The system offers this reproducibility 
while staying at or above the level of accuracy achieved by 
experienced practitioners. 
Combined with collaborative filtering, Graph Attention 
Networks filled the deficiencies of previous healthcare 
recommendation systems [29]. Conventional ML models 
simply slice and dice data without clinical understanding. 
They can capture statistical patterns but lack significant 
orthodontic principles. The UPDGC we constructed, based on 
the public case reports, contains diagnosis-treatment outcome 
relations missed by statistical relations. For example, the 
system learned that some skeletal patterns do not respond 
well to camouflage treatment independent of dental 
compensation. This is in contrast to prior orthodontic AI 
systems that focused on landmark detection or classification 
of simple malocclusion types with no treatment implications 
[30]. 
Several limitations affect the current implementation. Public 
datasets may not represent all patient populations equally. 
Certain demographics or imaging protocols could be 
overrepresented, potentially biasing the model. Testing 
occurred primarily on retrospective cases rather than live 
clinical environments. Real orthodontic practices involve 
time pressures, patient communication, and software 
integration challenges not captured in offline analysis [31]. 
The system needs validation across different clinics, imaging 
equipment, and patient populations. Multi-site prospective 
studies would establish whether performance remains stable 
outside the original development environment. Additionally, 
the current 2D cephalometric focus misses information 
available from 3D imaging. Integration with practice 
management software requires further development. User 
interface testing with practicing orthodontists has been 
limited. These practical considerations matter as much as 
algorithmic accuracy for successful deployment. 
Further development should focus on the integration of new 
technologies and overcoming current limitations. The three-
dimensional images from CBCT and intraoral scanning may 
provide better anatomical evaluation if radiation dosage and 
cost can be controlled. However, the 3D assessment raises 
issues of computational cost and data storage. In the setting 
of multi-center, federated learning provides a solution to 
contribute to joint training without centralizing patient data 
[32]. Institutions could participate in model improvement 
without exposing their data. This method would make the 
dataset more diverse and greatly mitigate site-specific biases. 
The difficulty, of course, is in developing governance models 
and data syntax agreements between institutions. Adapting 
mechanisms for learning could enable the system to 
progressively learn from solved cases. When treatments have 
ended, results would inform the model parameters through 
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regulation. This needs to be carefully monitored to avoid 
deviation from time-tested clinical concepts. 
The predictive nature of the system should not be limited only 
to extraction decision, but also extend to modification timing, 
planning for surgery, and retention protocol [33]. Validation 
against up-to-date gold standards is needed for each 
expansion. Using uniform evaluation would allow us to 
compare the different orthodontic AI systems more 
objectively. Indices such as PAR and ICON could develop 
analogous metrics to the known terms of orthodontists. The 
aim continues to be supporting, not replacing, clinical 
judgment. Orthodontists want clear, auditable 
recommendations that they can counter against their own 
experience. Practice adaptations may be relevant for different 
practice styles or patient populations. Regulatory clearance is 
region-dependent and will impact the timing of deployment. 
Orthodontic curricula should train orthodontists to effectively 
interface with AI. Professional bodies may wish to provide 
guidance around acceptable usage of algorithm-driven advice. 
Intelligent systems should overcome these technical, practical, 
and professional challenges to maximize the level of quality 
that orthodontic care provides while maintaining patient-
personalized informatics. The technology should be 
providing orthodontists with more information, not limiting 
their clinical judgment. Performance success hinges not only 
on algorithm accuracy but also on integration with current 
clinical practice and professional standards. 

5. Conclusion

In this paper, we propose an orthodontic treatment 
recommendation system based on Graph Attention Networks 
with collaborative filtering. Public case reports were used to 
generate knowledge graphs linking diagnostic patterns to 
treatment outcomes across 1,106 cases. The testing on 156 
retrospective cases showed that the performance of the 
extraction decision reached 94.2% (19.7% better than manual 
checking). The analysis was performed by the system in 2.3
±0.4 seconds, compared with 35-45 minutes for conventional 
cephalometric assessment. The performances were different 
according to each type of malocclusion (96.5% for Class I, 
94.8% for Class II Division 1, 91.2% for Class II Division 2, 
and 92.7% for Class III). The process reliability was 99.8% 
and the process was suitable for clinical application. The 
explainable AI services are said to allow orthodontists to view 
attention weights, similar cases, and key measurements 
underlying each recommendation. Algorithm logic can be 
confirmed by the clinical judgment of practitioners, 
especially when diagnosing on borderline extraction or 
skeletal compensation boundaries. All three experienced and 
new clinicians regarded systematization as being valuable. 
Three avenues of enhancement will develop the present work. 
Furthermore, incorporation of 3D imaging, such as from 
CBCT and intraoral scans, ought to increase the accuracy of 
assessing anatomy more than the lateral cephalogram. 
However, careful assessment should prevent any drift away 
from orthodontic principles. If growth modification timing 
and surgical planning were added, the system would then 

become more than a simple diagnostic aid — the 
comprehensive treatment planner. Moreover, the federated 
learning structure provides a path for multi-center 
cooperation, yet preserves patient privacy. Contributing 
clinics would be able to enhance the model without direct 
sharing of raw data, which might mitigate dataset bias and 
improve performance among different populations. The goal 
of these developments is to facilitate evidence-based 
orthodontic treatment while maintaining clinical freedom. 
The technology should make recommendations alongside, 
not instead of, professional expertise, keeping visible how 
those recommendations are arrived at and letting 
orthodontists adjust them based on the specific needs of 
patients. 
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