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Abstract 

Assessing trunk coordination has many potential applications in health promotion. However, traditional bio-mechanical 

approaches are not suited for daily use as they require expensive devices and manual analysis. This study aimed to develop 

an approach for automatic classification of good and poor trunk coordination using widely available mobile devices. We 

investigated different combinations of sensor locations (i.e. chest and pelvis), sensing modalities (i.e. accelerometer and 

gyroscope) and classification techniques (i.e. SVM, KNN, and decision tree). Results showed that using both sensing 

modalities at chest and pelvis with SVM produced the best classification accuracy: 96% for chest rotation and 100% for 

pelvis rotation. In practice, however, using one device with both sensing modalities (i.e. accelerometer and gyroscope) will 

achieve a better trade-off between feasibility and accuracy. In this case, the device should be fixed on the chest. KNN 

should be selected as the classification technique for chest rotation (best accuracy 95%), and SVM should be selected as 

the classification technique for pelvis rotation (best accuracy 79%). Post hoc analysis found that poor coordination during 

chest rotation was associated to weak cross-correlation of angular velocity between chest and pelvis in the frontal plane, 

while poor coordination during pelvis rotation was associated to weak correlations of angular velocity between the three 

orthogonal components at chest. This study demonstrated how simple mobile devices can capture relevant motion data and 

extract key features that help construct computational models for automatic assessment of trunk coordination. 

Keywords: trunk coordination; health promotion; pervasive computing; inertia measurement units (IMU); accelerometer; gyroscope; 

machine learning. 

Received on 28 April 2018, accepted on 28 July 2018, published on 30 July 2018

Copyright © 2018 Zilu Liang et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any 

medium so long as the original work is properly cited. 

doi: 10.4108/eai.13-7-2018.159604

*Corresponding author. Email:z.liang@cnl.t.u-tokyo.ac.jp 

1. Introduction

Trunk strength is critical for the prevention of lower back 

pain and fall accident in elderly population [1, 2]. Whereas 

people tend to equate trunk strength with the strength of 

trunk muscles, there is increasing evidence that the 

coordination of muscles, joints and ligaments is even more 

important in providing sufficient trunk strength and is yet 

not strongly associated to trunk muscle strength [3, 4]. 

Moreover, impaired coordination was found to be associated 

to many sickness including low back pain [5-7], stroke [8], 

and unilateral vestibular hypofunction [9]. To this end, trunk 

coordination ability can be used as an indicator of a person’s 

physical health. Nevertheless, there is no tool supporting the 

assessment of dynamic coordination ability of trunk in daily 

life settings. Trunk coordination has mainly been studied in 

low back pain research [2, 5-7, 10-15]. Traditional 

approaches require the use of complicated and expensive 

motion analysis systems that can only be used in 

EAI Endorsed Transactions  
on Pervasive Health and Technology Research Article 

1 EAI Endorsed Transactions 
on Pervasive Health and Technology 

07 2018 | Volume 4 | Issue 15 | e5

http://creativecommons.org/licenses/by/3.0/


laboratories [5, 11]. It is not feasible to apply the same 

approaches to daily life settings.  

This study aimed to develop an approach for automatic 

nominal assessment of trunk coordination ability using 

mobile devices. We sought for solutions at the intersection 

of pervasive sensing and machine learning, so that our 

methods could benefit anyone who has simple mobile 

devices such as smartphones, iPod and iPad. The 

accelerometers and gyroscopes embedded in these devices 

have enabled data-driven and ubiquitous approaches for 

motion tracking and analysis in free-living conditions [9, 16-

21]. These portable sensors allow for capturing motion data 

in all three planes of motion (i.e. sagittal plane, frontal plane, 

and transverse plane) and is thus suited for the analysis of 

trunk coordination [11]. We have previous experimented 

with other types of portable devices such as Nintendo Wii 

Board but failed to achieve high accuracy [22]. Our study 

differed from the previous studies in that we addressed the 

key issue of automating the assessment of coordination 

through machine learning based modelling. Machine 

learning has been widely used in health-related ubiquitous 

computing applications [21, 23-26]. The black-box approach 

enables us to model the complicated and high-dimensional 

relationships between features extracted from motion data 

and trunk coordination ability.  

This study was conducted in three steps. We first defined 

two standard moves, i.e. chest rotation and pelvis rotation. 

These moves require smooth trunk-pelvis coordination and 

are easy to perform by the general population. Different 

from traditional biomechanical approaches that use static 

discrete tasks, we designed two continuous dynamic moves 

that provide spatial-temporal information to quantify trunk 

coordination.  

Second, we conducted a data collection trial with a cohort 

of 21 participants. Two iPods with embedded 

accelerometers and gyroscopes were fixed on chest and on 

the back of pelvis to collect motion data. All moves were 

video recorded with the consent from participants. Since it is 

hard to obtain the ground truth of coordination ability, we 

chose to rely on the wisdom of experts. Three sports judges 

separately rated all the moves, and the majority of the three 

ratings for each move was used as the final label. The 

obtained datasets were split into training sets and testing sets 

for the machine learning process in the next step.  

Third, we applied three machine learning techniques, i.e. 

support vector machine (SVM), k-nearest neighbour (KNN) 

and decision tree, to train the classification models. The 

performance of the classifiers was evaluated using four 

metrics: sensitivity, specificity, accuracy and balanced 

accuracy. We also investigated the effect of sensor location 

and sensing modality, and we identified the motion patterns 

indicating poor coordination through post hoc statistical 

analysis. 

Our analysis revealed that using two devices (one fixed 

on the chest and the other fixed on the back of the pelvis) 

with SVM chosen as the machine learning technique 

produced the best classification accuracy on trunk 

coordination ability, i.e. 96% for chest rotation and 100% 

for pelvis rotation. In real situation, however, using one 

device with both sensing modalities (i.e. accelerometer and 

gyroscope) will achieve a better trade-off between feasibility 

and accuracy. In this case, the device should be fixed on the 

chest. KNN should be selected as the classification 

technique for chest rotation (best accuracy 95%), and SVM 

should be selected as the classification technique for pelvis 

rotation (best accuracy 79%) respectively. Post hoc analysis 

found statistically significant differences between good and 

poor coordination on the top five features. Poor coordination 

during chest rotation was associated to lower values of the 

maximal cross-correlation (y component), the mean (x 

component at pelvis), and the fifth fast Fourier transform 

(FFT) coefficient (y component at chest) of angular velocity, 

while poor coordination during pelvis rotation was 

associated to weaker correlations between the x and the y 

components, weaker correlations between the x and the z 

components,  and weaker covariance between the x and the z 

component of the angular velocity of chest. We may infer 

that judges used different strategies in assessing 

coordination ability through the two standard moves. For 

chest rotation, attention was given to the movement of both 

chest and pelvis and their coordination. For pelvis rotation, 

attention was dominantly paid to the coordination of chest in 

three orthogonal directions.  

This study demonstrated how simple mobile devices can 

capture relevant motion data and extract key features that 

help construct computational models for the automatic 

assessment of trunk coordination. The main contributions of 

this study are three-fold: (1) we developed a machine 

learning based pervasive sensing approach using widely 

available mobile devices; (2) we examined a number of 

combinations of sensor locations, sensing modalities and 

machine learning techniques and identified the best 

combinations; (3) we interpreted the machine learning 

models to understand the key features that characterise poor 

trunk coordination. 

The rest of the paper is organized as follows. Section 2 

provides a literature review on trunk coordination and 

mobile sensors for human movement analysis. Section 3 

presents two standard moves, data collection protocol, and 

data analysis and modelling techniques. Performance 

evaluation of the classification models is presented in 

Section 4. We discuss the implication of the results within 

the landscape of previous studies in Section 5. The paper is 

concluded in Section 6.   

2. Related Work

2.1. Trunk Coordination 

Trunk coordination is an important aspect of trunk strength 

[27, 28] and has been intensively studied in low back pain 

research [2, 5-7, 10-15]. Different types of coordination 

have been investigated in previous studies, including head-

trunk coordination [9], arm-trunk coordination [8], trunk-

pelvis coordination [11, 13, 15], and trunk-lower limb 

coordination [29].  
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These studies focused on identifying kinematic 

differences in motions between individuals with 

pathological conditions and healthy individuals. Differences 

were found between normal group and low back pain group 

in average angle of flexion and average cycle velocity 

during dynamic trunk motion [12] and in the range of 

motion, velocity and acceleration during free dynamic 

oscillatory bending motion [30]. Coordination analysis 

demonstrates a reduction in relative motion between the 

pelvis and trunk in low-back-pain group at varied walking 

and running speed [5, 6, 11]. Moreover, trunk-pelvis was 

more in-phase for individuals with low back pain than those 

without low back pain [14].  

Previous studies also illustrate the importance of 

evaluating all three planes of motion (i.e. sagittal plane, 

frontal plane and transverse plane as shown in Figure 1) 

simultaneously when studying trunk coordination [11, 31-

33], as the spine is a complex structure exhibiting multi-

axial motion during trunk rotational activities [34]. Indeed, 

the reduced ability to modulate coordination for pathological 

individuals was found both in frontal plane [11] and in 

transverse plane [11, 15]. 

Figure 1. Cardinal planes of motion [35]. 

Quantitative assessment of trunk coordination has been an 

important topic in sport science and rehabilitation. While 

traditional biomechanical assessment of motion has 

typically used discrete measures such as peak excursions 

and forces, studies on coordination have mostly relied on 

continuous measures such as continuous relative phase 

(CRP) [11, 36-38]. In addition, coordination variability 

defined as the difference between cycle standard deviation 

of CPR may be an effective indicator of motion quality and 

pathological conditions such as low back pain [7, 39, 40]. 

Previous studies have found decreased coordination 

variability in people with low back pain compared to healthy 

individuals [7].   

Whereas the kinematic differences in trunk coordination 

between pathological and healthy individuals has been 

intensively studied, it remains unknown as to the differences 

between healthy individuals with good and poor 

coordination. The latter is an important topic to investigate 

because it produces insights into the prediction and the 

prevention of motor diseases such as low back pain and 

balance impairment. Hence, this study set out to fill in the 

knowledge gap by establishing a novel pervasive sensing 

approach to the automatic assessment of good and poor 

coordination among health people.  

2.2. Mobile Sensors in Human Movement 
Analysis 

Human motion analysis aims to quantitatively assess motor 

functions and motor abilities [41]. Traditional motion 

analysis relies on the use of optoelectronic systems (i.e. 

motion capture systems) that measure the kinematics and 

kinetics of body joints, which requires bulky and expensive 

equipment and can only be conducted in laboratory settings 

[42]. Technology advances in recent years has seen the rise 

of alternative measurement techniques using mobile sensors 

such as accelerometers and gyroscopes. These devices have 

multiple advantages,  including low cost, light weight, and 

supporting pervasive measurement even in daily life settings 

[43].  

A set of a mutually aligned three-orthogonal 

accelerometer and gyroscope is generally referred to as an 

inertial measurement unit (IMU). An IMU is widely 

available in modern portable devices such as smartphones 

and surfaces, making it easy to measure three-dimensional 

linear acceleration and angular velocity in daily life [16]. 

The accuracy and reliability of IMU has also been validated 

[44]. Many studies have used IMU for gait analysis [18, 45, 

46]. Studies have examined people’s the ability of 

maintaining upright balance during walking [47], step wise 

repeatability [48], gait resilience to external and internal 

perturbations [49], and the risks of fall [50]. Previous studies 

also identified various key metrics [51]. In the time domain, 

acceleration root mean square or standard deviation are the 

validated metrics for balance assessment [52]. In the 

frequency domain, the harmonic ratio (HR) is a valid metric 

for assessing the symmetry and rhythm of movements [53, 

54], and the relative power of the first signal harmonic with 

respect to the total power of the signal is used to access the 

smoothness of gait [55].  

Another important area using mobile sensors is the 

detection of daily activities [56-61] and sleep [23, 24, 62-65]. 

The main purposes include the detection of different types 

of activities in daily life, the modelling of daily activity 

patterns, the detection of sleep stages throughout a night, 

and the promotion of physical activities and sleep hygiene. 

This line of research has many applications to health 

promotion [20, 66, 67], rehabilitation [19, 68, 69] and sports 

training [70]. While it is relatively easy to distinguish 

among different postures such as sitting, standing, lying or 

motor activities [71, 72], quantifying the amount of 

A Pervasive Sensing Approach to Automatic Assessment of Trunk Coordination Using Mobile Devices

3 EAI Endorsed Transactions 
on Pervasive Health and Technology 

07 2018 | Volume 4 | Issue 15 | e5



activities is challenging. As a result, several population-

specific classification thresholds have been proposed and 

validated, including for toddlers [73], children [74, 75], 

youth [76], healthy adults [77, 78], and adults with 

neuromuscular control diseases [79-81].  

This study presents a novel approach that nurtures the 

IMU embedded in widely available mobile devices to 

achieve the automatic assessment of trunk coordination 

ability in daily life settings. The proposed approach foresees 

a new application of these mobile sensors in the broad scope 

of health promotion. Our results produced rich implications 

for future research along the line of health-oriented 

pervasive sensing technologies.  

3. Materials and Methods

The proposed approach provides a pervasive solution for 

anyone who wants to assess, track, and enhance their trunk 

coordination ability. The problem of assessing good and 

poor coordination was formulated into a classification 

problem, and thus standard machine learning techniques 

were applied. In what follows, we first present the two 

standard moves for assessing trunk coordination. We then 

describe the data collection protocol and data analysis and 

modelling techniques.  

3.1. Standard Moves 

Trunk coordination ability has been studied during walking, 

running, turning and bending [6, 37, 43, 46-48]. Whereas 

these moves may be effective medium to differentiate 

pathological population and healthy population in traditional 

biomechanical studies [6, 14, 15], they may not serve the 

purpose of this study to distinguish the movement patterns 

of healthy people with good and poor coordination. The 

ideal standard moves should (1) require coordinated control 

of trunk muscle and joints, (2) involve rhythmic movements 

of trunk and lower extremities, (3) be easy and safe to 

perform by the general population.  

After discussing with physical therapists and sports 

professionals, we selected the following two standard moves. 

The moves are illustrated in Figure 2. A demo video of the 

basic moves can be accessed at 

https://www.youtube.com/watch?v=7cx4KX3JpMQ. It is 

worth noting that the tempo of pelvis rotation is quicker than 

that of chest rotation. Previous studies on trunk coordination 

during walking revealed distinct kinematic characteristics 

between slow and fast walk [6, 11, 33, 45, 46]. Therefore, 

the two standard moves allow for the assessment of trunk 

coordination under different rotation speed and thus will 

produce more insights.  

• Standard Move 1: Chest Rotation. This move requires

participants to repeatedly rotate their trunks from the

left side to the right side to the end of the maximum

angular displacement as possible. They were supposed

to naturally shift their centre of gravity between legs

while they rotate the trunk. As is shown in Figure 2 (a),

chest rotation starts with feet apart at shoulder's width. 

The performer is required to rotate the upper body 

slowly while using hip joints as supporting points. The 

supporting foot should not be moved, and the heel of 

the other foot can be lifted. The small toe of the 

supporting foot should cling to the floor. 

• Standard Move 2: Pelvis Rotation. This move requires

participants to alternately lift one heel while naturally

rotating the pelvis.  As is shown in Figure 2 (b), pelvis

rotation starts with feet together. The performer is

required to switch the centre of gravity between two

legs by alternating between bending and strengthening

the knees, with the toes of the bending knee pointing

the floor. The performer should keep the head stable

and face forward.

(a) 

(b) 

Figure 2. Standard moves: (a) chest rotation; (b) 
pelvis rotation.  

3.2. Data Collection Protocol 

Participants 
We recruited 21 injury free adults (12 females and 9 males, 

year range: 24-65) for data collection. Participants were 

recruited from the National Institute of Advanced Industrial 

Science and Technology (AIST) and The University of 

Tokyo. No participant reported a major back or lower limb 

pathology, use of medication, or a history of neurologic 

disease that may influence neuromuscular control. This 

research was approved by the ethical committee of AIST. 

All participants signed informed consent before 

participating in the data collection trial. 

Devices and Sensing Modalities 
As depicted in Figure 3, two iPods were used to collect 

motion data concurrently. The devices were fixed in front of 

the chest and on the back of the pelvis to measure the 
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movements of thorax and pelvis respectively. Previous 

studies have demonstrated the validity of these locations in 

studying motor control [10, 82-84].  

(a) (b) 

(c) 

Figure 3. Sensor location in data collection trial: (a) 
front view; (b) back view; (c) side view. The two iPods 
were fixed on the chest and on the back of pelvis 
respectively using belts.  

These two iPods were denoted as  and 

respectively. Each iPod has an embedded triaxial 

accelerometer and a triaxial gyroscope. These sensors 

enabled the iPods to measure acceleration and angular 

velocity in three orthogonal directions. The sampling 

frequencies of both sensing modalities were 50Hz, and the 

dynamic range of the accelerometer was 2.3g. The devices 

were rigidly fixed to the body segments using belts, with the 

sensors’ reference system aligned with the anatomic axes of 

the segments where the sensors were attached. To make sure 

that data collected by the two iPods were aligned in time, we 

linked the two devices to a third iPod using a mobile 

application named Axis Visualizer that we developed in our 

previous study [85]. With the Axis Visualizer opened on all 

three iPods, we could start the measurement of  and 

 at exactly the same time by simply tapping the start 

button on the third iPod.  

Measurement Protocol and Labelling 

As is shown in Figure 3, the two iPods were fixed on the 

chest and on the back of the pelvis using belts. Participant 

was instructed to perform the standard moves by following 

the demo video (available at 

https://www.youtube.com/watch?v=7cx4KX3JpMQ). The 

data collection trial had three sessions. Each session 

consisted of performing chest rotation for 12 seconds and 

pelvis rotation for 12 seconds. Participants started with 

relaxing and adjusting the standing posture, followed by 

performing the three sessions with a 10-second rest between 

sessions. All movements were video recorded.  

After the trial, the videos were shown to three sports 

judges for rating. The rating was done independently, i.e. all 

judges were not aware of each other’s assessment. The final 

rating was obtained using the following rule: a move was 

labelled as 1 only when at least two judges rate it as 1 (= 

poor coordination); or else the move was labelled as 0 (= 

good coordination). 

3.3. Data Analysis and Modelling Techniques 

Data from all the participants were used in the final analysis. 

Since the iPods collected raw data of acceleration and 

angular velocity in three planes of motion, the following 4 

datasets were obtained for each standard move. In the 

following equations, aX, aY, aZ denote the x, y, and z 

components of acceleration, and ωX, ωY, ωZ denote the x, y, 

and z components of angular velocity.  

• Dataset  comprised the acceleration data in three 

orthogonal directions and the root sum of squares 

(RSS) collected by the accelerometer in . 

 (1) 

        (2) 

• Dataset  comprised the acceleration data in three

orthogonal directions and the RSS collected by the

accelerometer in .

 (3) 

         (4) 

• Dataset  comprised the angular velocity data in

three orthogonal directions and the RSS collected by

the gyroscope in .

 (5) 

(6)
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• Dataset  comprised the angular velocity data in

three orthogonal directions and the RSS collected by

the gyroscope in .

 (7) 

         (8) 

Data Pre-processing 
As was recommended in [86], the raw data of acceleration 

and angular velocity were smoothened using a median filter 

(n=5). This process helped remove any abnormal noise 

spikes produced by the accelerometers and gyroscopes. The 

median-filtered acceleration data was then passed through a 

high-pass filter with cut-off frequency at 0.25 Hz to filter 

out the acceleration component due to gravity (GA) [87, 88]. 

The output of the high-pass filter was the pure body 

acceleration (BA) component. 

Feature Extraction and Selection 
Following standard machine learning process, we extracted 

time-domain and frequency-domain features from the pre-

processed acceleration and angular velocity data. Since the 

standard moves involve repetitive motions, the sliding-

window approach widely used in activity recognition studies 

did not serve our purpose. Instead, the features were 

extracted from the whole time series data of a move.  

Features in time domain were derived directly from the 

pre-processed raw data and were typically statistical 

measures. These features were found to be useful for activity 

recognition in previous studies [87, 89-92]. Features in 

frequency domain were derived from the fast Fourier 

transform (FFT) of the pre-processed raw data. We defined 

two feature sets. Feature Set I characterized the traits of data 

collected by each individual iPod and is summarized in 

Table 1. Feature Set II comprised features related to the 

cross-correlation between data collected by the two iPods to 

quantify the strength of coupling between the motion of the 

two body segments [93-97]. Feature Set II is summarized in 

Table 2. 

One of the main themes of this paper was the analysis of 

different combinations of sensor location and sensing 

modality. We evaluated the performance of the nine 

combinations (thus denoted as nine methods) described in 

Table 3, where A and Ω represents the pre-processed 

acceleration and angular velocity datasets. 

Feature selection was conducted to remove redundant 

features and to select the features with the strongest 

distinguishing power. Previous studies suggested that 

feature selection or dimension reduction was essential for 

improving the performance of machine learning techniques 

[98, 99]. In this study, feature selection was performed 

according to the following process. First, the features with 

constant values in all samples were removed. Second, 

redundant features were removed through examining the 

pair-wise correlations of the features. If two features had a 

high correlation, we removed the one with larger mean 

absolute correlation as this feature had smaller variance. 

After that, we applied Random Forest Recursive Feature 

Elimination (RF-RFE) [100] to select the strongest features. 

The RF-RFE algorithm was a greedy optimization for 

identifying the subset of best features through multiple 

rounds of repetitions. In each repetition, the algorithm 

constructed a model using random forest algorithm, selected 

the features that produced the best accuracy set aside these 

features and then repeated the process with the rest of the 

features. This process stopped when all features in the 

datasets were exhausted. Thereafter the features were ranked 

according to when they were eliminated. Figure 4 presented 

an example of how the accuracy in repeated cross-validation 

changed as the number of features increased. The 

coordinates of the solid dot indicated the optimal number of 

features and the corresponding 10-fold cross-validation 

accuracy (repeated 3 times). 

Figure 4. An example of random forest recursive 
feature elimination with automatic tuning of the number 
of features selected (10-fold cross-validation with 3 
repetitions). 

Classification 
The problem of assessing trunk coordination ability was 

formulated into a classification problem. Three machine 

learning techniques were employed to achieve the goal: 

support vector machine (SVM), K-nearest neighbour (KNN), 

and decision tree. Following standard machine learning 

process, we split the collected dataset into training set and 

testing set. The training set comprised 70% of the samples in 

the original dataset, while the testing set comprised the rest 

30%. In total 27 classifiers (3 for each method) were trained 

using the corresponding training sets. 
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Table 1. Features and denotations in Feature Set I. 

Time Domain Frequency Domain 

Feature Denotation Feature Denotation 

Maximum 
maxX, maxY, maxZ, 
maxRSS 

First Five FFT 
Coefficients 

fftCoX1~5, fftCoY1~5, 
fftCoZ1~5, fftCoRSS1~5 

Minimum minX, minY, minZ, minRSS Principle Frequency 
prinfreqX, prinfreqY, prinfreqZ, 
prinfreRSS 

Mean Value 
meanX, meanY, minZ, 
meanRSS 

Peak Frequency 
PeakfreqX, peakfreqY, 
peakfreqZ, peakfreqRSS 

Standard Deviation  sdX, sdY, sdZ, sdRSS Spectral Energy seX, seY, seZ 

Kurtosis kuX, kuY, kuZ, kuRSS 

Root Mean Square rmsX, rmsY, rmsZ, rmsRSS 

Median Cross Zeros mcX, mcY, mcZ 

Correlation X, Y, Z corXY, corXZ, corYZ 

Table 2. Features and denotations in Feature Set II. 

Time Domain 

Feature Denotation 

Minimum value of cross-correlation between two iPods xCorMin, yCorMin, zCorMin,  

Maximum value of cross-correlation between two iPods xCorMax, yCorMax, zCorMax 

Lag of the minimum value of cross-correlation xlagMin, ylagMin, zlagMin,  

Lag of the maximum value of cross-correlation xlagMax, ylagMax, zlagMax  

Table 3. Feature extraction for nine methods with varied sensor locations and sensing modalities. 

Methods Sensor Location Sensing Modality Raw Data Extracted Features 

Single device with single modality 

Method-1 Chest Accelerometer Feature Set I 

Method-2 Chest Gyroscope Feature Set I 

Method-3 Pelvis Accelerometer Feature Set I 

Method-4 Pelvis Gyroscope Feature Set I 

Single device with multiple modalities 

Method-5 Chest 
Accelerometer & 
gyroscope 

, Feature Set I 

Method-6 Pelvis 
Accelerometer & 
gyroscope , Feature Set I 

Multiple devices with single modality 

Method-7 Chest, pelvis Accelerometer , Feature Set I & II 

Method-8 Chest, pelvis Gyroscope , Feature Set I & II 

Multiple devices with multiple modalities 

Method-9 Chest, pelvis 
Accelerometer & 
gyroscope , , , Feature Set I & II 
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, 
(1) 

, 
(2) 

, 
(3) 

, 
(4) 

The parameter tuning for each classification technique 

was conducted in the following way. For SVM, the best 

value of parameters C and γ were decided using grid search 

with radial basis function (RBF) kernel. For KNN and 

decision tree, the best value of parameter k and cp were 

decided through attempting different values. In addition, the 

performance of two split methods, information gain and 

Gini impurity were also investigated for decision tree [101]. 

The value corresponding to the highest accuracy (10-fold 

cross validation with 3 times repetition) was selected as the 

optimal values for the parameters. 

The performance of the classifiers was then tested on the 

corresponding testing sets and evaluated using the following 

metrics defined in Equation (1)-(4). The TP, TN, FP, and 

FN represent true positive, true negative, false positive and 

false negative respectively. The sensitivity and specificity are 

the ability of a classifier to correctly detect good and poor 

coordination respectively [102]. Accuracy is the ability of a 

classifier to differentiate good and poor coordination [103], 

while balanced accuracy also counts in the imbalance of 

good and poor samples in the testing sets (where there were 

more poor samples) [104]. Balanced accuracy was chosen 

over F-score because there were more positive samples than 

negative ones. 

Post-hoc Analysis 
The output of a machine learning process was a trained 

classifier that performs nominal assessment of trunk 

coordination ability. However, the relationships between the 

key features and the corresponding classification result 

remained unclear, which hinders our understanding on the 

feature-wise difference between good and poor coordination. 

To address this problem, we conducted post-hoc analysis 

using Wilcoxon Signed Rank test [105] to examine if there 

was statistically significant difference on the mean value of 

a feature between good and poor coordination. Box-and-

Whisker [106] plots were also used to provide an intuitive 

display of the distribution of the feature values based on 

minimum, first quartile, median, third quartile, and 

maximum. 

4. Performance Evaluation

This section presents the computation results and the 

performance evaluation of the nine methods described in 

Table 3. The final datasets comprised motion data from 21 

participants. Two datasets were collected in the trial, i.e. 

dataset-CR (chest rotation) and dataset-PR (pelvis rotation), 

with 63 samples in each dataset. The assessment by three 

judges yielded 32 (out of 63) samples of poor coordination 

during chest rotation, and 45 (out of 63) samples of poor 

coordination during pelvis rotation. 

The R programming environment [107] was used for 

feature selection and classification. Features were extracted 

for each method. Depending on the number of devices and 

sensing modalities used in the method, the number of 

features varied. We investigated the effect of the following 

factors on classification accuracy: sensor location (chest 

versus pelvis), sensor modality (accelerometer versus 

gyroscope) and classification technique (SVM, KNN, and 

decision tree). 

4.1. Feature Selection 

Since the feature set for each method in Table 3 varied with 

respect to the number of devices and sensing modalities, we 

conducted feature selection for each method separately 

following the process described in Section 2.3.  

Firstly, we removed the features that had the constant 

values in all samples in the datasets. These features include 

the minimum of , , , and , which were 

constantly zero. Secondly, we removed the redundant 

features based on pair-wise correlations. The number of 

redundant features varied in each method. Third, the 

Random Forest Recursive Feature Elimination (RF-RFE) 

[100] was applied to select the strongest features. The

optimal number of features was selected via 10-fold cross

validation with 3 times of repetition. The number of features

that remained after recursive feature elimination and the top

five features were summarized in Table 4 (chest rotation)

and Table 5 (pelvis rotation). The top five features were

listed in descending order in terms of importance. We

confirmed that using the remaining features produced better

results than using the original feature set.

The results showed that important features were selected 

from both the time domain and the frequency domain. The 

number of selected features generally increased as the 

number of devices and sensing modalities increased. All 

iPods (i.e. chest and pelvis) and sensing modalities (i.e. 

accelerometer and gyroscope) contributed strong features to 

the classification of good and poor coordination. Most of the 

top five features were time-domain features, especially for 

pelvis rotation. Under the category of single device with 

multiple modalities for chest rotation in Table 4, we found 

that the iPod on the chest relied more on the sensing 

modality of gyroscope because all the top five features were 

extracted from the angular velocity data. In contrast, the 

iPod on the back of the pelvis relied more on the sensing 

modality of accelerometer. With respect to the feature 

selection for pelvis rotation, we found that the top five 

features selected in Method-8 and Method-9 were 

dominantly extracted from the accelerometer and gyroscope 

on the chest, indicating that the judges may have paid more 
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attention to the movement of chest in assessing coordination 

during pelvis rotation.   

4.2. Parameter Tuning and Training 

The original datasets were split into training sets (42 

samples) and testing sets (21 samples). Three classification 

techniques (i.e. SVM, KNN, and decision tree) were applied 

to train classifiers for automatic classification on good and 

poor coordination. We obtained the optimal values of the 

parameters for each classification technique following the 

process described in 2.3.4, with 3 repetitions of 10-fold 

cross validation using the training sets. At each of the folds, 

the training set was partitioned by randomly selecting 

approximately 70% sample for training and 30% samples 

for testing. The optimal values of the parameters in the 

trained classifiers were selected based on the average 

classification accuracy over 3 repetitions, which were 

summarized in Table 6 (chest rotation) and Table 7 (pelvis 

rotation).  

Table 4. Features selection in different methods for chest rotation. 

Methods Number of Selected 
Features 

Top 5 Features 

Single device with single modality (originally 65 features) 

Method-1 29 , , , ,

Method-2 15 , , , , ,

Method-3 12 , , , ,

Method-4 19 , , , ,

Single device with multiple modalities (originally 130 features) 

Method-5 78 , , , ,

Method-6 31 , , , ,

Multiple devices with single modality (originally 142 features) 

Method-7  111 , , , ,

Method-8 101 , , , ,

Multiple devices with multiple modalities (originally 284 features) 

Method-9 183 , , , ,

Table 5. Features selection in different methods for pelvis rotation. 

Methods Number of Selected 
Features 

Top 5 Features 

Single device with single modality (originally 65 features) 

Method-1  20 , , , ,

Method-2 17 , , , ,

Method-3  11 , , , ,

Method-4 14 , , , ,

Single device with multiple modalities (originally 130 features) 

Method-5  41 , , , ,

Method-6 68 , , , ,

Multiple devices with single modality (originally 142 features) 

Method-7  78 , , , ,

Method-8 45 , , , ,

Multiple devices with multiple modalities (originally 284 features) 

Method-9 111 , , , ,

SVM achieved the best cross-validation accuracy for both 

moves. For chest rotation, the training accuracy of SVM was 

generally the best among the three techniques, while 

decision tree was the weakest technique among the three. 

For pelvis rotation, SVM and KNN produced similar 

training performance and were both better than decision tree. 
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4.3. Performance of Classification Models 

In total 9 classification models were obtained for chest 

rotation. The performance of the models was examined 

using the corresponding test datasets. The sensitivity, 

specificity, accuracy and balanced accuracy are summarized 

in Table 8. As expected, Method-9 (accelerometers and 

gyroscopes on chest and pelvis) with SVM achieved the best 

classification accuracy among all methods with a balanced 

accuracy of 0.96. Despite using only one device, Method-2 

(gyroscope on chest) with SVM and Method-5 

(accelerometer and gyroscope on chest) with KNN achieved 

equivalently good classification accuracy as method 

Method-9. Regardless of the classification technique applied, 

sensors on the chest produced stronger features than those 

on the pelvis, and gyroscopes were more effective than 

accelerometer in classifying coordination. Using feature sets 

from different data sources, the best accuracy of SVM and 

KNN were similar and were approximately 95%, whereas 

the best accuracy of decision tree was no more than 73%. 

The trained decision tree that achieved the best classification 

accuracy on chest rotation is shown in Figure 5(a). 

Nine classifiers were obtained for pelvis rotation in a 

similar manner. The performance of the classifiers for each 

method was examined on the corresponding test datasets. 

The sensitivity, specificity, accuracy and balanced accuracy 

are summarized in Table 9. Since the dataset of pelvis 

rotation was imbalanced with more positive observations, 

the disparity between accuracy and balanced accuracy was 

obvious especially when decision tree technique was applied. 

Regardless of using two iPods and two sensing modalities, 

Method-9 did not produce the best performance with any 

classification technique. In comparison, Method-8 

(gyroscope on both chest and pelvis) with SVM achieved 

the best performance (100% balanced accuracy), followed 

by Method-3 (accelerometer on pelvis) with KNN achieving 

a balanced accuracy of 72%. SVM and KNN produced 

similar classification accuracy for all other methods, 

whereas the performance of decision tree was no better than 

random guess in most cases when counting in the imbalance 

of positive and negative samples. Decision tree only 

achieved slightly better performance with Method-2 

(gyroscope on chest) and the trained decision tree is shown 

in Figure 5(b). 

   (a)  (b) 

Figure 5. The trained decision trees that achieved the 
best performance on classifying good and poor 
coordination during (a) chest rotation and (b) pelvis 
rotation.  

4.4. Post-hoc Analysis 

To understand the relationships between the features and 

classification results, we conducted post hoc analysis using 

Wilcoxon Signed Rank (WSR) test [105]. WSR was 

selected in place of parametric statistical hypothesis tests 

such as ANOVA test due to the non-normality of the 

features indicated by the Shapiro-Wilk test [108]. Box-and-

Whisker plots were also used to compare the distribution of 

the feature values between good and poor coordination. The 

post-hoc analysis was conducted on the top five features of 

the best classification methods, as they were the most 

important and interesting features.  

Table 6. Tuned parameters and best cross-validation accuracy of classification technique for chest rotation. 

SVM KNN Decision Tree 

C Num of SV Best Acc k Best Acc 
Complexity 
Parameter 

Split 
Method 

Best 
Acc 

Method-1 8 0.001 35 0.72 7 0.69 0.44 Gini 0.58 

Method-2 256 0.001 20 0.91 5 0.74 0.28 Gini 0.61 

Method-3 64 0.001 28 0.76 5 0.63 0.15 Gini 0.54 

Method-4 1 0.01 40 0.72 5 0.62 0.04 Gini 0.57 

Method-5 2 0.01 40 0.67 5 0.74 0.55 Gini 0.66 

Method-6 4 0.001 41 0.70 5 0.60 0.15 Gini 0.51 

Method-7 8 0.001 38 0.74 9 0.61 0.42 Gini 0.50 

Method-8 1 0.01 42 0.76 5 0.68 0.21 Gini 0.57 

Method-9 5 0.001 40 0.79 5 0.70 0.51 Gini 0.59 
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Table 7. Tuned parameters and best cross-validation accuracy of classification technique for pelvis rotation. 

SVM KNN Decision Tree 

C 
Num of 

SV 
Best 
Acc 

k 
Best 
Acc 

Complexity 
Parameter 

Split 
Method 

Best 
Acc 

Method-1 0.001 0.000001 20 0.76 23 0.76 0.2 Gini 0.50 

Method-2 5 1 39 0.71 7 0.80 0.27 Information 0.61 

Method-3 64 0.001 22 0.81 5 0.82 0.25 Gini 0.50 

Method-4 100 0.0001 30 0.74 15 0.72 0.42 Gini 0.50 

Method-5 4 0.01 24 0.93 5 0.83 0.44 Gini 0.50 

Method-6 256 0.0001 23 0.84 5 0.83 0.25 Gini 0.50 

Method-7 2 0.01 39 0.74 5 0.75 0.31 Gini 0.50 

Method-8 256 0.001 20 0.91 13 0.76 0.30 Gini 0.50 

Method-9 2 0.01 40 0.81 5 0.73 0.42 Gini 0.50 

Table 8. Performance of classifiers for chest rotation. 

SVM KNN Decision Tree 

Sen Spe Acc Bal Acc Sen Spe Acc Bal Acc Sen Spe Acc Bal Acc 

Method-1 0.43 1.00 0.62 0.71 0.36 1.00 0.57 0.68 0.43 0.86 0.57 0.64 

Method-2 0.93 1.00 0.95 0.96 0.57 1.00 0.71 0.79 0.43 0.71 0.52 0.57 

Method-3 0.58 0.67 0.62 0.63 0.83 0.56 0.71 0.69 0.33 0.78 0.52 0.56 

Method-4 0.90 0.50 0.70 0.70 0.90 0.50 0.70 0.70 0.50 0.30 0.40 0.40 

Method-5 1.00 0.80 0.90 0.90 1.00 0.90 0.95 0.95 0.45 0.40 0.43 0.43 

Method-6 0.58 0.75 0.65 0.67 0.83 0.75 0.80 0.79 0.42 0.63 0.50 0.52 

Method-7 0.46 0.63 0.52 0.54 0.61 0.75 0.67 0.68 0.31 0.50 0.38 0.40 

Method-8 0.89 0.64 0.75 0.76 0.44 0.91 0.70 0.68 0.56 0.91 0.75 0.73 

Method-9 0.92 1.00 0.95 0.96 0.62 0.71 0.65 0.66 0.77 0.28 0.60 0.53 

Table 9. Performance of classifiers for pelvis rotation. 

SVM KNN Decision Tree 

Sen Spe Acc Bal Acc Sen Spe Acc Bal Acc Sen Spe Acc Bal Acc 

Method-1 1.00 0.00 0.62 0.50 1.00 0.00 0.62 0.50 1.00 0.00 0.62 0.50 

Method-2 0.93 0.29 0.71 0.61 0.93 0.29 0.71 0.61 0.93 0.29 0.71 0.61 

Method-3 0.80 0.33 0.67 0.57 0.93 0.50 0.81 0.72 1.00 0.00 0.71 0.50 

Method-4 0.93 0.17 0.71 0.55 0.87 0.17 0.67 0.52 1.00 0.00 0.71 0.50 

Method-5 0.92 0.67 0.81 0.79 1.00 0.22 0.67 0.61 1.00 0.00 0.57 0.50 

Method-6 1.00 0.20 0.62 0.60 1.00 0.10 0.57 0.55 1.00 0.00 0.52 0.50 

Method-7 1.00 0.60 0.90 0.80 1.00 0.40 0.856 0.70 1.00 0.00 0.76 0.50 

Method-8 1.00 1.00 1.00 1.00 1.00 0.14 0.70 0.57 1.00 0.00 0.65 0.50 

Method-9 1.00 0.40 0.85 0.70 1.00 0.20 0.80 0.60 1.00 0.00 0.75 0.50 

For chest rotation, all the features of interest were 

extracted from angular velocity of chest and pelvis. The 

WSR test showed that there were significant differences 

between good and poor coordination on the mean values of 

the following features: the maximal cross-correlation of the 

y component between chest and pelvis (p < 0.001), the 
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fourth FFT coefficient of the z component of chest 

movement (p = 0.01), the mean value of the x component of 

pelvis movement (p = 0.003), the maximal cross-correlation 

of the z component between chest and pelvis (p = 0.003), 

and the fifth FFT coefficient of the y component of chest 

movement (p = 0.002).  

For pelvis rotation, all features of interest were extracted 

from angular velocity data measured on the chest. 

Significant differences between good and poor coordination 

were found on the mean values of the correlations between 

the x and y components (p = 0.002), between the x and z 

components (p = 0.02), and between the y and z components 

(p = 0.01). There were also differences on the covariance 

between the y and z components (p = 0.03), and between the 

x and z components (p = 0.04).  

As is shown in Figure 6 (chest rotation) and Figure 7 

(pelvis rotation), the Box-and-Whisker plots provide 

intuitive visual display on the distribution of the feature 

values between good and poor coordination. The thick lines, 

bot edges and whiskers represent the median, the 25-75% 

quartile range and the overall range respectively. Compared 

to participants with good coordination, the movements of 

participants with poor coordination during chest ration were 

characterized by lower values of the maximal cross-

correlation in the y component of the angular velocity 

between chest and pelvis in Figure 6(a), lower values of the 

mean of the x component of the angular velocity of pelvis in 

Figure 6(c), and lower values of the fifth FFT coefficient of 

the y component of the angular velocity of chest in Figure 

6(e). Although there were significant differences between 

good and poor coordination on the mean values of the other 

two features, the Box-and-Whisker plots demonstrated large 

overlap of the 25-75% quartile range as is shown in Figure 

6(b) and Figure 6(d). Therefore, these two features were not 

used to interpret the classification results. As for pelvis 

rotation, poor coordination was associated to weaker 

correlation between the x and the y components of the 

angular velocity of chest in Figure 7(a), weaker correlation 

between the x and the z components of the angular velocity 

of chest in Figure 7(c), and weaker covariance between the x 

and z components of the angular velocity of chest in Figure 

7(d). For the same reason of overlapping in distribution, the 

other two features were not used to interpret the 

classification results. 

4.5. Participants Feedback 

At the end of the data collection trial, the participants were 

asked to provide feedback on the two standard moves and 

the demo video. All participants acknowledged that the 

devices were light to wear and the demo video was very 

easy to follow. They acknowledged that chest rotation was 

easy to perform because it resembled many movements in 

daily life. However, five participants found pelvis rotation 

awkward to perform, which echoed the fact that there were 

more positive samples in the datasets. As for the reasons, 

some participants mentioned that “it’s not a common 

movement in daily life”, “you have to rotate pelvis and tap 

the toe at the same time” and “it looks like walking, but you 

are not walking forward”. These participants encountered 

difficulties in coordinating trunk and pelvis when 

performing pelvis rotation. Four participants pointed out that 

the side view of pelvis rotation in the demo video was very 

helpful for them to understand the correct form of this move. 

Given the challenge of performing pelvis rotation for some 

participants, it would be interesting to investigate the 

possibility of using pelvis rotation as an exercise for 

enhancing trunk-pelvis coordination in the context of 

community-based health promotion. 

5. Discussion

We have analysed the performance of the proposed 

approach for automatic assessment of trunk coordination 

during two standard moves. The results showed that the best 

classification accuracy was achieved for the two standard 

moves when multiple devices were used with SVM chosen 

as the machine learning technique. The best methods 

achieved a Balanced Accuracy of 96% (Method-9) and 

100% (Method-8) respectively for chest rotation and pelvis 

rotation, with satisfying performance on correctly detecting 

positive samples (Sensitivity) and negative samples 

(Specificity) as well. Feature selection indicated that the 

cross-correlations between the movement of chest and that 

of pelvis were important features in assessing trunk 

coordination. For chest rotation, comparable performance 

was achieved by using only one device on the chest, either 

with one sensing modality of gyroscope (Method-2) or with 

both gyroscope and accelerometer (Method-5). These 

methods may be more feasible and appealing in real 

situations as they only rely on one device. As for sensor 

location, the results revealed that the assessment model 

based on the motion data of chest achieved better accuracy 

than those based on the motion data of pelvis.  

It is also reasonable to assume that both sensing 

modalities are available in real situation as most mobile 

devices have embedded gyroscope as well as accelerometer. 

Therefore, using two sensing modalities on chest (Method-

5) is the most suitable method that balances the trade-off

between feasibility and accuracy. In the meanwhile, KNN

and SVM should be selected as the classification technique

for chest rotation and pelvis rotation respectively so that a

Balanced Accuracy of 95% and 79% could be achieved. In

the meantime, the top five features selected in the best

methods were all extracted from angular velocity data, we

may infer that gyroscope may be more effective than

accelerometer in capturing useful information for assessing

trunk coordination. This result is in line with the practice in

movement science where angular oscillations have been

routinely used to study body movements [36].

Comparing the three machine learning techniques, SVM 

and KNN produced comparable performance, whereas 

decision tree was weaker than the other two. However, 

interpreting the classification rules of the trained decision 

tree was straightforward. As is shown in Figure 5, the 

classification of good and poor coordination relied only on 
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one feature, i.e. the maximal cross-correlation of the y 

component of the angular velocity between the chest and the 

pelvis. In other words, a move will be considered as an 

indicator of poor coordination if the previous-mentioned 

maximal cross-correlation is negative. In comparison, 

identifying and interpreting the relationships between the 

input features and the final classification outcomes for SVM 

and KNN required more complicated post-hoc analysis. 

     (a) 
     (b) 

     (c) 
      (d) 

    (e) 

Figure 6. Box-and-Whisker plots on top five features selected in Method-9 for good and poor coordination during 
chest rotation: (a) maximal value of cross-correlation of y component of angular velocity between chest and 
pelvis; (b) fourth FFT coefficient of z component of angular velocity of chest; (c) mean value of x component of 
angular velocity of pelvis; (d) maximal value of cross-correlation of z component of angular velocity between chest 
and pelvis; (e) fifth FFT coefficient of y component of angular velocity of chest. Thick lines, bot edges and 
whiskers represent the median, the 25-75% quartile range and the overall range respectively. 

Good coordination   Poor coordination 
Good coordination   Poor coordination 

Good coordination   Poor coordination Good coordination   Poor coordination 

Good coordination   Poor coordination 
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    (a) 
      (b) 

      (c)       (d) 

      (e) 

Figure 7. Box-and-Whisker plots on top five features selected in Method-8 for good and poor coordination during 
pelvis rotation: (a) correlation between x and y components of angular velocity of chest, (b) covariance between y 
and z components of angular velocity of chest, (c) correlation between x and z components of angular velocity of 
chest, (d) covariance between x and z components of angular velocity of chest, and (e) correlation between y and 
z components of angular velocity of chest. 

The Wilcoxon Signed Rank test found statistically 

significant differences between participants with good 

coordination and those with poor coordination on the 

mean values of the top five features. The Box-and-

Whisker plots further identified the differences in terms of 

the distribution of the feature values between good and 

poor coordination. Poor coordination during chest rotation 

was associated to lower values of the maximal cross-

correlation (y component), to lower values of the mean 

value (x component at pelvis), and to lower values of the 

fifth FFT coefficient (y component at chest) of angular 

velocity, while poor coordination during pelvis rotation 

was associated to weaker correlation between the x and 

the y components, and to weaker correlation between the 

x and the z components of angular velocity of chest. These 

findings both echoed and extended previous findings of 

Good coordination   Poor coordination Good coordination   Poor coordination 

Good coordination  Poor coordination Good coordination   Poor coordination 

Good coordination   Poor coordination 
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reduced relative motion between pelvis and trunk during 

walking and running for people with poor coordination [5, 

6, 11]. Additionally, features with strong distinguishing 

power were identified in three orthogonal directions, 

suggesting that coordination assessment should consider 

all three planes of motion as has been advocated in 

previous studies [11, 15, 31-33]. Another interesting 

finding was that standard deviations that were widely 

used to characterise movements variability were not 

always important features, despite of its wide use in gait 

studies [51]. This backs up previous findings that 

variability may not be a proper metrics for assessing the 

stability of human movement [39].  

Although this study obtained promising results, there 

were some limitations demanding further efforts. The 

main limitation of this study was that we only constructed 

global models for the whole cohort. These models thus 

did not address the characteristics of different populations 

in terms of age, gender, and exercise habit. Second, the 

analysis was conducted based on the assumption that 

interpersonal variation and intrapersonal variation 

satisfied the same distribution, as the collected datasets 

contained multiple samples from each participant. This 

assumption can be eliminated when more participants 

were recruited in future studies. 

6. Conclusions

In this study we proposed a pervasive sensing approach 

for automatic assessment of trunk coordination during 

chest rotation and pelvis rotation. We have shown that 

using multiple mobile devices with both sensing 

modalities (i.e. accelerometer and gyroscope) achieved 

the best accuracy in classifying trunk coordination during 

chest rotation (96%) and pelvis rotation (100%). SVM 

and KNN produced comparable performance while 

decision tree was the weakest classification technique. 

Through post hoc analysis, we found that poor 

coordination during chest rotation was associated to 

weaker coupling between chest and pelvis and lower 

angular velocity of the chest, and poor coordination 

during pelvis rotation was associated to weaker coupling 

between the three components of angular velocity of the 

chest. We also found that using single device produced 

comparable performance for chest rotation (95%) and 

slightly reduced performance for pelvis rotation (79%). 

Nevertheless, single-device strategy may be a good trade-

off between feasibility and accuracy in practical situation. 

In summary, our results validated the potential of 

harnessing widely available mobile devices for automatic 

nominal assessment of trunk coordination in daily life 

settings. 
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