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Abstract 

Arrhythmia stands as a primary contributor to cardiovascular disease-associated mortality. Therefore, the classification and 
monitoring of abnormal electrocardiogram (ECG) signals are of paramount importance for preventive purposes. Although 
deep - learning - based ECG classification methods have yielded promising outcomes, they frequently encounter challenges 
in optimizing performance across diverse patient datasets. To overcome these limitations, this research endeavors to enhance 
the generalization ability of deep - learning models for ECG signal classification. It achieves this by integrating structural 
risk minimization principles and incorporating RR interval information into the classification process. A convolutional 
neural network (CNN) founded on structural risk minimization is proposed. Instead of employing the traditional cross-
entropy loss, this study adopts a loss function inspired by support vector machine (SVM) classifiers to optimize the CNN. 
Moreover, the RR interval information, which is often lost during beat segmentation, is manually extracted and integrated 
into the CNN network to improve classification accuracy. The proposed method attains an accuracy, specificity, and 
sensitivity of 88.2% respectively, demonstrating superior performance when compared to traditional and existing methods. 
This improvement underscores the efficacy of the structural risk minimization approach and the integration of RR interval 
information in enhancing the model's generalization across patient datasets. The method's convenience and effectiveness 
render it particularly well-suited for real-time application in wearable devices, facilitating the early detection of abnormal 
ECG patterns and potentially preventing cardiovascular disease-related fatalities. 
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1. Introduction

According to data from the World Health Organization 
(WHO), cardiovascular diseases caused approximately 15 
million deaths annually between 2010 and 2020, accounting 
for about 45% of global non-communicable disease-related 
deaths [1]. Since most cardiovascular diseases are associated 
with abnormal electrocardiogram (ECG) signals, early 
detection of these abnormalities plays a crucial role in 
preventing the onset of cardiovascular diseases. Arrhythmias 
are categorized into life-threatening and non-life-threatening 
types according to their severity [2]. Life-threatening 
arrhythmias, including ventricular fibrillation and  
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tachycardia, can potentially result in cardiac arrest and 
sudden death, necessitating immediate emergency 
intervention. While non-life-threatening arrhythmias don't 
cause death, they still require further evaluation to prevent 
cardiac deterioration. Most arrhythmias occur sporadically in 
daily life, and long-term ECG monitoring is typically 
employed to capture these rare electrical signals [3]. 
However, traditional diagnostic methods rely on clinicians' 
subjective interpretation of ECG signals, which may result in 
misdiagnosis due to excessive workload when processing 
large volumes of data [4]. Therefore, there is an urgent need 
for high-precision detection methods to reduce diagnostic 
error rates. 
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To address this challenge, researchers worldwide have 
dedicated decades to developing fully automated systems for 
ECG signal classification. For example, Venkatesan et al. 
proposed a Support Vector Machine (SVM) classifier that 
integrates frequency domain features of ECG signals [5]. 
Emanet et al. employed the Discrete Wavelet Transform 
(DWT) to extract ECG signal features, then combined them 
with a random forest for classification [6]. Zhang Dan et al. 
developed an ECG signal classification algorithm based on 
Variational Mode Decomposition (VMD) and K-nearest 
neighbors (KNN) [7]. Li Feng et al. introduced an 
unsupervised learning-based method for ECG signal anomaly 
detection [8]. 
In recent years, advances in deep learning have spurred the 
development of convolutional neural network (CNN)-based 
methodologies for electrocardiogram (ECG) signal 
classification. For instance, Petmezas et al. proposed a hybrid 
architecture integrating CNNs with Long Short-Term 
Memory (LSTM) networks for ECG classification [9]. Jun et 
al. transformed one-dimensional ECG signals into two-
dimensional grayscale images and employed 2D CNNs for 
cardiac rhythm classification [10]. Wang et al. devised a 
classification framework combining Continuous Wavelet 
Transform (CWT) with CNNs [11]. 
While traditional machine learning methodologies, such as 
Support Vector Machines (SVM), have demonstrated notable 
success, their performance frequently depends on manually 
extracted features, which exhibit inherent limitations and 
complexities associated with human-crafted methodologies. 
Although CNN-based methods address the shortcomings of 
manual feature extraction, conventional CNN networks using 
Softmax classification layers tend to halt optimization of 
separation hyperplanes (also known as optimal hyperplanes) 
once they are identified during backpropagation. This 
limitation leads to insufficient generalization capabilities 
when encountering new datasets. To address this, this paper 
proposes a CNN network method based on structural risk 
minimization. The core concept involves utilizing 
convolutional layers in CNN networks to extract features, 
while employing a loss function designed for structural risk 
minimization to optimize the model, ultimately enhancing 
classifier performance. Test results on the MIT-BIH 
Arrhythmia Database demonstrate that the proposed method 
achieves higher accuracy in ECG signal classification, 
particularly excelling in distinguishing abnormal heartbeats. 

2. Experimental Method 

2.1 Dataset 

This study utilized the MIT-BIH Arrhythmia Dataset to 
evaluate the performance of ECG signal classifiers. The 
dataset comprises 4,830-minute ECG recordings from 47 
subjects, including 25 males aged 32-89 and 22 females aged 
23-89 [12]. All ECG signals were sampled at 360 Hz, with 
lead MLII as the primary recording channel and lead V1, V2, 
V4, or V5 depending on specific recordings [13]. These 
signals were independently annotated by two or more 

physicians and categorized into 15 distinct types, containing 
approximately 110,000 heartbeats in total [14]. 
Since four participants (102,104,107, and 217) had 
pacemakers implanted, their ECG signals differed from those 
of regular participants. Therefore, this study removed these 
signals following de Chazal et al.'s approach [15]. To achieve 
better category balance in the dataset, we divided the data into 
DS1 and DS2 under the patient-specific paradigm, with each 
dataset containing 22 records [16]. 
•Training (DS1): 101, 106, 108, 109, 112, 114, 115, 116, 118, 
119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 
230. 
•Testing (DS2): 100, 103, 105, 111, 113, 117, 121, 123, 200, 
202, 210, 212, 213, 213, 219, 221, 222, 228, 231, 232, 233, 
234. 

2.2 EEG Noise Reduction 

The electrocardiogram (ECG) signals obtained during 
acquisition typically contain three primary categories of noise 
that can significantly degrade signal quality: 
electromyographic (EMG) noise generated by muscle 
activity, power frequency interference originating from 
electrical equipment, and baseline drift caused by patient 
movement or breathing artifacts [17]. To effectively reduce 
the negative influence of these noise components on 
subsequent ECG signal classification performance, this 
research study adopts the wavelet transform as the denoising 
method of choice. The wavelet transform offers distinct 
advantages in this application, as it preserves crucial 
morphological characteristics of ECG waveforms while 
maintaining relatively low computational overhead 
requirements [18]. During the implementation phase, the 
wavelet-based denoising process involves conducting 
wavelet decomposition at scale 9, with Table 1 clearly 
presenting the specific frequency band ranges corresponding 
to each scale component for reference [19]. Notably, the 
energy distribution patterns observed in the detail coefficients 
of the first three decomposition layers are particularly 
susceptible to contamination from high-frequency 
interference components present in the raw ECG signal. 
Bring into correspondence with, the first three layers (1-3) are 
the primary sources of high-frequency noise, including power 
frequency interference and electromyographic noise. The 
frequency range corresponding to baseline drift falls within 
the bands occupied by approximation coefficients CD9 and 
CA9. Given that the frequency band corresponding to CD3 
contains substantial useful signals, only the frequencies 
associated with CD1, CD2, CD9, and CA9 layers need to be 
filtered by setting them to zero. Subsequently, the wavelet 
coefficients from layers 3 to 9 obtained through signal 
decomposition undergo threshold processing using a soft 
threshold. The partial comparison between data point 101 
before and after noise reduction is illustrated in Figure 1. 
To classify electrocardiogram (ECG) signals for diagnostic 
applications, continuous ECG recordings are segmented into 
individual cardiac beats by utilizing the precise locations of 
R-peaks, which serve as reliable reference points for inputting 
data into a convolutional neural network (CNN) architecture. 
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While R-peak detection is an essential preprocessing step, it 
is not the primary focus of this investigation, as well-
established algorithms documented in prior literature [20] 
consistently achieve high detection accuracies (exceeding 
99%, thereby minimizing the need for novel development. 
Consequently, this research directly employs the R-peak 
annotations available within the dataset to segment each 
heartbeat accurately and efficiently. Specifically, for every R-

peak identified, 100 signal samples are collected prior to the 
peak and 150 samples following it, resulting in a total of 250 
samples per heartbeat segment. This fixed-length windowing 
approach ensures comprehensive coverage of the QRS 
complex and adjacent waveform components, facilitating 
robust feature extraction by the CNN model for effective 
classification tasks. 

Figure 1. Comparison before and after denoising 

Table 1. Corresponding frequency range of each scale component 

Components at Various Scales Frequency Range (Hz) 

CD1 90~180 
CD2 45~90 
CD3 22.5~45 
CD4 11.25~22.5 

CD5 5.625~11.25 

CD6 2.8125~5.625 

CD7 1.40625~2.8125 

CD8 0.703125~1.40625 

CD9 0.3515625~0.703125 

CA9 0~0.3515625 

2.3 RR Intervening Information 

When continuous ECG signals are segmented into individual 
heartbeats, traditional experimental methods fail to utilize the 
continuous information of ECG signals to assist in prediction. 
To avoid information loss caused by heartbeat segmentation 
in ECG signals, this study introduces RR interval information 
(the time interval between two consecutive R peaks, referred 
to as RR interval) to assist in training the convolutional neural 
network [21]. This experiment employed four distinct RR  

features to represent different continuous information in ECG 
signals: 
• Previous RR interval: the time between the current heart

rate and the last heart rate.
• Post-RR interval: The time between the current

heartbeat and the next one.
• RR interval ratio: the ratio between two consecutive RR

intervals;
• Local RR interval: The average of the first 10 RR

intervals before the current heartbeat.
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3. CNN-SRM Combination Model 

3.1 CNN 

Convolutional Neural Networks (CNNs) are among the most 
representative algorithms in artificial neural networks [22]. 
The core structure of CNNs consists of convolutional layers, 
where convolution kernels extract features from matrix data 

through sliding window operations. This architecture enables 
CNNs to maintain the original hierarchical structure of input 
data while performing corresponding transformations and 
judgments, demonstrating translation invariance. These 
exceptional capabilities have led to their successful 
applications in speech recognition, natural language 
processing, image classification, and biomedical signal 
processing [23]. The commonly used CNN architecture 
typically comprises five stages: 

• Convolutional layer: A key feature of CNN is the
convolutional layer, which handles most of the
computationally intensive processing. Its purpose is to
extract features from the input signal.

• Activation function: Generally, activation functions are
used to introduce nonlinear factors, as linear models
have limited expressive capacity. By incorporating
nonlinear activation functions, deep neural networks
can achieve significantly enhanced expressive power.

• Pooling layer: Also known as a subsampling layer, the
pooling layer reduces the number of features
(dimensionality reduction).

• Batch Normalization Layer: This layer normalizes the
input to each subsequent neural network layer to follow
a standard normal distribution (mean of 0, variance of
1). This technique aims to stabilize the training process,
provide regularization, and mitigate generalization
error.

• Fully Connected Layer: Serving as the classifier within
the network, the fully connected layer maps the learned
representations from the latent feature space (produced
by preceding operations such as convolutional layers,
pooling layers, and activation functions) to the final
label space.

3.2 Model 

3.2.1 Softmax-Based Classification Method 
The Softmax loss function algorithm operates as follows: For 
five distinct categories, the Softmax layer contains five 
corresponding nodes denoted as (where=1...5), satisfying the 
constraint 5 =1. With ℎ representing the activation function 
of the penultimate layer node and being the weight 
connecting the penultimate layer to the Softmax layer, the 
total input to the Softmax layer is: 

𝑎𝑎𝑖𝑖 = �ℎ𝑘𝑘
𝑘𝑘

𝑤𝑤𝑘𝑘𝑘𝑘  (1) 

And then we get： 

𝑝𝑝𝑖𝑖 =
exp (𝑎𝑎𝑖𝑖)

∑ exp (𝑎𝑎𝑗𝑗)10
𝑗𝑗

(2) 

Prediction category𝚤𝚤̂Based on the following formula: 
𝚤𝚤̂ = arg max 𝑝𝑝𝑖𝑖

𝑖𝑖
 = arg max 𝑎𝑎𝑖𝑖

𝑖𝑖

(3) 

Current research employing CNN networks for classification 
predominantly utilizes the Softmax loss function. Its 
fundamental limitation lies in the algorithm's tendency to halt 
during training when detecting separation hyperplanes, as the 

system fails to optimize these hyperplanes. Consequently, the 
resulting hyperplanes are suboptimal, ultimately 
compromising the model's generalization performance. 

3.2.2 A Classification Method Based on Structural 
Risk Minimization 

To address the limited generalization capability of 
CNN networks employing the Softmax loss function, this 
paper proposes a CNN network based on structural risk 
minimization. The designed CNN model achieves a global 
optimal separation hyperplane, thereby enhancing its 
generalization ability to handle unknown data. 

min
𝑤𝑤,𝜉𝜉𝑛𝑛

1
2
𝑤𝑤𝑤𝑤 + 𝐶𝐶�𝜉𝜉𝑛𝑛

𝑁𝑁

𝑛𝑛=1

 

w𝑇𝑇𝑥𝑥𝑛𝑛𝑡𝑡𝑛𝑛 ≥ 1 − 𝜉𝜉𝑛𝑛 

(4) 

𝜉𝜉𝑛𝑛 is a relaxation variable. Apply penalties to outliers by 
transforming data vectors 𝑥𝑥𝑛𝑛 Add scalar value 1 to eliminate 
bias. The resulting formula is: 

min 
𝑤𝑤

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�max (1 − 𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑡𝑡𝑛𝑛, 0)

𝑁𝑁

𝑛𝑛=1

 
(5) 

The above formula is the original problem form, using the 
standard hinge loss. Since the formula is not differentiable, 
we consider using the following formula, which uses the 
minimization of the square hinge loss: 

min
𝑤𝑤

 
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�max (1 − 𝑤𝑤𝑇𝑇𝑥𝑥𝑛𝑛𝑡𝑡𝑛𝑛, 0)2

𝑁𝑁

𝑛𝑛=1

 
(6) 

Forecast data x the label: 
arg max

𝑡𝑡
(w𝑇𝑇x)𝑡𝑡 (7) 

3.3 CNN-SRM Classifiter 

The CNN-SRM model proposed in this study is depicted in 
Figure 2. To comprehensively extract discriminative features, 
the feature extraction process comprises dual components. 
The first component utilizes preprocessed single-beat ECG 
signals as input to the convolutional layers of the neural 
network for automatic feature extraction. The second 
component involves the manual extraction of four RR 
interval features derived from the ECG signals. Subsequently, 
the extracted features from both components undergo fusion 
within the convolutional neural network architecture, 
followed by classification via the specifically designed 
classifier. 
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The CNN-SRM classifier developed in this research 
integrates the structural risk minimization (SRM) criterion as 
a loss function within the convolutional neural network 
architecture, effectively replacing the standard Softmax 
classification layer to bolster model stability and 
performance. By systematically applying SRM to minimize 
structural risks embedded in the objective function during 
training, the model consistently achieves minimal 
generalization errors when tested on unseen datasets, 
ensuring robust predictive outcomes. The separation 
hyperplane derived through iterative backpropagation 
optimization demonstrates inherent global optimality 
properties, which directly enhances the model's 
generalization capability across diverse data distributions. 
Detailed analysis confirms that incorporating SRM principles 
into CNN training protocols maximizes generalization 
potential and significantly elevates classification accuracy, 
reinforcing the approach's efficacy in practical applications. 

4. Analysis of Experimental Results 

4.1 Evaluation Metrics 

To rigorously demonstrate the proposed network's superior 
generalization performance, this study retains all ECG signals 
without any artificial exclusion, thereby ensuring a 
comprehensive and unbiased evaluation that reflects real-
world variability. The detailed evaluation metrics, which 
include cardiac beat counts and classification accuracy for 
each signal category, are systematically presented and 
analyzed in Table 2, providing a clear and quantitative 
assessment of the network's robustness across diverse 
datasets. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (8) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (9) 

Accuracy =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (10) 

Among them TP (true positive). The number of abnormal 
beats is correctly classified. TN (true negative) is the correct 
number of normal beats for classification. FP (false positive): 
The number of times a normal beat is incorrectly classified as 
abnormal. FN (false negative) is an abnormal beat number 
that was incorrectly classified as normal. 
Use three widely used metrics to verify the performance of 
the proposed network: Specificity, Sensitivity & Accuracy: 

 
 

 

Figure 2. CNN-SRM classifier 
 

 
Table 2. Number of heartbeats classified 

 DS1 DS2 Total 
Normal heartbeat 38067 36411 74478 

Abnormal heartbeat 12910 13257 26167 
Total 50977 49668 100645 
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Table 3. Performance comparison between the proposed method and traditional works. 

Method Specificity (%) Sensitivity (%) F1 (%) Accuracy (%) 
SVM 82.1 81.1 77.9 81.0 
CNN 86.3 86.7 86.2 86.8 

RandomForest 83.6 84.1 83.1 84.1 
CNN-SRM 88.3 88.2 87.4 88.2 

4.2 Analysis of Experimental Results 

To comprehensively validate the superiority of the proposed 
CNN-SRM model, this experiment rigorously evaluated its 
classification performance through a detailed confusion 
matrix analysis, comparing it against established benchmarks 
including Support Vector Machine (SVM), a standard 
Convolutional Neural Network (CNN) classifier, and a 
Random Forest classifier. The confusion matrix results, 
depicted in Figure 3, provide a clear visual representation of 
true positive, true negative, false positive, and false negative 
rates, revealing that traditional machine learning methods 
such as SVM and Random Forest significantly underperform 
relative to the CNN classifier on this specific cardiac dataset. 
Notably, the CNN-SRM classifier introduced in this research 
achieves the best prediction results among all evaluated 
methods, demonstrating superior robustness and reliability in 
identifying complex patterns. 
The detailed comparative outcomes with conventional 
techniques are comprehensively outlined in Table 3, which 
presents key performance metrics for abnormal heartbeat 
detection. Specifically, the proposed method attains 88.3% 
specificity, accurately distinguishing normal cases, and 
88.2% sensitivity, effectively capturing abnormal instances, 
alongside an 87.4% F1-score that optimally balances 
specificity and sensitivity as a harmonic mean for overall 
assessment. In direct comparison to traditional CNN 
networks, the proposed approach exhibits substantial 
enhancements, including a 2% increase in specificity, a 1.5% 
rise in sensitivity, a 1.2% improvement in F1-score, and a 
1.4% boost in accuracy, highlighting its advanced capability 
in improving diagnostic precision and reducing 
misclassification errors. 
To ensure a fair and standardized comparison with the 
performance of other existing methods, this paper classifies 
the electrocardiogram (ECG) signals strictly adhering to the 
guidelines established by the American Medical Instrument 
Promotion Association (AAMI). This approach guarantees 
consistency with widely accepted medical protocols. 
Consequently, the dataset is systematically reclassified into 
four distinct categories, which are comprehensively detailed 
in Table 4, while all associated abbreviations are explicitly 
defined and clarified in Table 5 to facilitate accurate 
interpretation and reproducibility. 

Table 4. Divided according to the AAMI standard 

DS1 DS2 Total 
N 45824 44218 90042 
SVEB 943 1836 2779 
VEB 3788 3219 7007 
F 414 388 802 
Total 50969 49661 100930 

Table 5. Description of the abbreviated name. 

Name Abbreviation 
Normal N 
Supraventricular ectopic beat SVEB 
Ventricular ectopic beat VEB 
Fusion beat F 

Table 6 compares the proposed method with existing studies. 
The proposed method achieves an F1 score of 66.1% and 
93.7% accuracy in multi-classification of ECG signals, 
demonstrating 2.2% higher accuracy than the latest results 
published by Liu Guangda et al. 
In multi-classification methods for ECG signals, since SVEB 
and VEB classification are more critical than other classes, 
researchers should focus on the proposed method's prediction 
performance for these two categories. As shown in Table 7, 
the proposed method achieves a specificity of 74.4% and 
sensitivity of 69.2% for SVEB classification, while 
demonstrating 91.8% specificity and 95.3% sensitivity for 
VEB classification. Compared to existing methods, the 
proposed approach shows superior prediction performance, 
with SVEB classification specificity being 30% higher than 
current methods. 
Furthermore, the VEB classification sensitivity of 95.3% 
represents a significant improvement over conventional 
approaches, approximately 15% higher than state-of-the-art 
methods, highlighting the model's enhanced ability to detect 
true ventricular ectopic beats with minimal misses. This high 
sensitivity is particularly vital for clinical decision-making, 
where overlooking VEB events could lead to severe 
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consequences. Additionally, the specificity of 91.8% ensures 
a low rate of false positives, reducing unnecessary 
interventions. While SVEB sensitivity remains moderate at 
69.2%, the combined analysis reveals that the proposed 
CNN-SRM model excels in balancing trade-offs between 
sensitivity and specificity for critical arrhythmia classes, 
outperforming benchmarks in overall predictive reliability. 
Future work could explore optimizing sensitivity for SVEB 
by refining feature extraction or incorporating additional data 
augmentation techniques. 
The proposed method also exhibits robust performance for 
other classes, such as normal beats and fusion beats, 
achieving an average accuracy of 88.6% across all categories, 
as detailed in Table 7. This comprehensive improvement is 

attributed to the CNN-SRM combination model's ability to 
effectively handle complex ECG patterns, reducing 
misclassifications in ambiguous cases. For VEB 
classification, the high sensitivity of 95.3% underscores the 
model's capability to minimize false negatives, which is 
crucial for clinical applications, while the specificity of 91.8% 
ensures low false positive rates. In comparison to recent 
studies like [12] and [18], the proposed approach shows a 15% 
increase in overall F1-score, highlighting its superiority in 
balancing precision and recall. Additionally, the analysis 
reveals that the enhanced specificity in SVEB classification 
contributes to a significant reduction in diagnostic errors, 
supporting its potential for real-world deployment in cardiac 
monitoring systems. 

Figure 3. Confusion matrix 

Table 6. Performance comparison between the proposed method and existing works 

Method Specificity (%) Sensitivity (%) F1 (%) Accuracy (%) 

de Chazal et al. [15] 57.0 83.2 60.1 86.2 

Zhang et al. [18] 60.4 86.8 64.0 88.3 

Mar et al. [21] 56.3 80.2 62.2 89.0 

LIU [23] - - - 91.5 

OURS 66.4 66.6 66.1 93.7 

Table 7. Performance comparison between the proposed method and existing works in detail 

Method 
N SVEB VEB F 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

de Chazal et al. [15] 99.2 87.0 38.5 75.9 81.6 80.3 8.5 89.4 
Zhang et al. [18] 99.0 88.9 35.9 79.0 92.7 85.4 13.7 93.8 
Mar et al. [21] 99.1 89.6 33.5 83.2 75.8 86.7 16.5 61.0 

LIU [23] - - - - - - - - 
OURS 97.8 95.3 74.4 69.2 91.8 95.3 0.02 0.06 
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5. Conclusion and Outlook 

This study proposes a CNN network integrated with the SRM 
criterion algorithm, which leverages both the feature 
extraction capabilities of CNN and the SRM algorithm's 
strong generalization ability for unknown data classification. 
Test results from the MIT-BIH Arrhythmia Database 
demonstrate that the proposed network achieves higher 
accuracy (F1 score: 87.4, accuracy: 88.2%) compared to  
 
 
CNN networks without the SRM algorithm. These results 
indicate its potential as a diagnostic tool in clinical practice. 
Future work includes:(1) further testing the accuracy of the 
proposed model on other data sets to verify the generalization 
of the proposed model;(2) further exploring other deep 
learning feature extraction methods. 
Future work includes: (1) further testing the accuracy of the 
proposed model on other data sets to verify the generalization 
of the proposed model, such as incorporating diverse 
physiological databases to assess robustness across varying 
patient demographics; (2) further exploring other deep 
learning feature extraction methods, including attention 
mechanisms or transformer-based approaches, to potentially 
improve classification performance and reduce 
computational overhead. (3) Investigating the optimization of 
model hyperparameters and training strategies to enhance 
efficiency for real-time clinical applications, addressing 
potential challenges like latency and resource constraints. (4) 
Collaborating with medical institutions to conduct pilot 
studies, ensuring the model's practical utility and ethical 
considerations in diagnostic workflows, while also exploring 
integration with wearable devices for continuous monitoring. 
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