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Abstract

INTRODUCTION: Clinical 12-lead Electrocardiogram (ECG) image classification faces key limitations, including
insufficient capture of fine-grained waveform details, compromised integration of local-global rhythmic contexts, and
suboptimal modeling of multi-lead spatial relationships.

OBJECTIVES: This study aimed to propose Swin-LGF-FPN, an intelligent image classification model based on Swin
Transformer architecture, to address these challenges and improve the accuracy of ECG image classification for early
cardiovascular disease screening.

METHODS: The enhanced framework integrated multi-scale Feature Pyramid Network (FPN) modules with an improved
Swin Transformer backbone to effectively fuse local and global features. Axial Temporal Attention was incorporated to
strengthen temporal feature extraction across ECG waveforms. Gradient-weighted Class Activation Mapping (Grad-CAM)
visualizations were used to demonstrate feature saliency. The model was validated on two publicly available datasets: the
ECG Images dataset of Cardiac Patients and PTB-XL, with performance compared against baseline models including
ResNet-34 and Vision Transformer (ViT).

RESULTS: The results indicated that Swin-LGF-FPN significantly outperformed baseline models in key metrics, including
overall accuracy and F1-score. Grad-CAM visualizations showed significantly enhanced feature saliency in critical regions,
as evidenced by heatmaps superimposed on original images.

CONCLUSION: The Swin-LGF-FPN model effectively classifies ECG images, showing robust performance and promising
translational potential for early cardiovascular disease screening.
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1. Introduction echocardiography, cardiac MRI, CT) and laboratory

) ) . biomarkers [2]. As a non-invasive cardiac signal recording
Cardiovascular diseases (CVDs), the leading global cause of technique, ECG is essential for early screening, disease
mortality, claim approximately 17.9 million lives annually  , cocoment, and treatment monitoring, given its painlessness,
according to the World Health Organization. Early | o ot operational simplicity, and clinical availability.
prevention and appropriate intervention for CVDs are critical These advantages underpin its status as a first-line diagnostic

to improve prognosis in high-risk populations [1]. Current (1 ondorsed by clinical guidelines [3,4].
CVD detection spans imaging modalities (ECG,
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Conventional ECG analysis depends on physician-based
manual interpretation, entailing significant time and resource
expenditures. With advances in artificial intelligence (Al),
machine learning (ML) increasingly enables automated ECG
abnormality detection [5,6]. Existing ML-based ECG
analysis techniques primarily process raw temporal data from
single-lead or multi-lead signals [7], categorized into two
paradigms:

(1) Feature-engineering-based methods, which require
expert-guided manual annotation of key characteristic points
(e.g., R-peaks, QRS onset/offset) to build classification
models [8];

(2) End-to-end deep learning approaches that directly learn
abstract representations from raw signals or transformed
images, thus minimizing human intervention [9].

Feature-engineering-based methods primarily employ
composite features from specific waveforms, intervals,
segments, or peaks [10,11]. Liu [12] developed an arrhythmia
classification framework combining an enhanced dual-branch
SE-ResNet with expert-defined features. Kraft [13]
implemented a 1D U-Net architecture using convolutional
blocks for QRS complex detection in normal sinus rhythm
and premature ventricular contractions. Wu [14] achieved
high-precision R-peak detection by applying a squared
window variance transform to enhance QRS complexes and
suppress noise, coupled with adaptive thresholding.
Katamreddi [15] employed dual-tree complex wavelet
transforms to extract morphological features and isolate R-
peaks. Abdel-Rahman [16] adapted Faster R-CNN to
estimate QRS duration from sparsely annotated ECG images.
Despite strong clinical interpretability, such methods may
compromise diagnostic integrity due to dissociation of local
features from global rhythm patterns.

Compared with the substantial dependence of feature
engineering on expert priors, end-to-end deep learning
approaches directly learn intrinsic representations from raw
ECG data. These methods are broadly categorized into two
paradigms: raw signal-based and image-based techniques.
Mantravadi [17] developed a lightweight multi-scale fusion
network (CLINet) that achieved 99.94% accuracy on the
MIT-BIH arrhythmia database. Fan [18] proposed the
KEMT-MCAN framework to extract complex temporal
features using a multi-level cross-attention network. Ahmad
[19] converted raw ECG signals into three representations:
Gramian angular fields, recurrence plots, and Markov
transition fields, proposing dual multimodal fusion
frameworks (MIF/MFF). Weimann [20] improved atrial
fibrillation classification performance by 6.57% through
CNN pre-training on large-scale raw ECG datasets with
subsequent fine-tuning. Zhou [21] integrated hybrid-scale
features with lead-encoder attention (LEA) mechanisms to
fuse morphological-temporal information.

Although raw ECG signal-based classification achieves
high precision, it faces two fundamental constraints. First, the
scarcity of high-quality labeled datasets arises from stringent
patient privacy regulations and ethical barriers, limiting
publicly available resources. Existing databases typically
have restricted sample sizes. For instance, the MIT-BIH
Arrhythmia Database includes just 47 patient records [22],

while the American Heart Association (AHA) database
contains only 154 subjects [13]. Second, printed or digital
ECG images are ubiquitous in medical institutions owing to
universal applicability and archival convenience [23],
offering a practical data source overcoming limitations in
ECG anomaly classification.

Recent research has prioritized deep learning and
computer vision techniques for direct diagnostic information
extraction from ECG images. Jothiaruna [24] proposed a
MobileNet-FPN architecture combining multi-scale feature
maps with single-shot detectors (SSD) for anomaly
localization, introducing weighted sigmoid focal loss to
mitigate class imbalance and enhance pathological region
detection. Demolder [25] developed a fully automated, deep
learning-based ECG digitization method that achieves high-
fidelity signal conversion from smartphone-captured images
(PM-ECG-ID database) through grid correction and signal
reconstruction. Sadad [26] designed an IoT-enabled cardiac
monitoring system using lightweight CNNs with attention
modules for four-class cardiac state classification. Hao [27]
introduced an automated myocardial infarction screening
framework for 12-lead ECG images, utilizing text-based lead
segmentation with multi-branch feature extraction and deep
fusion classification. Cao [28] proposed a weakly supervised
fine-grained model identifying abnormalities in unprocessed
ECG images using only image-level annotations. Fatema [29]
applied artifact-removal preprocessing to enhance ECG
image quality, constructing an InResNet-106 architecture
integrating InceptionV3 and ResNet50. Khalid [30]
introduced ECGConVT, fusing CNNs with Vision
Transformers for myocardial infarction and arrhythmia
classification via multilayer perceptron fusion. Ma [31]
developed Mamba-RAYOLO, incorporating multi-branch
feature extraction, dynamic attention mechanisms, and spatial
fusion for real-time ECG image classification.

Although existing ECG image classification methods
enhance feature extraction capabilities, they typically suffer
from poor interpretability and frequently neglect spatial
correlations across multi-lead configurations. Crucially,
classification performance depends on precise fusion of local
waveform details with global rhythm patterns, while
confronting challenges such as lead spatial misalignment,
limited image resolution, information loss, and interference
from clinical annotations [28]. These factors substantially
increase feature extraction and classification complexity.

To address these limitations, we developed Swin-LGF-
FPN, an enhanced ECG image classification model based on
Swin Transformer. The proposed model offers a novel
approach for Al-assisted ECG interpretation, demonstrating
potential for integration into clinical workflows. The
principal contributions were:

(1) To enhance the model's capacity for perceiving details in
key ECG waveforms and for integrating multi-scale features,
the model incorporated a deep integration of the hierarchical
windowed attention mechanism from the Swin Transformer
and leveraged the strengths of the Feature Pyramid Network
(FPN) in multi-scale feature extraction.

(2) The proposed ECG-LGF module enhanced local-global
feature integration via an Axis-aware Temporal Attention
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(ATA) mechanism, which sharpened the model's focus on
diagnostically salient temporal features in ECG waveforms
and augmented its overall feature extraction power.

(3) The model demonstrated superior performance across
multiple evaluation metrics on two independent public ECG
datasets, quantitatively confirming its efficacy in ECG image
classification. Furthermore, Grad-CAM visualizations
revealed that the model's decisions were consistently driven
by pathologically critical features.

2. Proposed Methodology

The overall workflow of this study is schematically
illustrated in Figure 1. Figure 2 depicts the architecture of the
proposed Swin-LGF-FPN model. This model was designed
to improve discriminatory accuracy for pathological
categories through the extraction and fusion of features across
multiple spatial scales and hierarchical levels in ECG images.
An optimized Swin Transformer backbone was employed to
extract multi-level features, which were subsequently
enhanced by an ECG-LGF module and integrated into a
multi-scale feature pyramid via an FPN neck. The final
classification output was generated by a classifier. To address
class imbalance in the dataset, Focal Loss was utilized during
training, while translation augmentation was applied to
mitigate overfitting.
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Figure 2. Structure of the proposed Swin-LGF-FPN model
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Figure 3. Workflow of Image Preprocessing

2.1 Image Preprocessing

Before model input, raw ECG images were processed
through a preprocessing workflow (Figure 3) to remove
redundant components, including background grid lines
and header/footer annotations. This process mitigated
noise interference in feature extraction, prevented feature
acquisition bias, and reduced prediction distortion,
consequently improving the accuracy of ECG
classification [29]. Following vertical-edge cropping,
canny edge detection was applied to precisely identify
ECG waveform boundaries. This step comprised
computing gradient magnitude and orientation via the
Sobel operator, with subsequent subpixel edge localization
achieved through non-maximum suppression and double-
threshold hysteresis. The gradient magnitude G and

direction 6 are calculated as:

G = /G§ + G2 ey

Gy
0 = arctan (—) 2)
Gy

where G# and G are the convolution results of the Sobel
operator.

A composite morphological operation combining
opening and closing was implemented to eliminate minor
noise artifacts and fill small cavities in binary edge images,
thereby enhancing edge smoothness and continuity. This
process utilizes closing to fill internal cavities and opening
to remove isolated noise points. The combined operation
is mathematically defined in Equation (3).

Ienhancea = [Ucanny @ Bs) © Bs| © Bs @ Bs  (3)
where Ionnancea 1S the image after closing-opening
operations, I.gnny is the canny edge detection result,

and © represent dilation and erosion operators,

2 EA

respectively, and B; denotes a 3x3 structuring element.
Morphological closing executes dilation before erosion,
whereas opening performs erosion before dilation.

Otsu's adaptive thresholding method eliminated
background interference while separating ECG waveforms
from the background. The optimal threshold T is
automatically determined through inter-class variance

maximization, as formulated in Equation (4).

T = arg masslaoMon DD <P
. _(1 lenhancea(%,y) > T*
Irina(x,y) = { 0 otherwise

where w, (T) is the proportion of pixels in the background
area, w, (T) is the proportion of pixels in the waveform
area, [y(T) is the average gray level of the background
area, U (T) is the average gray level of the waveform area,
and Iring (x,y) is the value of the binarized image at
position (x, y).

Computational efficiency and ECG waveform edge
feature preservation were balanced by resizing pre-
processed ECG images to 640 pixels via image scaling.
This standardization optimized input quality for

subsequent model training.

2.2 Swin Transformer Backbone Network

Functioning as the backbone network, the optimized Swin
Transformer balanced computational efficiency and global
modeling capability using Window Multi-Head Self-
Attention (W-MSA) and Shifted Window Multi-Head Self-
Attention (SW-MSA). Hierarchical feature maps were
generated through a four-stage downsampling, with an
enhanced Local-Global Feature Fusion Module (ECG-
LGF Module) integrated at each stage terminus to augment

ECG waveform feature extraction.
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Following Patch Embedding, preprocessed ECG images
were processed through the four-stage Swin Transformer
backbone. Three critical operations enabled hierarchical
feature extraction:

(1) Intra-stage computation: Multiple consecutive Swin
Transformer blocks per stage facilitated cross-window
global context modeling with reduced computational
complexity. Figure 4 illustrates the core architecture,
where W-MSA and SW-MSA [32] underwent alternate
computation governed by Equations (5)-(8), where F;_,
denotes the input features to the Swin Transformer block,

and F;,, represents the output features from the block.

Fioq = W — MSA(LN(F;3)) + Fi_, (5)
F; = MLP(LN(F;-1)) + Fi—4 (©)
Fiyp = SW — MSA(LN(F)) + F; (7)
Fiya = MLP(LN(Fi41)) + Fiyq ®

(2) Inter-stage downsampling: A Patch Merging layer was
employed to connect consecutive stages, halving spatial
resolution while doubling channel depth to generate
downsampled features for the next stage.

(3) Stage-terminal enhancement: An ECG-LGF Module
was integrated following each stage, taking the Swin
Transformer block's output features as input to fuse local

features with global rhythm patterns.

2.3 ECG-LGF Module

To enhance the model's synergistic perception of both local
morphological details in ECG waveforms and global
rhythm patterns, an ECG-LGF Module incorporating
Axial Temporal Attention (ATA) for ECG signals was

Fip Fiy F;

proposed, with its detailed architecture depicted in Figure
5. This module consisted of two parallel pathways defined
by Equation (9) and Equation (10):

(a) Local pathway: Depthwise separable convolution
(DWConv;y3) extracted local features, succeeded by 1x1
convolution for channel adjustment, GroupNorm, and

GELU activation.

Local(x) ©)
= GELU(GroupNorm(Conv,x, (DWConvzy3(x))))

(b) Global pathway: Global max pooling captured image-
level features, upsampled to original spatial dimensions

through 1x1 convolution and GELU activation.

Global(x) = Upsample(GELU (Conv, x4 (10)
(Global_Max_Pool(x))))

Channel-wise concatenation of dual-path output

features was performed according to Equation (11):
f = Concat(Local(x), Global(x)) (11)
The fused features underwent channel compression

and normalization via a 1x1 convolution and GroupNorm,

as mathematically defined in Equation (12):

fi = (GroupNorm(Conv,;(f))) (12)
The ATA mechanism augmented temporal features in

key waveform regions along the ECG image's horizontal
axis using adaptive weighting. Spatial weight mappings
were acquired by two successive 1x1 convolutional layers
separated by GELU activation. The axial temporal
attention weight map is generated through a Sigmoid
function (o), which modulates the feature tensor f; by

element-wise multiplication (©):
Axial_Attn

= £,00(Convy, (GELU (Convy (£))) (13

Fiyq Fiiz

Figure 4. Structure of Swin Transformer Block.
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Figure 5. Structure of ECG-LGF Module.
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Figure 6. Structure of FPN Neck Network.

The ATA-weighted features were combined with the
module's original input via residual connection, yielding

enhanced output features as formulated in Equation (14):
Foue = Axial_Attn + x (14)
Integrating local details,

rhythm patterns, and the ATA mechanism, the ECG-LGF

Module produced optimized hierarchical feature maps for

morphological global

the backbone network. These maps are transferred directly
to the FPN neck, maintaining original information while
improving discriminative feature extraction of key
waveforms. The enhanced feature maps delivered spatially
and semantically expressive representations to support

subsequent ECG image classification.

2.4 FPN Neck Network

A Feature Pyramid Network (FPN) integrated multi-level
features optimized by the ECG-LGF Module from the
backbone, transmitting deep-layer semantic information to
shallow high-resolution features. This constructed a
feature pyramid with complementary spatial resolution and
semantic content, as illustrated in Figure 6.

A dual-path

residual architecture was employed. The primary path

(1) Channel alignment transformation:

utilized 3x%3 convolution for simultaneous spatial feature
extraction and channel dimension transformation, while
the residual path achieved low-complexity channel
alignment via 1x1 convolution. Both paths fused outputs
through eclement-wise addition, mitigating gradient
vanishing while enhancing information integrity through
original feature preservation. For each hierarchy level i, the

channel alignment transformation followed Equation (15):
F; = ReLU (BN (Convs,s (F{™))) (15)

+ BN (Convy x4 (F™))

Where F; denotes the transformed output, FI" denotes the
input feature map, and BN denotes Batch Normalization.

(2) Top-down feature fusion: Utilizing aligned multi-scale

features, this module is initiated from the highly abstract

top-level features (F,). It upsampled features to match

adjacent lower-level spatial dimensions via bilinear

interpolation (Equation (16)), then fused the upsampled

results with current-level aligned features (F3) through

element-wise addition. The fused features (F3,) iteratively

propagated downward for subsequent layer-wise
integration.
U(F)—ZZF[C R, w'] - B(h— aph')
' (16)
ﬁ (w —ayw )

Where c is the number of feature channels, h”is the time
axis coordinate of the feature map, and w is the lead axis
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coordinate of the feature map, ay, is the time axis scaling
ratio, and a,, is the lead axis scaling ratio.

The top-down fusion module produced three
hierarchical outputs (Equations (17)-(19)). High-level
features encapsulated global rhythm characteristics, while
low-level features preserved local waveform morphology.
Their element-wise summation intrinsically combined

rhythm and morphological information across scales.

F34=U(F4)+F3 (17
Fyza = U(F34) + F, (18)
Fio34 = U(Fp34) + Fy (19)

(3) Feature refinement module: This module suppressed
discontinuous artifacts from direct cross-scale fusion by
optimizing the spatial smoothness of fused features. The
refined output produced the feature pyramid's final feature
map FP'"* as defined in Equation (20)-(23).
FP*t = ReLU(Convsy3(BN(F,))) (20)
F9* = ReLU(Convsy3 (BN (U(F,) + F3))) 21
F{* = ReLU(Convsus(BN(U(F54) + F2)))  (22)
FP"t = ReLU(Convsy3(BN(U(Fa34) + F1)))  (23)
These

morphological details and encoded global rhythm

refined feature maps preserved critical

semantics, constituting a hierarchical pathological
representation. Cross-scale fusion amplified pathological
signatures across resolutions, enhancing adaptability to
lesion size variations while delivering multi-semantic
features for classification.

Multi-scale feature maps extracted from the FPN were
first processed by global average pooling and flattening.
Their contributions were then balanced through a weighted
fusion mechanism employing learnable weights, followed
by layer normalization. The resulting normalized features
were finally fed into a two-layer multilayer perceptron

(MLP) for classification:
Your = Wy - Dropout (I y (GELU(Wyx + by)))
+ b,
Where x is the weighted fused feature vector, W is the

24

weight matrix, and b represents the bias vector, [}y
denotes the Layer Normalization operation, Dropout
stands for the operation of randomly dropping neurons
during training, and y . represents the final classification

prediction score.

2.5 Training process optimization

During model training, Focal Loss, an AdamW optimizer
coupled with a linear Warm-up Cosine Annealing
scheduler, and translation augmentation were employed to
mitigate class imbalance and overfitting risks while
enhancing model accuracy.

Focal Loss modified the standard Cross-Entropy loss
[33] by down-weighting the loss contributions from easy-
to-classify samples and focusing training on hard examples,
which helped mitigate class imbalance in training data as
defined in Equation (25).

Focal Loss(p,) = —a.(1 - p.)" log(p,) (25)
where p; is the prediction probability of the model for the
correct class, y is the adjustable focusing parameter, and o,
is the class balance weight.

Throughout the training process, AdamW utilized
decoupled weight decay to enhance regularization in
parameter updates, countering overfitting [34]. Equation
(26) mathematically defines this training-specific
mechanism:

m
0, =0i1—7 ( —
Joite

where the weight decay coefficient 1=0.05, the initial

+ /19H> (26)

learning rate n=3e-5, 0, denotes the model parameter at
step ¢, € is a numerical stability constant, and m; , U;
represent bias-corrected first-moment and second-moment
estimates, respectively.

The learning rate was dynamically adjusted during training

via a Cosine Annealing scheduler with linear warmup

(Equation (27)):
Nt
( 1 t
_ Nmin + ?(n - nmin) m . t< Twarm (27)
Nmin + E(n - nmin) [1 + cos ( Y\Tarm)] else
max

where the minimum learning rate 7,,,;,, is set to 0.001 times
the initial learning rate, the warmup period T, 4-m 1S 30
epochs, and the cosine decay period Ty, ., accounts for 70%
of the total epochs. Empirical results demonstrate that
AdamW with this scheduler reduced overfitting while
maintaining stable convergence.

This study employed translation augmentation to
enhance the ECG image dataset. This approach boosted
model generalization, reduced overfitting risks, and
preserved critical waveform attributes (morphology,
amplitude, duration). During training, images were

randomly translated along temporal and voltage axes by
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<10% of image dimensions, simulating natural variations
such as temporal phase shifts and electrode-induced
baseline drift. Original ECG images are shown in Figure

7a, while the augmented results are displayed in Figure 7b.
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Figure 7. Original and translated enhanced images

3. Experiments and Results

3.1 Datasets and Evaluation Metrics

To validate the ECG classification performance and
feature fusion efficacy of the Swin-LGF-FPN model, two
independent public datasets were utilized: the ECG Images
Dataset of Cardiac Patients and the PTB-XL dataset. Their
key characteristics were detailed in Table 1.

The first dataset, the ECG Images dataset of Cardiac
Patients, was a public repository curated by the Ch. Pervaiz
Elahi Institute of Cardiology, Multan, Pakistan [35]. It
comprised 928 patient records spanning four diagnostic
categories, featuring 12-lead ECG images acquired via
tele-health diagnostic tools. All images exceeded 800 KB
in file size, with representative samples illustrated in

Figure 8.

2 EA

The second dataset, PTB-XL, was a large-scale public
ECG database that contained 21,837 clinical 12-lead
recordings from 18,885 patients, each spanning 10 seconds
[36]. Its multi-label coexistence and broad age/gender
distribution reflected real-world complexity, although the
original data were in digital signal format. To ensure
compatibility with image-based models, signals were
converted into a standardized image format (matching the
resolution and lead layout of the ECG Images Dataset of
Cardiac Patients) using ECG-Image-Kit [37] (Figure 9).
PTB-XL employed super-class annotation (5 labels) for

fair benchmarking.

e it

a1 *I?‘—‘T"'Y“‘ S35 o LR S " R Tl
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I u.quvqlr»A_,—‘f T VPSR P T J /j_l

I A\ (‘_,A,Jpv\y\ aneandd r,er _/‘Jf/‘ A l,-\.JL\kJr,
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Figure 8. Sample images from the ECG Images
dataset of Cardiac Patients

Figure 9. Sample images converted from the PTB-
XL dataset

Table 1. Summary statistics of the two datasets

Total
Samples

Number of

Dataset Classes

Class Name
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Abnormal Heartbeats,

Egg;;gffgs Myocardial Infarction,
. 4 History of Myocardial 928
Cardiac .
Patients Infarction, Normal
Heartbeats
Normal, Myocardial
Infarction, ST-T
PTB-XL 5 Changing, Conduction 21837
Disturbance,
Hypertrophy

Both datasets underwent stratified random sampling
without replacement: 20% per class was allocated to
validation sets, while the remaining 80% was used for
training. Fixed random seeds ensured reproducibility of
this split.

Comprehensive evaluation of Swin-LGF-FPN on the
ECG Images Dataset of Cardiac Patients and PTB-XL
datasets utilizes standard classification metrics: Overall
Accuracy, Specificity, Recall, Precision, and F1 Score.

Mathematical definitions are given by Equation (28)-(32):

0 I _ TP+ TN (28)
veratt accuracy = Tp TN + FP + FN
TN
TSP 29
Specificity TN + FP (29)
TP
= 30
Recall TP+ FN (30)
Precision = TP 3D
recision = W
Precision X Recall
= X 32
F1=2 Precision + Recall (32)
where TP, TN, FP, and FN denote True Positives, True
Negatives, False Positives, and False Negatives,
respectively.

As complementary to standard metrics, Receiver
Operating Characteristic (ROC) curves assess model
classification performance and generalization capability.
These curves graphically represent the trade-off between
True Positive Rate (7PR) and False Positive Rate (FPR) at
varying classification thresholds. Through continuous
adjustment of classification thresholds 7, each threshold-
specific point ( TPR(t), FPR(t) ) is computed via
Equations (33)-(34). Sequentially connecting these points
generates curves that visually validate the model's
discriminative capacity for distinguishing positive and

negative samples [38].

i iti I(s;=27

TPR(T) — Zlé‘ posmv;;ar-nl_p;e:]sv ( i ) (33)
i i I(sj=7

FPR(T) _ Z}e negatu;f;]ar:p;; ( j ) (34)

The core evaluation metric for ROC curves is the Area
Under the Curve (AUC), representing the area beneath the
ROC curve, defined by Equation (35).

1
AUC = J- TPR(FPR) dFPR (35)
0

3.2 Experimental Setup

Experimental hardware comprised an NVIDIA GeForce
RTX 4070 Ti GPU (16GB VRAM) paired with an Intel
Core i5-14600KF processor. Software environments
utilized Python 3.12 and the PyTorch framework. During
training, each epoch updated model parameters based on
the training set, with performance evaluated on the
validation set. A unified batch size of 16 was employed
across all datasets to optimize the trade-off between
computational efficiency and model performance. It is
known that smaller batches increase parameter update
frequency, which accelerates convergence but extends
training duration, while larger batches demand greater
GPU memory resources. Iterative testing confirmed that a
batch size of 16 maintained an optimal balance between
training efficiency and model effectiveness.

To prevent overfitting and enhance generalization, an
early stopping criterion was implemented to terminate
training if the validation loss failed to decrease for 15
consecutive epochs. The embedding dimension was set to
96 to fully characterize ECG signal details and higher-
order features. Preliminary experiments had established 96
as the optimal value for preserving critical features while
controlling model complexity. To accelerate computation,
enhance training stability, and reduce memory footprint,
the proposed model adopted mixed-precision training
(FP16) with L2-norm gradient clipping at a maximum

threshold of 0.5, thereby preventing gradient explosion.

3.3 Performance comparison of ECG image
classification

To validate the superior ECG image classification
performance of Swin-LGF-FPN and assess feature fusion
efficacy, we benchmarked against established state-of-the-
art image classification models: ResNet-34, Vision
Transformer (ViT), MobileViT, and ConvNeXt. As
evidenced in Table 2 and Table 3, the proposed model
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consistently significantly surpassed all baselines across
every metric on both datasets.

The proposed model achieved an overall accuracy of
0.9945 and an Fl-score of 0.9945 in Table 2, with
specificity reaching 0.9983. In Table 3, notwithstanding

class imbalance in PTB-XL, the model maintained robust
generalization capability and high performance levels. To
visually demonstrate cross-model performance disparities,
Figures 10 and 11 compare overall accuracy and F1-scores

across models on both datasets.

Table 2. Comparison with baseline methods on the ECG Images dataset of the Cardiac Patients dataset

Method Overall Specificity Recall Precision F1-Score
accuracy
Resnet-34 0.9672 0.9889 0.9607 0.9679 0.9669
Vision- 0.9727 0.9907 0.9652 0.9726 0.9722
Transformer
MobileViT 0.9781 0.9925 0.9781 0.9783 0.9781
Swin Transformer 0.9891 0.9966 0.9891 0.9897 0.9890
ConvNeXt 0.9891 0.9964 0.9891 0.9893 0.9891
Our Model 0.9945 0.9983 0.9945 0.9947 0.9945
Table 3. Comparison with baseline methods on the PTB-XL dataset
Overall epr s ..
Method Specificity Recall Precision F1-Score
accuracy
Resnet-34 0.7698 0.9250 0.7698 0.7717 0.7604
Vision 0.7713 0.9257 0.7713 0.7690 0.7630
Transformer
MobileViT 0.7727 0.9286 0.7727 0.7700 0.7676
Swin Transformer 0.7779 0.9334 0.7779 0.7804 0.7764
ConvNeXt 0.7765 0.9313 0.7765 0.7752 0.7733
Our Model 0.7894 0.9336 0.7894 0.7840 0.7842
Table 4. Ablation study of different components on the PTB-XL dataset
Overall epe s ..
Method Specificity Recall Precision F1-Score
accuracy
Backbone only 0.7779 0.9334 0.7779 0.7804 0.7764
without ECG-LGF 0.7843 0.9326 0.7843 0.7788 0.7797
Module
without FPN Neck 0.7819 0.9267 0.7819 0.7761 0.7694
Network
without Feature 0.7860 0.9314 0.7860 0.7829 0.7804
Refinement
Proposed Method 0.7894 0.9336 0.7894 0.7840 0.7842
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Figure 11. Model performance comparison
(Accuracy & F1) on PTB-XL dataset

To validate generalization on complex ECG data, the
ROC curves on PTB-XL (Figure 12) showed that AUC
values were stably distributed between 0.90 and 0.94. The
consistent curve morphology indicated a balanced
discriminative capacity across pathologies, confirming
sustained diagnostic robustness in heterogeneous ECG
data. The performance variations between the PTB-XL
dataset and the ECG Images Dataset of Cardiac Patients
objectively reflected real-world clinical challenges, such
as diagnostic heterogeneity, signal noise, and acquisition-
device discrepancies.

Ablation studies validated the necessity of each
component by sequentially removing the ECG-LGF
Module, FPN Neck Network, and Feature Refinement
Module, using the Swin Transformer backbone-only as the
baseline reference (Table 4). Considering the limited data

volume of the ECG Images Dataset of Cardiac Patients

True Positive Rate
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Figure 12. ROC curve of the proposed method on
PTB-XL
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Figure 13. Ablation model performance comparison
(Accuracy & F1) on the PTB dataset

(928 images), which was insufficient for thoroughly
validating model components in complex diagnostic
environments, the PTB-XL dataset was selected as the
primary ablation platform due to its advantages in clinical
complexity and annotation scale. Figure 13 visually
compares performance disparities (overall accuracy and
F1-score) among the ablation variants on PTB-XL.

The results demonstrated that the full model (Proposed
Removing any
the
architectural integrity and effectiveness. Although all

Method) achieved optimal metrics.

component degraded performance, confirming
ablation variants surpassed the backbone-only baseline in
overall accuracy, the variant without the FPN Neck
Network exhibited a 0.7% F1-score reduction versus the
backbone and a 1.48% decline relative to the full model,

representing the most significant performance drop. This
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evidenced the critical role of FPN in multi-scale feature

integration.

3.4 Grad-CAM-Enhanced Decision
Interpretability

To enhance model interpretability and clinical
credibility, this study employed Grad-CAM, a gradient-
based visualization technique [39]. The computation

followed Equation (36) and Equation (37):
1 Your
c__ _Jout
ag zzizj aAi-‘]- (36)

LGrad—cam = ReLU(Zkali A{'{j (37)

where Y, is the prediction score of the target class c, Ai-‘]-
is the k-th feature map, aj, is the importance weight of
feature map k for class ¢, and LG,;4_can 1S the class

activation map with original resolution.

Grad-CAM localized model decision-critical regions by

computing target-class gradients relative to final
convolutional features, generating weight coefficients
through global average pooling, linearly combining
weighted feature maps with ReLU activation, and up-
sampling to input resolution. Figure 14 visualizes Swin
Transformer's attention overlays, contrasting with our
proposed model's results in Figure 15. Red/yellow regions
indicated high model attention during decisions, while
blue/purple areas denoted low attention. Although Swin
Transformer captured overall waveform trends, its global
attention mechanism induced gradient smoothing effects
that dispersed attention and blurred critical node
localization, weakening pathological focus. Conversely,

our model demonstrated enhanced focus specificity.

(a) Normal

(b) ST-T Changing

Figure 14. Examples of attention overlay visualization generated by Swin Transformer.
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Figure 15. Examples of attention overlay visualization generated by Swin-LGF-FPN.
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4. Conclusions

(1) This work proposed the Swin-LGF-FPN, a Swin

Transformer-based architecture for ECG image classification.

The backbone network extracted multi-scale features from
preprocessed ECG images, which were enhanced by the
ECG-LGF Module to refine waveform-specific feature
representation. A Feature Pyramid Networks (FPN) served as
the neck network, fusing multi-scale features to preserve local
morphology and capture axial-temporal dependencies
through global context modeling, thus enabling intelligent
ECQG classification.

During training, Focal Loss was employed to mitigate
class imbalance, while the AdamW optimizer with a Warmup
Cosine Annealing scheduler was used to ensure stable

convergence and prevent overfitting.  Translation
augmentation of ECG images was applied to enhance model
generalization.

Evaluations on public ECG datasets (the ECG Images
Dataset of Cardiac Patients and PTB-XL) showed that the
proposed model achieved efficient classification with
superior performance across all key metrics compared to
baseline methods. ROC curves on PTB-XL confirmed robust
generalization under complex data distributions, while
ablation studies validated the essential contributions of each
architectural ~ component.  Grad-CAM  visualizations
demonstrated that, in contrast to the dispersed attention
patterns of baseline models, our model exhibited a
concentrated focus on pathological regions within ECG
waveforms, enhancing interpretability.

The findings suggest that this model has the potential to
transform ECG diagnostics through data-driven intelligence,
providing clinical decision support that could enable
population screening, rapid triage, and timely referral. By
shifting from experience-based to data-driven interpretation
paradigms, it may enhance early detection and intervention
for cardiovascular diseases. Given the current performance
limitations of image-based ECG classification on complex
multi-label datasets such as PTB-XL, we emphasize that it
should be designated as a clinical adjunct tool rather than a
diagnostic replacement.
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