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Abstract 

INTRODUCTION: Clinical 12-lead Electrocardiogram (ECG) image classification faces key limitations, including 
insufficient capture of fine-grained waveform details, compromised integration of local-global rhythmic contexts, and 
suboptimal modeling of multi-lead spatial relationships. 
OBJECTIVES: This study aimed to propose Swin-LGF-FPN, an intelligent image classification model based on Swin 
Transformer architecture, to address these challenges and improve the accuracy of ECG image classification for early 
cardiovascular disease screening. 
METHODS: The enhanced framework integrated multi-scale Feature Pyramid Network (FPN) modules with an improved 
Swin Transformer backbone to effectively fuse local and global features. Axial Temporal Attention was incorporated to 
strengthen temporal feature extraction across ECG waveforms. Gradient-weighted Class Activation Mapping (Grad-CAM) 
visualizations were used to demonstrate feature saliency. The model was validated on two publicly available datasets: the 
ECG Images dataset of Cardiac Patients and PTB-XL, with performance compared against baseline models including 
ResNet-34 and Vision Transformer (ViT). 
RESULTS: The results indicated that Swin-LGF-FPN significantly outperformed baseline models in key metrics, including 
overall accuracy and F1-score. Grad-CAM visualizations showed significantly enhanced feature saliency in critical regions, 
as evidenced by heatmaps superimposed on original images. 
CONCLUSION: The Swin-LGF-FPN model effectively classifies ECG images, showing robust performance and promising 
translational potential for early cardiovascular disease screening. 
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1. Introduction

Cardiovascular diseases (CVDs), the leading global cause of 
mortality, claim approximately 17.9 million lives annually 
according to the World Health Organization. Early 
prevention and appropriate intervention for CVDs are critical 
to improve prognosis in high-risk populations [1]. Current 
CVD detection spans imaging modalities (ECG,  
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echocardiography, cardiac MRI, CT) and laboratory 
biomarkers [2]. As a non-invasive cardiac signal recording 
technique, ECG is essential for early screening, disease 
assessment, and treatment monitoring, given its painlessness, 
low cost, operational simplicity, and clinical availability. 
These advantages underpin its status as a first-line diagnostic 
tool endorsed by clinical guidelines [3,4]. 
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Conventional ECG analysis depends on physician-based 
manual interpretation, entailing significant time and resource 
expenditures. With advances in artificial intelligence (AI), 
machine learning (ML) increasingly enables automated ECG 
abnormality detection [5,6]. Existing ML-based ECG 
analysis techniques primarily process raw temporal data from 
single-lead or multi-lead signals [7], categorized into two 
paradigms: 
(1) Feature-engineering-based methods, which require
expert-guided manual annotation of key characteristic points
(e.g., R-peaks, QRS onset/offset) to build classification
models [8];
(2) End-to-end deep learning approaches that directly learn
abstract representations from raw signals or transformed
images, thus minimizing human intervention [9].

Feature-engineering-based methods primarily employ 
composite features from specific waveforms, intervals, 
segments, or peaks [10,11]. Liu [12] developed an arrhythmia 
classification framework combining an enhanced dual-branch 
SE-ResNet with expert-defined features. Kraft [13] 
implemented a 1D U-Net architecture using convolutional 
blocks for QRS complex detection in normal sinus rhythm 
and premature ventricular contractions. Wu [14] achieved 
high-precision R-peak detection by applying a squared 
window variance transform to enhance QRS complexes and 
suppress noise, coupled with adaptive thresholding. 
Katamreddi [15] employed dual-tree complex wavelet 
transforms to extract morphological features and isolate R-
peaks. Abdel-Rahman [16] adapted Faster R-CNN to 
estimate QRS duration from sparsely annotated ECG images. 
Despite strong clinical interpretability, such methods may 
compromise diagnostic integrity due to dissociation of local 
features from global rhythm patterns. 

Compared with the substantial dependence of feature 
engineering on expert priors, end-to-end deep learning 
approaches directly learn intrinsic representations from raw 
ECG data. These methods are broadly categorized into two 
paradigms: raw signal-based and image-based techniques. 
Mantravadi [17] developed a lightweight multi-scale fusion 
network (CLINet) that achieved 99.94% accuracy on the 
MIT-BIH arrhythmia database. Fan [18] proposed the 
KEMT-MCAN framework to extract complex temporal 
features using a multi-level cross-attention network. Ahmad 
[19] converted raw ECG signals into three representations:
Gramian angular fields, recurrence plots, and Markov
transition fields, proposing dual multimodal fusion
frameworks (MIF/MFF). Weimann [20] improved atrial
fibrillation classification performance by 6.57% through
CNN pre-training on large-scale raw ECG datasets with
subsequent fine-tuning. Zhou [21] integrated hybrid-scale
features with lead-encoder attention (LEA) mechanisms to
fuse morphological-temporal information.

Although raw ECG signal-based classification achieves 
high precision, it faces two fundamental constraints. First, the 
scarcity of high-quality labeled datasets arises from stringent 
patient privacy regulations and ethical barriers, limiting 
publicly available resources. Existing databases typically 
have restricted sample sizes. For instance, the MIT-BIH 
Arrhythmia Database includes just 47 patient records [22], 

while the American Heart Association (AHA) database 
contains only 154 subjects [13]. Second, printed or digital 
ECG images are ubiquitous in medical institutions owing to 
universal applicability and archival convenience [23], 
offering a practical data source overcoming limitations in 
ECG anomaly classification. 

Recent research has prioritized deep learning and 
computer vision techniques for direct diagnostic information 
extraction from ECG images. Jothiaruna [24] proposed a 
MobileNet-FPN architecture combining multi-scale feature 
maps with single-shot detectors (SSD) for anomaly 
localization, introducing weighted sigmoid focal loss to 
mitigate class imbalance and enhance pathological region 
detection. Demolder [25] developed a fully automated, deep 
learning-based ECG digitization method that achieves high-
fidelity signal conversion from smartphone-captured images 
(PM-ECG-ID database) through grid correction and signal 
reconstruction. Sadad [26] designed an IoT-enabled cardiac 
monitoring system using lightweight CNNs with attention 
modules for four-class cardiac state classification. Hao [27] 
introduced an automated myocardial infarction screening 
framework for 12-lead ECG images, utilizing text-based lead 
segmentation with multi-branch feature extraction and deep 
fusion classification. Cao [28] proposed a weakly supervised 
fine-grained model identifying abnormalities in unprocessed 
ECG images using only image-level annotations. Fatema [29] 
applied artifact-removal preprocessing to enhance ECG 
image quality, constructing an InResNet-106 architecture 
integrating InceptionV3 and ResNet50. Khalid [30] 
introduced ECGConVT, fusing CNNs with Vision 
Transformers for myocardial infarction and arrhythmia 
classification via multilayer perceptron fusion. Ma [31] 
developed Mamba-RAYOLO, incorporating multi-branch 
feature extraction, dynamic attention mechanisms, and spatial 
fusion for real-time ECG image classification. 

Although existing ECG image classification methods 
enhance feature extraction capabilities, they typically suffer 
from poor interpretability and frequently neglect spatial 
correlations across multi-lead configurations. Crucially, 
classification performance depends on precise fusion of local 
waveform details with global rhythm patterns, while 
confronting challenges such as lead spatial misalignment, 
limited image resolution, information loss, and interference 
from clinical annotations [28]. These factors substantially 
increase feature extraction and classification complexity. 

To address these limitations, we developed Swin-LGF-
FPN, an enhanced ECG image classification model based on 
Swin Transformer. The proposed model offers a novel 
approach for AI-assisted ECG interpretation, demonstrating 
potential for integration into clinical workflows. The 
principal contributions were: 
(1) To enhance the model's capacity for perceiving details in
key ECG waveforms and for integrating multi-scale features,
the model incorporated a deep integration of the hierarchical
windowed attention mechanism from the Swin Transformer
and leveraged the strengths of the Feature Pyramid Network
(FPN) in multi-scale feature extraction.
(2) The proposed ECG-LGF module enhanced local-global
feature integration via an Axis-aware Temporal Attention
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(ATA) mechanism, which sharpened the model's focus on 
diagnostically salient temporal features in ECG waveforms 
and augmented its overall feature extraction power. 
(3) The model demonstrated superior performance across
multiple evaluation metrics on two independent public ECG
datasets, quantitatively confirming its efficacy in ECG image
classification. Furthermore, Grad-CAM visualizations
revealed that the model's decisions were consistently driven
by pathologically critical features.

2. Proposed Methodology

The overall workflow of this study is schematically 
illustrated in Figure 1. Figure 2 depicts the architecture of the 
proposed Swin-LGF-FPN model. This model was designed 
to improve discriminatory accuracy for pathological 
categories through the extraction and fusion of features across 
multiple spatial scales and hierarchical levels in ECG images. 
An optimized Swin Transformer backbone was employed to 
extract multi-level features, which were subsequently 
enhanced by an ECG-LGF module and integrated into a 
multi-scale feature pyramid via an FPN neck. The final 
classification output was generated by a classifier. To address 
class imbalance in the dataset, Focal Loss was utilized during 
training, while translation augmentation was applied to 
mitigate overfitting. 

Figure 1. The overall workflow of this study 

Figure 2. Structure of the proposed Swin-LGF-FPN model 
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Figure 3. Workflow of Image Preprocessing

2.1 Image Preprocessing 

Before model input, raw ECG images were processed 
through a preprocessing workflow (Figure 3) to remove 
redundant components, including background grid lines 
and header/footer annotations. This process mitigated 
noise interference in feature extraction, prevented feature 
acquisition bias, and reduced prediction distortion, 
consequently improving the accuracy of ECG 
classification [29]. Following vertical-edge cropping, 
canny edge detection was applied to precisely identify 
ECG waveform boundaries. This step comprised 
computing gradient magnitude and orientation via the 
Sobel operator, with subsequent subpixel edge localization 
achieved through non-maximum suppression and double-
threshold hysteresis. The gradient magnitude 𝐺𝐺  and 
direction 𝜃𝜃 are calculated as: 

𝐺𝐺 = �𝐺𝐺𝑋𝑋2 + 𝐺𝐺𝑌𝑌2 (1) 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥
� (2) 

where 𝐺𝐺𝑋𝑋2 and 𝐺𝐺𝑌𝑌2 are the convolution results of the Sobel 
operator. 

A composite morphological operation combining 
opening and closing was implemented to eliminate minor 
noise artifacts and fill small cavities in binary edge images, 
thereby enhancing edge smoothness and continuity. This 
process utilizes closing to fill internal cavities and opening 
to remove isolated noise points. The combined operation 
is mathematically defined in Equation (3). 
𝐼𝐼𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �(𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⊕ 𝐵𝐵3) ⊖ 𝐵𝐵3� ⊖ 𝐵𝐵3 ⊕ 𝐵𝐵3 (3) 

where 𝐼𝐼𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the image after closing-opening 
operations, 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the canny edge detection result, ⊕ 
and  ⊖  represent dilation and erosion operators, 

respectively, and B3  denotes a 3×3 structuring element. 
Morphological closing executes dilation before erosion, 
whereas opening performs erosion before dilation. 

Otsu's adaptive thresholding method eliminated 
background interference while separating ECG waveforms 
from the background. The optimal threshold 𝑇𝑇∗ is 
automatically determined through inter-class variance 
maximization, as formulated in Equation (4). 

�
𝑇𝑇∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇[𝜔𝜔0(𝑇𝑇)𝜔𝜔1(𝑇𝑇)(𝜇𝜇0(𝑇𝑇) − 𝜇𝜇1(𝑇𝑇))2]

𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥, 𝑦𝑦) = �1   𝐼𝐼𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇∗
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4) 

where 𝜔𝜔0(𝑇𝑇) is the proportion of pixels in the background 
area, 𝜔𝜔1(𝑇𝑇) is the proportion of pixels in the waveform 
area, 𝜇𝜇0(𝑇𝑇) is the average gray level of the background 
area, 𝜇𝜇1(𝑇𝑇) is the average gray level of the waveform area, 
and 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥, 𝑦𝑦)  is the value of the binarized image at 
position (x, y). 

Computational efficiency and ECG waveform edge 
feature preservation were balanced by resizing pre-
processed ECG images to 640 pixels via image scaling. 
This standardization optimized input quality for 
subsequent model training. 

2.2 Swin Transformer Backbone Network 

Functioning as the backbone network, the optimized Swin 
Transformer balanced computational efficiency and global 
modeling capability using Window Multi-Head Self-
Attention (W-MSA) and Shifted Window Multi-Head Self-
Attention (SW-MSA). Hierarchical feature maps were 
generated through a four-stage downsampling, with an 
enhanced Local-Global Feature Fusion Module (ECG-
LGF Module) integrated at each stage terminus to augment 
ECG waveform feature extraction. 
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Following Patch Embedding, preprocessed ECG images 
were processed through the four-stage Swin Transformer 
backbone. Three critical operations enabled hierarchical 
feature extraction: 
(1) Intra-stage computation: Multiple consecutive Swin
Transformer blocks per stage facilitated cross-window
global context modeling with reduced computational
complexity. Figure 4 illustrates the core architecture,
where W-MSA and SW-MSA [32] underwent alternate
computation governed by Equations (5)-(8), where 𝐹𝐹𝑖𝑖−2
denotes the input features to the Swin Transformer block,
and 𝐹𝐹𝑖𝑖+2 represents the output features from the block.

𝐹𝐹𝑖𝑖−1 = 𝑊𝑊 −𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖−2)) + 𝐹𝐹𝑖𝑖−2 (5) 
𝐹𝐹𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖−1)) + 𝐹𝐹𝑖𝑖−1 (6) 

𝐹𝐹𝑖𝑖+1 = 𝑆𝑆𝑆𝑆 −𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖)) + 𝐹𝐹𝑖𝑖 (7) 
𝐹𝐹𝑖𝑖+2 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖+1)) + 𝐹𝐹𝑖𝑖+1 (8) 

(2) Inter-stage downsampling: A Patch Merging layer was
employed to connect consecutive stages, halving spatial 
resolution while doubling channel depth to generate 
downsampled features for the next stage. 
(3) Stage-terminal enhancement: An ECG-LGF Module
was integrated following each stage, taking the Swin
Transformer block's output features as input to fuse local
features with global rhythm patterns.

2.3 ECG-LGF Module 

To enhance the model's synergistic perception of both local 
morphological details in ECG waveforms and global 
rhythm patterns, an ECG-LGF Module incorporating 
Axial Temporal Attention (ATA) for ECG signals was 

proposed, with its detailed architecture depicted in Figure 
5. This module consisted of two parallel pathways defined
by Equation (9) and Equation (10):
(a) Local pathway: Depthwise separable convolution
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3×3) extracted local features, succeeded by 1×1
convolution for channel adjustment, GroupNorm, and
GELU activation.
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)
= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3×3(𝑥𝑥)))) (9)

(b) Global pathway: Global max pooling captured image-
level features, upsampled to original spatial dimensions
through 1×1 convolution and GELU activation.
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥) = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1 

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)))) (10) 

Channel-wise concatenation of dual-path output 
features was performed according to Equation (11): 

𝑓𝑓 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥)) (11) 
The fused features underwent channel compression 

and normalization via a 1×1 convolution and GroupNorm, 
as mathematically defined in Equation (12): 

𝑓𝑓1 = (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝑓𝑓))) (12) 
The ATA mechanism augmented temporal features in 

key waveform regions along the ECG image's horizontal 
axis using adaptive weighting. Spatial weight mappings 
were acquired by two successive 1×1 convolutional layers 
separated by GELU activation. The axial temporal 
attention weight map is generated through a Sigmoid 
function (σ ), which modulates the feature tensor 𝑓𝑓1 by 
element-wise multiplication (⨀): 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
= 𝑓𝑓1⨀𝜎𝜎(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝑓𝑓1)))) (13)

Figure 4. Structure of Swin Transformer Block. 
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Figure 5. Structure of ECG-LGF Module. 

Figure 6. Structure of FPN Neck Network. 

The ATA-weighted features were combined with the 
module's original input via residual connection, yielding 
enhanced output features as formulated in Equation (14): 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑥𝑥 (14) 
Integrating local morphological details, global 

rhythm patterns, and the ATA mechanism, the ECG-LGF 
Module produced optimized hierarchical feature maps for 
the backbone network. These maps are transferred directly 
to the FPN neck, maintaining original information while 
improving discriminative feature extraction of key 
waveforms. The enhanced feature maps delivered spatially 
and semantically expressive representations to support 
subsequent ECG image classification. 

2.4 FPN Neck Network 

A Feature Pyramid Network (FPN) integrated multi-level 
features optimized by the ECG-LGF Module from the 
backbone, transmitting deep-layer semantic information to 
shallow high-resolution features. This constructed a 
feature pyramid with complementary spatial resolution and 
semantic content, as illustrated in Figure 6. 
(1) Channel alignment transformation: A dual-path
residual architecture was employed. The primary path

utilized 3×3 convolution for simultaneous spatial feature 
extraction and channel dimension transformation, while 
the residual path achieved low-complexity channel 
alignment via 1×1 convolution. Both paths fused outputs 
through element-wise addition, mitigating gradient 
vanishing while enhancing information integrity through 
original feature preservation. For each hierarchy level i, the 
channel alignment transformation followed Equation (15): 

𝐹𝐹𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3×3(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖)))
+ 𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖))

(15) 

Where Fi denotes the transformed output, Fiin denotes the 
input feature map, and BN denotes Batch Normalization. 
(2) Top-down feature fusion: Utilizing aligned multi-scale
features, this module is initiated from the highly abstract
top-level features (𝐹𝐹4 ). It upsampled features to match
adjacent lower-level spatial dimensions via bilinear
interpolation (Equation (16)), then fused the upsampled
results with current-level aligned features (F3 ) through
element-wise addition. The fused features (F34) iteratively
propagated downward for subsequent layer-wise
integration.

𝑈𝑈(𝐹𝐹𝑖𝑖) = ��𝐹𝐹[𝑐𝑐, ℎ′, 𝜔𝜔′] · 𝛽𝛽(ℎ − 𝛼𝛼ℎℎ′)
𝜔𝜔′ℎ′

· 𝛽𝛽(𝜔𝜔 − 𝛼𝛼𝜔𝜔𝜔𝜔′)
(16) 

Where c is the number of feature channels, ℎ′  is the time 
axis coordinate of the feature map, and 𝜔𝜔 is the lead axis 
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coordinate of the feature map, αh is the time axis scaling 
ratio, and 𝛼𝛼𝜔𝜔 is the lead axis scaling ratio. 

The top-down fusion module produced three 
hierarchical outputs (Equations (17)-(19)). High-level 
features encapsulated global rhythm characteristics, while 
low-level features preserved local waveform morphology. 
Their element-wise summation intrinsically combined 
rhythm and morphological information across scales. 

𝐹𝐹34 = 𝑈𝑈(𝐹𝐹4) + 𝐹𝐹3 (17) 
𝐹𝐹234 = 𝑈𝑈(𝐹𝐹34) + 𝐹𝐹2 (18) 
𝐹𝐹1234 = 𝑈𝑈(𝐹𝐹234) + 𝐹𝐹1 (19) 

(3) Feature refinement module: This module suppressed
discontinuous artifacts from direct cross-scale fusion by
optimizing the spatial smoothness of fused features. The
refined output produced the feature pyramid's final feature
map Fiout as defined in Equation (20)-(23).

𝐹𝐹4𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3×3(𝐵𝐵𝐵𝐵(𝐹𝐹4))) (20) 
𝐹𝐹3𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3×3(𝐵𝐵𝐵𝐵(𝑈𝑈(𝐹𝐹4) + 𝐹𝐹3))) (21) 
𝐹𝐹2𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3×3(𝐵𝐵𝐵𝐵(𝑈𝑈(𝐹𝐹34) + 𝐹𝐹2))) (22)
𝐹𝐹1𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3×3(𝐵𝐵𝐵𝐵(𝑈𝑈(𝐹𝐹234) + 𝐹𝐹1))) (23)
These refined feature maps preserved critical 

morphological details and encoded global rhythm 
semantics, constituting a hierarchical pathological 
representation. Cross-scale fusion amplified pathological 
signatures across resolutions, enhancing adaptability to 
lesion size variations while delivering multi-semantic 
features for classification. 

Multi-scale feature maps extracted from the FPN were 
first processed by global average pooling and flattening. 
Their contributions were then balanced through a weighted 
fusion mechanism employing learnable weights, followed 
by layer normalization. The resulting normalized features 
were finally fed into a two-layer multilayer perceptron 
(MLP) for classification: 
𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑊𝑊2 · 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝛤𝛤𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1)))

+ 𝑏𝑏2 (24) 

Where 𝑥𝑥  is the weighted fused feature vector, 𝑊𝑊  is the 
weight matrix, and 𝑏𝑏  represents the bias vector, 𝛤𝛤𝐿𝐿𝐿𝐿 
denotes the Layer Normalization operation, Dropout 
stands for the operation of randomly dropping neurons 
during training, and yout represents the final classification 
prediction score. 

2.5 Training process optimization 

During model training, Focal Loss, an AdamW optimizer 
coupled with a linear Warm-up Cosine Annealing 
scheduler, and translation augmentation were employed to 
mitigate class imbalance and overfitting risks while 
enhancing model accuracy. 

Focal Loss modified the standard Cross-Entropy loss 
[33] by down-weighting the loss contributions from easy-
to-classify samples and focusing training on hard examples,
which helped mitigate class imbalance in training data as
defined in Equation (25).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝𝑡𝑡) = −𝛼𝛼𝑡𝑡(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑡𝑡) (25) 
where 𝑝𝑝𝑡𝑡  is the prediction probability of the model for the 
correct class, γ is the adjustable focusing parameter, and αt 
is the class balance weight. 

Throughout the training process, AdamW utilized 
decoupled weight decay to enhance regularization in 
parameter updates, countering overfitting [34]. Equation 
(26) mathematically defines this training-specific
mechanism:

𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑡𝑡−1 − 𝜂𝜂 �
𝑚𝑚𝑡𝑡�

�𝑣𝑣𝑡𝑡� + 𝜖𝜖
+ 𝜆𝜆𝜃𝜃𝑡𝑡−1� (26) 

where the weight decay coefficient 𝜆𝜆 =0.05, the initial 
learning rate 𝜂𝜂=3e-5, θt  denotes the model parameter at 
step t, 𝜖𝜖  is a numerical stability constant, and 𝑚𝑚𝑡𝑡� , 𝑣𝑣𝑡𝑡�  
represent bias-corrected first-moment and second-moment 
estimates, respectively. 
The learning rate was dynamically adjusted during training 
via a Cosine Annealing scheduler with linear warmup 
(Equation (27)): 
𝜂𝜂𝑡𝑡

=

⎩
⎨

⎧𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 +
1
2 (𝜂𝜂 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚)

𝑡𝑡
𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

              𝑡𝑡 < 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 +
1
2 (𝜂𝜂 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚) �1 + cos �

𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

��   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (27)

where the minimum learning rate 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 is set to 0.001 times 
the initial learning rate, the warmup period 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is 30 
epochs, and the cosine decay period Tmax accounts for 70% 
of the total epochs. Empirical results demonstrate that 
AdamW with this scheduler reduced overfitting while 
maintaining stable convergence. 

This study employed translation augmentation to 
enhance the ECG image dataset. This approach boosted 
model generalization, reduced overfitting risks, and 
preserved critical waveform attributes (morphology, 
amplitude, duration). During training, images were 
randomly translated along temporal and voltage axes by 
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≤10% of image dimensions, simulating natural variations 
such as temporal phase shifts and electrode-induced 
baseline drift. Original ECG images are shown in Figure 
7a, while the augmented results are displayed in Figure 7b. 

(a) Original

(b)After translation augmentation

Figure 7. Original and translated enhanced images 

3. Experiments and Results

3.1 Datasets and Evaluation Metrics 

To validate the ECG classification performance and 
feature fusion efficacy of the Swin-LGF-FPN model, two 
independent public datasets were utilized: the ECG Images 
Dataset of Cardiac Patients and the PTB-XL dataset. Their 
key characteristics were detailed in Table 1. 

The first dataset, the ECG Images dataset of Cardiac 
Patients, was a public repository curated by the Ch. Pervaiz 
Elahi Institute of Cardiology, Multan, Pakistan [35]. It 
comprised 928 patient records spanning four diagnostic 
categories, featuring 12-lead ECG images acquired via 
tele-health diagnostic tools. All images exceeded 800 KB 
in file size, with representative samples illustrated in 
Figure 8. 

The second dataset, PTB-XL, was a large-scale public 
ECG database that contained 21,837 clinical 12-lead 
recordings from 18,885 patients, each spanning 10 seconds 
[36]. Its multi-label coexistence and broad age/gender 
distribution reflected real-world complexity, although the 
original data were in digital signal format. To ensure 
compatibility with image-based models, signals were 
converted into a standardized image format (matching the 
resolution and lead layout of the ECG Images Dataset of 
Cardiac Patients) using ECG-Image-Kit [37] (Figure 9). 
PTB-XL employed super-class annotation (5 labels) for 
fair benchmarking. 

Figure 8. Sample images from the ECG Images 
dataset of Cardiac Patients 

Figure 9. Sample images converted from the PTB-
XL dataset 

Table 1. Summary statistics of the two datasets 

Dataset Number of
Classes Class Name Total 

Samples 
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ECG Images 
Dataset of 
Cardiac 
Patients 

4 

Abnormal Heartbeats, 
Myocardial Infarction, 
History of Myocardial 

Infarction, Normal 
Heartbeats 

928 

PTB-XL 5 

Normal, Myocardial 
Infarction, ST-T 

Changing, Conduction 
Disturbance, 
Hypertrophy 

21837 

Both datasets underwent stratified random sampling 
without replacement: 20% per class was allocated to 
validation sets, while the remaining 80% was used for 
training. Fixed random seeds ensured reproducibility of 
this split. 

Comprehensive evaluation of Swin-LGF-FPN on the 
ECG Images Dataset of Cardiac Patients and PTB-XL 
datasets utilizes standard classification metrics: Overall 
Accuracy, Specificity, Recall, Precision, and F1 Score. 
Mathematical definitions are given by Equation (28)-(32): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
(28) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(29) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(30) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(31) 

𝐹𝐹1 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(32) 

where TP, TN, FP, and FN denote True Positives, True 
Negatives, False Positives, and False Negatives, 
respectively. 

As complementary to standard metrics, Receiver 
Operating Characteristic (ROC) curves assess model 
classification performance and generalization capability. 
These curves graphically represent the trade-off between 
True Positive Rate (TPR) and False Positive Rate (FPR) at 
varying classification thresholds. Through continuous 
adjustment of classification thresholds 𝜏𝜏, each threshold-
specific point ( 𝑇𝑇𝑇𝑇𝑇𝑇(𝜏𝜏) ,  𝐹𝐹𝐹𝐹𝐹𝐹(𝜏𝜏) ) is computed via 
Equations (33)-(34). Sequentially connecting these points 
generates curves that visually validate the model's 
discriminative capacity for distinguishing positive and 
negative samples [38]. 

𝑇𝑇𝑇𝑇𝑇𝑇(𝜏𝜏) =
∑ 𝐼𝐼𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑖𝑖 ≥ 𝜏𝜏)

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(33) 

𝐹𝐹𝐹𝐹𝐹𝐹(𝜏𝜏) =
∑ 𝐼𝐼𝑗𝑗𝑗𝑗 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑗𝑗 ≥ 𝜏𝜏)

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(34) 

The core evaluation metric for ROC curves is the Area 
Under the Curve (AUC), representing the area beneath the 
ROC curve, defined by Equation (35). 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑇𝑇𝑇𝑇𝑇𝑇(𝐹𝐹𝐹𝐹𝐹𝐹) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1

0
 (35) 

3.2 Experimental Setup 

Experimental hardware comprised an NVIDIA GeForce 
RTX 4070 Ti GPU (16GB VRAM) paired with an Intel 
Core i5-14600KF processor. Software environments 
utilized Python 3.12 and the PyTorch framework. During 
training, each epoch updated model parameters based on 
the training set, with performance evaluated on the 
validation set. A unified batch size of 16 was employed 
across all datasets to optimize the trade-off between 
computational efficiency and model performance. It is 
known that smaller batches increase parameter update 
frequency, which accelerates convergence but extends 
training duration, while larger batches demand greater 
GPU memory resources. Iterative testing confirmed that a 
batch size of 16 maintained an optimal balance between 
training efficiency and model effectiveness. 

To prevent overfitting and enhance generalization, an 
early stopping criterion was implemented to terminate 
training if the validation loss failed to decrease for 15 
consecutive epochs. The embedding dimension was set to 
96 to fully characterize ECG signal details and higher-
order features. Preliminary experiments had established 96 
as the optimal value for preserving critical features while 
controlling model complexity. To accelerate computation, 
enhance training stability, and reduce memory footprint, 
the proposed model adopted mixed-precision training 
(FP16) with L2-norm gradient clipping at a maximum 
threshold of 0.5, thereby preventing gradient explosion. 

3.3 Performance comparison of ECG image 
classification 

To validate the superior ECG image classification 
performance of Swin-LGF-FPN and assess feature fusion 
efficacy, we benchmarked against established state-of-the-
art image classification models: ResNet-34, Vision 
Transformer (ViT), MobileViT, and ConvNeXt. As 
evidenced in Table 2 and Table 3, the proposed model 
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consistently significantly surpassed all baselines across 
every metric on both datasets. 

The proposed model achieved an overall accuracy of 
0.9945 and an F1-score of 0.9945 in Table 2, with 
specificity reaching 0.9983. In Table 3, notwithstanding 

class imbalance in PTB-XL, the model maintained robust 
generalization capability and high performance levels. To 
visually demonstrate cross-model performance disparities, 
Figures 10 and 11 compare overall accuracy and F1-scores 
across models on both datasets.

Table 2. Comparison with baseline methods on the ECG Images dataset of the Cardiac Patients dataset 

Method Overall 
accuracy Specificity Recall Precision F1-Score 

Resnet-34 0.9672 0.9889 0.9607 0.9679 0.9669 
Vision-

Transformer 0.9727 0.9907 0.9652 0.9726 0.9722 

MobileViT 0.9781 0.9925 0.9781 0.9783 0.9781 
Swin Transformer 0.9891 0.9966 0.9891 0.9897 0.9890 

ConvNeXt 0.9891 0.9964 0.9891 0.9893 0.9891 
Our Model 0.9945 0.9983 0.9945 0.9947 0.9945 

Table 3. Comparison with baseline methods on the PTB-XL dataset 

Method Overall 
accuracy Specificity Recall Precision F1-Score 

Resnet-34 0.7698 0.9250 0.7698 0.7717 0.7604 
Vision 

Transformer 0.7713 0.9257 0.7713 0.7690 0.7630 

MobileViT 0.7727 0.9286 0.7727 0.7700 0.7676 
Swin Transformer 0.7779 0.9334 0.7779 0.7804 0.7764 

ConvNeXt 0.7765 0.9313 0.7765 0.7752 0.7733 
Our Model 0.7894 0.9336 0.7894 0.7840 0.7842 

Table 4. Ablation study of different components on the PTB-XL dataset 

Method Overall 
accuracy Specificity Recall Precision F1-Score 

Backbone only 0.7779 0.9334 0.7779 0.7804 0.7764 
without ECG-LGF 

Module 0.7843 0.9326 0.7843 0.7788 0.7797 

without FPN Neck 
Network 0.7819 0.9267 0.7819 0.7761 0.7694 

without Feature 
Refinement 0.7860 0.9314 0.7860 0.7829 0.7804 

Proposed Method 0.7894 0.9336 0.7894 0.7840 0.7842 
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Figure 10. Model performance comparison 
(Accuracy & F1) on the ECG Images dataset of 

Cardiac Patients 

Figure 11. Model performance comparison 
(Accuracy & F1) on PTB-XL dataset 

Figure 12. ROC curve of the proposed method on 
PTB-XL 

Figure 13. Ablation model performance comparison 
(Accuracy & F1) on the PTB dataset 

To validate generalization on complex ECG data, the 
ROC curves on PTB-XL (Figure 12) showed that AUC 
values were stably distributed between 0.90 and 0.94. The 
consistent curve morphology indicated a balanced 
discriminative capacity across pathologies, confirming 
sustained diagnostic robustness in heterogeneous ECG 
data. The performance variations between the PTB-XL 
dataset and the ECG Images Dataset of Cardiac Patients 
objectively reflected real-world clinical challenges, such 
as diagnostic heterogeneity, signal noise, and acquisition-
device discrepancies. 

Ablation studies validated the necessity of each 
component by sequentially removing the ECG-LGF 
Module, FPN Neck Network, and Feature Refinement 
Module, using the Swin Transformer backbone-only as the 
baseline reference (Table 4). Considering the limited data 
volume of the ECG Images Dataset of Cardiac Patients 

(928 images), which was insufficient for thoroughly 
validating model components in complex diagnostic 
environments, the PTB-XL dataset was selected as the 
primary ablation platform due to its advantages in clinical 
complexity and annotation scale. Figure 13 visually 
compares performance disparities (overall accuracy and 
F1-score) among the ablation variants on PTB-XL. 

The results demonstrated that the full model (Proposed 
Method) achieved optimal metrics. Removing any 
component degraded performance, confirming the 
architectural integrity and effectiveness. Although all 
ablation variants surpassed the backbone-only baseline in 
overall accuracy, the variant without the FPN Neck 
Network exhibited a 0.7% F1-score reduction versus the 
backbone and a 1.48% decline relative to the full model, 
representing the most significant performance drop. This 
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evidenced the critical role of FPN in multi-scale feature 
integration. 

3.4 Grad-CAM-Enhanced Decision 
Interpretability 

To enhance model interpretability and clinical 
credibility, this study employed Grad-CAM, a gradient-
based visualization technique [39]. The computation 
followed Equation (36) and Equation (37): 

𝛼𝛼𝑘𝑘𝑐𝑐 =
1
𝑧𝑧
� �

𝜕𝜕𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗𝑖𝑖

(36) 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(� 𝛼𝛼𝑘𝑘𝑐𝑐
𝑘𝑘

𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘 ) (37) 

where 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 is the prediction score of the target class c, 𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘  
is the k-th feature map, 𝛼𝛼𝑘𝑘𝑐𝑐  is the importance weight of 
feature map k for class c, and 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  is the class 
activation map with original resolution. 

Grad-CAM localized model decision-critical regions by 
computing target-class gradients relative to final 
convolutional features, generating weight coefficients 
through global average pooling, linearly combining 
weighted feature maps with ReLU activation, and up-
sampling to input resolution. Figure 14 visualizes Swin 
Transformer's attention overlays, contrasting with our 
proposed model's results in Figure 15. Red/yellow regions 
indicated high model attention during decisions, while 
blue/purple areas denoted low attention. Although Swin 
Transformer captured overall waveform trends, its global 
attention mechanism induced gradient smoothing effects 
that dispersed attention and blurred critical node 
localization, weakening pathological focus. Conversely, 
our model demonstrated enhanced focus specificity. 

(a) Normal (b) ST-T Changing

Figure 14. Examples of attention overlay visualization generated by Swin Transformer. 

(a) Myocardial Infarction (b) ST-T Changing

Figure 15. Examples of attention overlay visualization generated by Swin-LGF-FPN. 
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4. Conclusions

(1) This work proposed the Swin-LGF-FPN, a Swin
Transformer-based architecture for ECG image classification.
The backbone network extracted multi-scale features from
preprocessed ECG images, which were enhanced by the
ECG-LGF Module to refine waveform-specific feature
representation. A Feature Pyramid Networks (FPN) served as
the neck network, fusing multi-scale features to preserve local 
morphology and capture axial-temporal dependencies
through global context modeling, thus enabling intelligent
ECG classification.

During training, Focal Loss was employed to mitigate 
class imbalance, while the AdamW optimizer with a Warmup 
Cosine Annealing scheduler was used to ensure stable 
convergence and prevent overfitting. Translation 
augmentation of ECG images was applied to enhance model 
generalization. 

Evaluations on public ECG datasets (the ECG Images 
Dataset of Cardiac Patients and PTB-XL) showed that the 
proposed model achieved efficient classification with 
superior performance across all key metrics compared to 
baseline methods. ROC curves on PTB-XL confirmed robust 
generalization under complex data distributions, while 
ablation studies validated the essential contributions of each 
architectural component. Grad-CAM visualizations 
demonstrated that, in contrast to the dispersed attention 
patterns of baseline models, our model exhibited a 
concentrated focus on pathological regions within ECG 
waveforms, enhancing interpretability. 

The findings suggest that this model has the potential to 
transform ECG diagnostics through data-driven intelligence, 
providing clinical decision support that could enable 
population screening, rapid triage, and timely referral. By 
shifting from experience-based to data-driven interpretation 
paradigms, it may enhance early detection and intervention 
for cardiovascular diseases. Given the current performance 
limitations of image-based ECG classification on complex 
multi-label datasets such as PTB-XL, we emphasize that it 
should be designated as a clinical adjunct tool rather than a 
diagnostic replacement. 
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