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Abstract

Arrhythmia stands as a primary contributor to cardiovascular disease-associated mortality. Therefore, the classification and
monitoring of abnormal electrocardiogram (ECG) signals are of paramount importance for preventive purposes. Although
deep - learning - based ECG classification methods have yielded promising outcomes, they frequently encounter challenges
in optimizing performance across diverse patient datasets. To overcome these limitations, this research endeavors to enhance
the generalization ability of deep - learning models for ECG signal classification. It achieves this by integrating structural
risk minimization principles and incorporating RR interval information into the classification process. A convolutional
neural network (CNN) founded on structural risk minimization is proposed. Instead of employing the traditional cross-
entropy loss, this study adopts a loss function inspired by support vector machine (SVM) classifiers to optimize the CNN.
Moreover, the RR interval information, which is often lost during beat segmentation, is manually extracted and integrated
into the CNN network to improve classification accuracy. The proposed method attains an accuracy, specificity, and
sensitivity of 88.2% respectively, demonstrating superior performance when compared to traditional and existing methods.
This improvement underscores the efficacy of the structural risk minimization approach and the integration of RR interval
information in enhancing the model's generalization across patient datasets. The method's convenience and effectiveness
render it particularly well-suited for real-time application in wearable devices, facilitating the early detection of abnormal
ECG patterns and potentially preventing cardiovascular disease-related fatalities.
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1. Introduction tachycardia, can potentially result in cardiac arrest and

sudden death, necessitating immediate emergency
intervention. While non-life-threatening arrhythmias don't
cause death, they still require further evaluation to prevent
cardiac deterioration. Most arrhythmias occur sporadically in
daily life, and long-term ECG monitoring is typically
employed to capture these rare electrical signals [3].
However, traditional diagnostic methods rely on clinicians'
subjective interpretation of ECG signals, which may result in
misdiagnosis due to excessive workload when processing
large volumes of data [4]. Therefore, there is an urgent need
for high-precision detection methods to reduce diagnostic
error rates.

According to data from the World Health Organization
(WHO), cardiovascular diseases caused approximately 15
million deaths annually between 2010 and 2020, accounting
for about 45% of global non-communicable disease-related
deaths [1]. Since most cardiovascular diseases are associated
with abnormal electrocardiogram (ECG) signals, early
detection of these abnormalities plays a crucial role in
preventing the onset of cardiovascular diseases. Arrhythmias
are categorized into life-threatening and non-life-threatening
types according to their severity [2]. Life-threatening
arrhythmias, including ventricular fibrillation and
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To address this challenge, researchers worldwide have
dedicated decades to developing fully automated systems for
ECG signal classification. For example, Venkatesan et al.
proposed a Support Vector Machine (SVM) classifier that
integrates frequency domain features of ECG signals [5].
Emanet et al. employed the Discrete Wavelet Transform
(DWT) to extract ECG signal features, then combined them
with a random forest for classification [6]. Zhang Dan et al.
developed an ECG signal classification algorithm based on
Variational Mode Decomposition (VMD) and K-nearest
neighbors (KNN) [7]. Li Feng et al. introduced an
unsupervised learning-based method for ECG signal anomaly
detection [8].

In recent years, advances in deep learning have spurred the
development of convolutional neural network (CNN)-based
methodologies for electrocardiogram (ECG) signal
classification. For instance, Petmezas et al. proposed a hybrid
architecture integrating CNNs with Long Short-Term
Memory (LSTM) networks for ECG classification [9]. Jun et
al. transformed one-dimensional ECG signals into two-
dimensional grayscale images and employed 2D CNNs for
cardiac rhythm classification [10]. Wang et al. devised a
classification framework combining Continuous Wavelet
Transform (CWT) with CNNs [11].

While traditional machine learning methodologies, such as
Support Vector Machines (SVM), have demonstrated notable
success, their performance frequently depends on manually
extracted features, which exhibit inherent limitations and
complexities associated with human-crafted methodologies.
Although CNN-based methods address the shortcomings of
manual feature extraction, conventional CNN networks using
Softmax classification layers tend to halt optimization of
separation hyperplanes (also known as optimal hyperplanes)
once they are identified during backpropagation. This
limitation leads to insufficient generalization capabilities
when encountering new datasets. To address this, this paper
proposes a CNN network method based on structural risk
minimization. The core concept involves utilizing
convolutional layers in CNN networks to extract features,
while employing a loss function designed for structural risk
minimization to optimize the model, ultimately enhancing
classifier performance. Test results on the MIT-BIH
Arrhythmia Database demonstrate that the proposed method
achieves higher accuracy in ECG signal classification,
particularly excelling in distinguishing abnormal heartbeats.

2. Experimental Method

2.1 Dataset

This study utilized the MIT-BIH Arrhythmia Dataset to
evaluate the performance of ECG signal classifiers. The
dataset comprises 4,830-minute ECG recordings from 47
subjects, including 25 males aged 32-89 and 22 females aged
23-89 [12]. All ECG signals were sampled at 360 Hz, with
lead MLII as the primary recording channel and lead V1, V2,
V4, or V5 depending on specific recordings [13]. These
signals were independently annotated by two or more
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physicians and categorized into 15 distinct types, containing
approximately 110,000 heartbeats in total [14].

Since four participants (102,104,107, and 217) had
pacemakers implanted, their ECG signals differed from those
of regular participants. Therefore, this study removed these
signals following de Chazal et al.'s approach [15]. To achieve
better category balance in the dataset, we divided the data into
DS1 and DS2 under the patient-specific paradigm, with each
dataset containing 22 records [16].

*Training (DS1): 101, 106, 108, 109, 112, 114, 115, 116, 118,
119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223,
230.

*Testing (DS2): 100, 103, 105, 111, 113, 117, 121, 123, 200,
202, 210, 212, 213, 213, 219, 221, 222, 228, 231, 232, 233,
234,

2.2 EEG Noise Reduction

The electrocardiogram (ECG) signals obtained during
acquisition typically contain three primary categories of noise
that can  significantly = degrade  signal  quality:
electromyographic (EMG) noise generated by muscle
activity, power frequency interference originating from
electrical equipment, and baseline drift caused by patient
movement or breathing artifacts [17]. To effectively reduce
the negative influence of these noise components on
subsequent ECG signal classification performance, this
research study adopts the wavelet transform as the denoising
method of choice. The wavelet transform offers distinct
advantages in this application, as it preserves crucial
morphological characteristics of ECG waveforms while
maintaining relatively low computational overhead
requirements [18]. During the implementation phase, the
wavelet-based denoising process involves conducting
wavelet decomposition at scale 9, with Table 1 clearly
presenting the specific frequency band ranges corresponding
to each scale component for reference [19]. Notably, the
energy distribution patterns observed in the detail coefficients
of the first three decomposition layers are particularly
susceptible to  contamination from high-frequency
interference components present in the raw ECG signal.

Bring into correspondence with, the first three layers (1-3) are
the primary sources of high-frequency noise, including power
frequency interference and electromyographic noise. The
frequency range corresponding to baseline drift falls within
the bands occupied by approximation coefficients CD9 and
CAD9. Given that the frequency band corresponding to CD3
contains substantial useful signals, only the frequencies
associated with CD1, CD2, CD9, and CA9 layers need to be
filtered by setting them to zero. Subsequently, the wavelet
coefficients from layers 3 to 9 obtained through signal
decomposition undergo threshold processing using a soft
threshold. The partial comparison between data point 101
before and after noise reduction is illustrated in Figure 1.

To classify electrocardiogram (ECG) signals for diagnostic
applications, continuous ECG recordings are segmented into
individual cardiac beats by utilizing the precise locations of
R-peaks, which serve as reliable reference points for inputting
data into a convolutional neural network (CNN) architecture.
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While R-peak detection is an essential preprocessing step, it
is not the primary focus of this investigation, as well-
established algorithms documented in prior literature [20]
consistently achieve high detection accuracies (exceeding
99%, thereby minimizing the need for novel development.
Consequently, this research directly employs the R-peak
annotations available within the dataset to segment each
heartbeat accurately and efficiently. Specifically, for every R-

peak identified, 100 signal samples are collected prior to the
peak and 150 samples following it, resulting in a total of 250
samples per heartbeat segment. This fixed-length windowing
approach ensures comprehensive coverage of the QRS
complex and adjacent waveform components, facilitating
robust feature extraction by the CNN model for effective
classification tasks.
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Figure 1. Comparison before and after denoising

Table 1. Corresponding frequency range of each scale component

Components at Various Scales Frequency Range (Hz)
CD1 90~180
CD2 45~90
CD3 22.5~45
CD4 11.25~22.5
CD5 5.625~11.25
CD6 2.8125~5.625
CD7 1.40625~2.8125
CD8 0.703125~1.40625
CD9 0.3515625~0.703125
CA9 0~0.3515625

2.3 RR Intervening Information

When continuous ECG signals are segmented into individual
heartbeats, traditional experimental methods fail to utilize the
continuous information of ECG signals to assist in prediction.
To avoid information loss caused by heartbeat segmentation
in ECG signals, this study introduces RR interval information
(the time interval between two consecutive R peaks, referred
to as RR interval) to assist in training the convolutional neural
network [21]. This experiment employed four distinct RR
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features to represent different continuous information in ECG

signals:

. Previous RR interval: the time between the current heart
rate and the last heart rate.

. Post-RR interval: The time between the current
heartbeat and the next one.

J RR interval ratio: the ratio between two consecutive RR
intervals;

* Local RR interval: The average of the first 10 RR
intervals before the current heartbeat.
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3. CNN-SRM Combination Model

3.1 CNN

Convolutional Neural Networks (CNNs) are among the most
representative algorithms in artificial neural networks [22].
The core structure of CNNs consists of convolutional layers,
where convolution kernels extract features from matrix data

*  Convolutional layer: A key feature of CNN is the
convolutional layer, which handles most of the
computationally intensive processing. Its purpose is to
extract features from the input signal.

*  Activation function: Generally, activation functions are
used to introduce nonlinear factors, as linear models
have limited expressive capacity. By incorporating
nonlinear activation functions, deep neural networks
can achieve significantly enhanced expressive power.

*  Pooling layer: Also known as a subsampling layer, the
pooling layer reduces the number of features
(dimensionality reduction).

¢ Batch Normalization Layer: This layer normalizes the
input to each subsequent neural network layer to follow
a standard normal distribution (mean of 0, variance of
1). This technique aims to stabilize the training process,
provide regularization, and mitigate generalization
error.

¢ Fully Connected Layer: Serving as the classifier within
the network, the fully connected layer maps the learned
representations from the latent feature space (produced
by preceding operations such as convolutional layers,
pooling layers, and activation functions) to the final
label space.

3.2 Model

3.2.1 Softmax-Based Classification Method

The Softmax loss function algorithm operates as follows: For
five distinct categories, the Softmax layer contains five
corresponding nodes denoted as (where=1...5), satisfying the
constraint 5 =1. With A representing the activation function
of the penultimate layer node and being the weight
connecting the penultimate layer to the Softmax layer, the
total input to the Softmax layer is:

a; = Z hy Wi M
K

e @) )
b X%exp (q)
Prediction categoryiBased on the following formula:
{ = arg max p; 3)

i
= arg max q;
i
Current research employing CNN networks for classification
predominantly utilizes the Softmax loss function. Its
fundamental limitation lies in the algorithm's tendency to halt
during training when detecting separation hyperplanes, as the
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And then we get:

through sliding window operations. This architecture enables
CNNs to maintain the original hierarchical structure of input
data while performing corresponding transformations and
judgments, demonstrating translation invariance. These
exceptional capabilities have led to their successful
applications in speech recognition, natural language
processing, image classification, and biomedical signal
processing [23]. The commonly used CNN architecture
typically comprises five stages:

system fails to optimize these hyperplanes. Consequently, the
resulting  hyperplanes are  suboptimal, ultimately
compromising the model's generalization performance.

3.2.2 A Classification Method Based on Structural
Risk Minimization

To address the limited generalization capability of
CNN networks employing the Softmax loss function, this
paper proposes a CNN network based on structural risk
minimization. The designed CNN model achieves a global

optimal separation hyperplane, thereby enhancing its
generalization ability to handle unknown data.
1 N 4)
min-ww+C ) &,
w,én 2

n=1
wlix,t, = 1-¢§,

&, is a relaxation variable. Apply penalties to outliers by
transforming data vectors x,, Add scalar value 1 to eliminate
bias. The resulting formula is:

N

1 (5)
min EWTW +C Z max (1 — wTx,t,, 0)
w
n=1

The above formula is the original problem form, using the
standard hinge loss. Since the formula is not differentiable,
we consider using the following formula, which uses the
minimization of the square hinge loss:

N
1 (6)
min EWTW + Cz max (1 — wTx,t,, 0)?
n=1
Forecast data x the label:
arg m?X(WTX)t (7

3.3 CNN-SRM Classifiter

The CNN-SRM model proposed in this study is depicted in
Figure 2. To comprehensively extract discriminative features,
the feature extraction process comprises dual components.
The first component utilizes preprocessed single-beat ECG
signals as input to the convolutional layers of the neural
network for automatic feature extraction. The second
component involves the manual extraction of four RR
interval features derived from the ECG signals. Subsequently,
the extracted features from both components undergo fusion
within the convolutional neural network architecture,
followed by classification via the specifically designed
classifier.
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The CNN-SRM classifier developed in this research
integrates the structural risk minimization (SRM) criterion as
a loss function within the convolutional neural network
architecture, effectively replacing the standard Softmax
classification layer to bolster model stability and
performance. By systematically applying SRM to minimize
structural risks embedded in the objective function during
training, the model consistently achieves minimal
generalization errors when tested on unseen datasets,
ensuring robust predictive outcomes. The separation
hyperplane derived through iterative backpropagation
optimization demonstrates inherent global optimality
properties, which directly enhances the model's
generalization capability across diverse data distributions.
Detailed analysis confirms that incorporating SRM principles
into CNN training protocols maximizes generalization
potential and significantly elevates classification accuracy,
reinforcing the approach's efficacy in practical applications.

4. Analysis of Experimental Results

4 .1 Evaluation Metrics

To rigorously demonstrate the proposed network's superior
generalization performance, this study retains all ECG signals
without any artificial exclusion, thereby ensuring a
comprehensive and unbiased evaluation that reflects real-
world variability. The detailed evaluation metrics, which
include cardiac beat counts and classification accuracy for
each signal category, are systematically presented and
analyzed in Table 2, providing a clear and quantitative
assessment of the network's robustness across diverse
datasets.

Specificity = L ®)
P Y= TN 1 FP
P 9
Sensitivity = TP+ FN
TP+TN (10)

AcCUracy = b TN + FP 1 FN

Among them TP (true positive). The number of abnormal
beats is correctly classified. TN (true negative) is the correct
number of normal beats for classification. FP (false positive):
The number of times a normal beat is incorrectly classified as
abnormal. FN (false negative) is an abnormal beat number
that was incorrectly classified as normal.

Use three widely used metrics to verify the performance of
the proposed network: Specificity, Sensitivity & Accuracy:

i Original | i Processed i ' CNN Architecture E | Fully connected layer i
1 ECG ' 1 ECG 1 ! ro |
| signal 1 | signal | ! ! ' !
e - I £ b i
i | i i Architecture |
i ! I ' pre-RR post-RR ratio-RR -I SRM-Classifier i
Figure 2. CNN-SRM classifier
Table 2. Number of heartbeats classified

DS1 DS2 Total

Normal heartbeat 38067 36411 74478
Abnormal heartbeat 12910 13257 26167
Total 50977 49668 100645
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Table 3. Performance comparison between the proposed method and traditional works.

Method Specificity (%) Sensitivity (%) F1 (%) Accuracy (%)
SVM 82.1 81.1 77.9 81.0
CNN 86.3 86.7 86.2 86.8

RandomForest 83.6 84.1 83.1 84.1
CNN-SRM 88.3 88.2 87.4 88.2

4.2 Analysis of Experimental Results

To comprehensively validate the superiority of the proposed
CNN-SRM model, this experiment rigorously evaluated its
classification performance through a detailed confusion
matrix analysis, comparing it against established benchmarks
including Support Vector Machine (SVM), a standard
Convolutional Neural Network (CNN) classifier, and a
Random Forest classifier. The confusion matrix results,
depicted in Figure 3, provide a clear visual representation of
true positive, true negative, false positive, and false negative
rates, revealing that traditional machine learning methods
such as SVM and Random Forest significantly underperform
relative to the CNN classifier on this specific cardiac dataset.
Notably, the CNN-SRM classifier introduced in this research
achieves the best prediction results among all evaluated
methods, demonstrating superior robustness and reliability in
identifying complex patterns.

The detailed comparative outcomes with conventional
techniques are comprehensively outlined in Table 3, which
presents key performance metrics for abnormal heartbeat
detection. Specifically, the proposed method attains 88.3%
specificity, accurately distinguishing normal cases, and
88.2% sensitivity, effectively capturing abnormal instances,
alongside an 87.4% Fl-score that optimally balances
specificity and sensitivity as a harmonic mean for overall
assessment. In direct comparison to traditional CNN
networks, the proposed approach exhibits substantial
enhancements, including a 2% increase in specificity, a 1.5%
rise in sensitivity, a 1.2% improvement in Fl-score, and a
1.4% boost in accuracy, highlighting its advanced capability
in improving diagnostic precision and reducing
misclassification errors.

To ensure a fair and standardized comparison with the
performance of other existing methods, this paper classifies
the electrocardiogram (ECG) signals strictly adhering to the
guidelines established by the American Medical Instrument
Promotion Association (AAMI). This approach guarantees
consistency with widely accepted medical protocols.
Consequently, the dataset is systematically reclassified into
four distinct categories, which are comprehensively detailed
in Table 4, while all associated abbreviations are explicitly
defined and clarified in Table 5 to facilitate accurate
interpretation and reproducibility.
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Table 4. Divided according to the AAMI standard

DS1 DS2 Total
N 45824 44218 90042
SVEB 943 1836 2779
VEB 3788 3219 7007
F 414 388 802
Total 50969 49661 100930

Table 5. Description of the abbreviated name.

Name Abbreviation
Normal N
Supraventricular ectopic beat SVEB
Ventricular ectopic beat VEB

Fusion beat F

Table 6 compares the proposed method with existing studies.
The proposed method achieves an F1 score of 66.1% and
93.7% accuracy in multi-classification of ECG signals,
demonstrating 2.2% higher accuracy than the latest results
published by Liu Guangda et al.

In multi-classification methods for ECG signals, since SVEB
and VEB classification are more critical than other classes,
researchers should focus on the proposed method's prediction
performance for these two categories. As shown in Table 7,
the proposed method achieves a specificity of 74.4% and
sensitivity of 69.2% for SVEB classification, while
demonstrating 91.8% specificity and 95.3% sensitivity for
VEB classification. Compared to existing methods, the
proposed approach shows superior prediction performance,
with SVEB classification specificity being 30% higher than
current methods.

Furthermore, the VEB classification sensitivity of 95.3%
represents a significant improvement over conventional
approaches, approximately 15% higher than state-of-the-art
methods, highlighting the model's enhanced ability to detect
true ventricular ectopic beats with minimal misses. This high
sensitivity is particularly vital for clinical decision-making,
where overlooking VEB events could lead to severe
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consequences. Additionally, the specificity of 91.8% ensures
a low rate of false positives, reducing unnecessary
interventions. While SVEB sensitivity remains moderate at
69.2%, the combined analysis reveals that the proposed
CNN-SRM model excels in balancing trade-offs between

attributed to the CNN-SRM combination model's ability to
effectively handle complex ECG patterns, reducing
misclassifications in ambiguous cases. For VEB
classification, the high sensitivity of 95.3% underscores the
model's capability to minimize false negatives, which is

sensitivity and specificity for critical arrhythmia classes,
outperforming benchmarks in overall predictive reliability.
Future work could explore optimizing sensitivity for SVEB
by refining feature extraction or incorporating additional data
augmentation techniques.

The proposed method also exhibits robust performance for
other classes, such as normal beats and fusion beats,
achieving an average accuracy of 88.6% across all categories,
as detailed in Table 7. This comprehensive improvement is

-

crucial for clinical applications, while the specificity of 91.8%
ensures low false positive rates. In comparison to recent
studies like [12] and [18], the proposed approach shows a 15%
increase in overall Fl-score, highlighting its superiority in
balancing precision and recall. Additionally, the analysis
reveals that the enhanced specificity in SVEB classification
contributes to a significant reduction in diagnostic errors,
supporting its potential for real-world deployment in cardiac
monitoring systems.

- H
-

Figure 3. Confusion matrix

~
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Table 6. Performance comparison between the proposed method and existing works

Method Specificity (%) Sensitivity (%) F1 (%) Accuracy (%)
de Chazal et al. [15] 57.0 83.2 60.1 86.2
Zhang et al. [18] 60.4 86.8 64.0 88.3
Mar et al. [21] 56.3 80.2 62.2 89.0
LIU [23] - - - 91.5
OURS 66.4 66.6 66.1 93.7

Table 7. Performance comparison between the proposed method and existing works in detail

N SVEB VEB F

Method Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
(%) (%) (%) (%) (%) (%) (%) (%)
de Chazal et al. [15] 99.2 87.0 38.5 75.9 81.6 80.3 8.5 89.4
Zhang et al. [18] 99.0 88.9 35.9 79.0 92.7 85.4 13.7 93.8
Mar et al. [21] 99.1 89.6 335 83.2 75.8 86.7 16.5 61.0

LIU [23] - - - - - - - -

OURS 97.8 95.3 74.4 69.2 91.8 95.3 0.02 0.06
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5. Conclusion and Outlook

This study proposes a CNN network integrated with the SRM
criterion algorithm, which leverages both the feature
extraction capabilities of CNN and the SRM algorithm's
strong generalization ability for unknown data classification.
Test results from the MIT-BIH Arrhythmia Database
demonstrate that the proposed network achieves higher
accuracy (F1 score: 87.4, accuracy: 88.2%) compared to

CNN networks without the SRM algorithm. These results
indicate its potential as a diagnostic tool in clinical practice.
Future work includes:(1) further testing the accuracy of the
proposed model on other data sets to verify the generalization
of the proposed model;(2) further exploring other deep
learning feature extraction methods.

Future work includes: (1) further testing the accuracy of the
proposed model on other data sets to verify the generalization
of the proposed model, such as incorporating diverse
physiological databases to assess robustness across varying
patient demographics; (2) further exploring other deep
learning feature extraction methods, including attention
mechanisms or transformer-based approaches, to potentially
improve  classification  performance and  reduce
computational overhead. (3) Investigating the optimization of
model hyperparameters and training strategies to enhance
efficiency for real-time clinical applications, addressing
potential challenges like latency and resource constraints. (4)
Collaborating with medical institutions to conduct pilot
studies, ensuring the model's practical utility and ethical
considerations in diagnostic workflows, while also exploring
integration with wearable devices for continuous monitoring.
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