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Abstract

Automated patient monitoring systems suffer from several design problems. Among them, alarm fatigue is
one of the most critical issues, as evidenced by the Sentinel Event Alert that The Joint Commission — the
U.S. hospital-accrediting body — recently issued. In this study, we explore fast-and-frugal heuristics that
may be used to prioritize patient alarms, while continuing to monitor patient physiological state. By using
a combination of human factors methodologies and the theory of Distributed Cognition (DCog), we studied

alarm fatigue and its relationship to the underlying hospital systems. We identified three specific factors
that we envision to be helpful for clinical personnel: ventilator presence, number of intravenous drips, and
number of medications. We discuss their application in daily hospital operation. We also address cost-benefit
considerations and possible monitor designs.

Received on 20 November 2016; accepted on 06 April 2017; published on 13 July 2017
Keywords: Alarm fatigue, cognitive heuristics, cost-benefit analysis, design considerations, fast-and-frugal trees,

patient monitoring systems

Copyright © 2017 Mustafa Hussain ef al., licensed to EAIL This is an open access article distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2017.152886

1. Introduction

In July 2010, a patient who suffered a severe blow to
the face underwent surgery, and was then admitted
to the hospital’s Intensive Care Unit (ICU). Agitated,
the patient kept removing the pulse oximeter from
their finger, triggering an alarm to sound each time.
These were obviously false alarms, and the staff stopped
paying attention to them. However, a real problem soon
arose: the patient’s heart rate and breathing started
to increase, while the blood oxygen decreased. Alarms
sounded, to no response, for an hour. Then, the patient
stopped breathing. A critical alarm sounded. Hospital
personnel finally responded, but it was too late: the
patient had suffered severe brain damage [19].

This is not an isolated incident. Alarm fatigue is
a common problem in ICUs. Approximately 80% of
ICU monitor alarms are irrelevant [36]. This volume
of irrelevant alarms desensitizes nurses [43], leading to
inappropriate behavior during real emergencies [41].
The Joint Commission identified alarm fatigue as a
threat to patient safety [15].
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In this study, we identify cognitive heuristics that
nurses may already be using to quickly assess patient
acuity, and we propose that automated patient monitors
use such heuristics to automatically prioritize physio-
logical alarms. Current monitors feature simple alarm
prioritization. However, it appears that cognition is
inappropriately distributed. Too much of the cognitive
burden of determining whether a physiological state
requires action falls on nurses or clinicians. This burden
exceeds their available cognitive resources, resulting
in alarm fatigue. We conjecture that, by redistributing
cognition such that automated actors bear more of this
burden, they will more effectively prioritize the infor-
mation that they convey to clinical personnel, without
increasing the risk of an alarm being missed.

We make various research contributions in this paper.
We propose using a heuristic model to measure patient
acuity, which we define in Section 3.2. While it is
known that nurses use heuristics to assess patient
acuity [38], to our knowledge, building these heuristics
into patient monitors is a novel concept. By exploiting
our model, we propose that future physiological
monitors prioritize alerts using such a heuristic, and
we present heuristics that have a high potential to
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succeed. Furthermore, we frame alarm fatigue through
the lens of Distributed Cognition (DCog). We believe
that this novel approach is a necessary step, motivated
by the critical observation that situation awareness
is distributed among automated monitors and team
members in the ICU.

Previous literature [42] suggests that we might be
able to limit alarm fatigue by making monitors less
sensitive — but this carries its own risks! We take a
rational approach to these trade-offs in Section 7, by
setting up a cost-benefit analysis to frame what it means
for alarm sensitivity to be optimal.

Finally, in Section 8, we explore how patient monitors
of the future might interact with nurses, revealing
their decision structures, rationales, and actions, and
negotiating alarm limits with nurses, so that they are
cooperative and understandable , instead of “black
boxes.”

In the next section, we start by explaining the
background research that informed our approach.

2. Background

Multiple disciplines have addressed medical alarm
fatigue. In this section, we discuss how nurses and
engineers have addressed the problem. Then, we apply
concepts from the broader cognitive sciences literature
to the medical domain.

In 2010, Graham and Cvach [11] demonstrated that
best-practices nurse training could improve patient
monitor alarm validity. They showed that this training
reduced the number of critical monitor alarms in an
ICU by 43%. However, frequent and comprehensive
training is costly and time-consuming, and hospital
personnel rarely undergo the necessary training to
effectively solve this problem.

As an alternative, designers and engineers believe
that good product design solves user interface issues
more effectively than training [4]. To address alarm
fatigue, they have recently made important advance-
ments to increase the relevance of alarms, by inte-
grating measures from multiple monitoring systems,
and by leveraging statistical methods and artificial
intelligence techniques. While promising, these solu-
tions have largely been implemented in simulation
only [36],! so there is little to no data on their impact in
the field. Furthermore, as we discuss in the next section,
drastically decreasing the percentage of false alarms
will likely result in a new range of issues. This is because
it may lead staff to assume perfect accuracy, and then to

IIn addition to effectively prioritizing alarms, new medical
technologies should sound alarms that nurses can easily identify.
The ISO/IEC 60601-1-8 alarm set does not meet this requirement,
although an alternative set does [1].
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modify their behaviors to follow this assumption, with-
out understanding the shortcomings of the technical
design.

2.1. Human Factors and Ergonomics

Human factors research in different work domains, such
as aviation and nuclear power plant operation, has
addressed alarm fatigue. Notably, Wickens et al. [42] (p.
25) introduced an important framework and practical
guidelines:
1. Use multiple alarm levels. Prioritize alarms based
on each event’s level of urgency and certainty.

2. Raise automated beta slightly. This refers to Signal
Detection Theory, where false positives may be
directly traded off for false negatives by raising
the decision criterion.

3. Keep the human “in the loop.” Humans should
monitor the raw data in parallel with the
automated systems.

4. Improve operator understanding of alarm false
alarms. The statistical necessity of a high sen-
sitivity and low specificity should be explained
to nurses and clinical personnel. This involves
encouraging nurses to shift how they think of
alarms, from a stimulus intended to indicate an
error to a stimulus intended to guide attention.

In this paper, we conduct a study to address Wickens’
guidelines 1 and 3. Guideline 2 raises an important
question: how far can we adjust beta without exposing
patients to undue risk? We weigh benefits and risks
Section 7. Later, in Section 8, we return to Guideline
3, exploring how we might keep the nurse “in the
loop” through the monitor’s user interface. Although
one might hope that a well-designed interaction
will engender operator understanding of alarm false
alarms (indeed, we address this briefly in Section 8),
Guideline 4 seems to raise questions of training as well,
which are outside the scope of this paper. Guideline
1 recommends that alarms indicate their level of
certainty, as well as urgency. Although this is clearly
important, we leave this to future work, focusing
solely on urgency, as measured by acuity. Future work
will need to consider how the level of certainty may
determine whether or not an alarm should sound.

To contextualize our analysis, we frame alarm fatigue
as under-trust in the alarm system. As we hinted above,
when an alarm is highly accurate, but not perfect, this
may result in over-trust [21]. Similarly, Mosier et al. [29]
speak of automation bias, a “heuristic replacement
for vigilant information seeking and processing.” It
manifests as several issues.

One issue is Complacency, which is observed when
the operator no longer monitors the raw sensor data,
instead relying on the system to issue an alarm in
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the event of a problem [28]. Reliance occurs when
the operator does not take precautions because the
system does not issue any warning. Compliance occurs
when the operator responds to an alarm as if the
indicated problem is truly happening, without first
checking for a false alarm. Finally, after extended
periods of over-trusting automation, operators tend to
deskill [7], meaning that they lose the ability to perform
tasks manually. This may be remedied with regular
drills [31].

2.2. Distributed Cognition

In healthcare, knowledge, work, and situation aware-
ness are represented and transformed collaboratively,
among many actors and artifacts. Plans change dynam-
ically, because future states of the work system are
unpredictable. DCog views cognition as distributed
among human, technological actors, and cognitive arti-
facts (such as “to-do” lists), as well as through time,
within specific work systems [13]. We believe that the
environment and characteristics of critical alarms in the
ICU is a typical example of a DCog system. Thus, DCog
is well-suited to help address the problem of ICU alarm
fatigue.

In DCog, responsibilities overlap vertically in the
actor hierarchy, creating a shared responsibility to
catch errors. Additionally, communication channels
are separated, to ensure independent error-checks. In
the case of ICU alarms, nurses occupy a higher role
in the actor hierarchy, above automated physiological
monitors. They share the responsibility of monitoring
the raw data to catch abnormalities.

2.3. Cognitive Heuristics

How do nurses monitor patients? There are accurate
models of patient acuity [12], such as APACHE II
and NEWS [44]. However, they are computationally
intensive and complex, necessitating the use of a
scoring worksheet. Simmons et al. [38] found that
nurses use heuristics to assess patient acuity, rather
than perform mental computations that resemble these
models. Heuristics are not necessarily inferior to
computational models [9]. In fact, Kruse et al. [20]
found nurse estimation of mortality risk to be as reliable
as APACHE II.

Building upon this reasoning, we recommend that
patient monitors prioritize alarms by patient acuity,
using a heuristic that mimics the reasoning process of
clinical staff. This would keep the human in the loop; the
algorithm of choice must be usable in rapid decision-
making contexts.

Gigerenzer and Gaissmaier [9] advocate the use
of heuristics in medical domains, because they are
intuitive, easily learned and recalled, and rapidly
applied. These features are key to their adoption
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in clinical practice [26]. Indeed, they have been
successfully implemented to determine which patients
should be sent to a coronary care unit. By contrast,
complex statistical models are unintuitive, difficult
to learn and recall, and tedious to apply. These
considerations provide the basis for our own guidelines
‘1’ and ‘2,” introduced below.

Next, we explore the design of such a heuristic.
In order to evaluate alternative heuristic models,
we consider our previous discussion to generate the
following criteria:

1. Nurses and other clinical personnel should find
its decision structure intuitive.

2. Nurses should be able to rapidly recall and use it.

3. Its parameters should be visually available,
reducing noise, which can impede communication
during medical emergencies [34]

4. Perhaps counterintuitively, as discussed in Sec-
tion 2.1, the system should be inaccurate enough
to avoid over-trust, so that nurses continue to
monitor the raw data.

In order to understand how we may build on
human-factors engineering, apply cognitive heuristics,
and consider the theory of Distributed Cognition to
address the problem of alarm fatigue, we conducted
an exploratory study. In the remainder of this paper,
we describe our study, and discuss the results and
conclusions that we drew from it.

3. Methods

We collected data in a large, non-teaching hospital,
located in a mid-sized metropolitan area in the
Southeastern United States. After IRB approval, we
approached nurses on the ICU floor and in the break-
room, informed them of the benefits and risks of
participation, and asked them to consider participating
in our study.

Seventeen nurses enrolled in our study, and we were
able to observe approximately 77% of patient rooms.
Despite the relatively high number of participants
and the large amount of data we collected, several
potential participants were not able to join our study,
mainly due to heavy workload or specific dangerous
situations. For example, when a patient required urgent
care, interviewing the nurse would have endangered
the patient. Nevertheless, in our study, out of the 7
situations in which more than 1 nurse identified a
patient as highly acute or having “coded” (i.e., having
entered a rapidly declining state) in the previous
24 hours, we were unable to observe and sample
only 2 of them. In addition, occasionally nurses were
simply not in the unit, because they had taken the
patient to radiology. In 2 cases, nurses declined to
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participate. We discuss implications of the unobserved
cases in Section 6 (Discussion), and recommend ways to
overcome these obstacles for future studies in Section 9
(Outlook).

3.1. Exploratory Interview Phase

In order to gather enough information, we scheduled
6 2-hour observation visits to the ICU. Additionally,
we conducted semi-structured interviews to identify
potential indicators and informational sources of
acuteness, busyness, and patient progression. Below, we
list typical questions that we used to guide our semi-
structured interviews:

1. How would you rate the acuity of your patient, on
a scale of 1 to 5, where 5 represents the greatest
risk?

2. Please rate the busyness of your patient, on a 1 to
5 scale, where 5 represents the greatest workload.

3. What indicates to you that their acuity is that
high?

4. Where did you get that information?

5. What are you watching that will indicate to you
that your patient’s condition is improving or
worsening?

6. Who are the most acute patients in this unit right
now?

7. How do you know they are the most acute?

8. Where did you get that information?

We coded the transcriptions from semi-structured
interviews in order to identify the variables that nurses
use to assess patient acuity. We reveal these in the next
section. In order to build initial heuristic models, we
systematically gathered additional empirical data.

3.2. Questionnaire Design

The exploratory interview phase revealed a number
of variables to consider. The answers to our semi-
structured interview questions guided therefore the
design of a questionnaire that we based on several
specific areas:

Nurse Experience We asked nurses to self-report
where they stood on Benner’s [3] novice-to-expert scale.
A Novice is one with no experience, an Advanced
Beginner has begun to see patterns, a Competent nurse
has 2-3 years’ experience in similar situations, a
Proficient nurse makes holistic decisions, anticipates
outcomes, and adapts plans, and an Expert no longer
relies on principles, rules, or guidelines.
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Patient Acuity Kruse et al. [20] found that nurse
estimation is as accurate a measure of mortality risk
as APACHE II. We asked nurses, “On a scale of 1 to 5,
where ‘1’ means that the patient is ready to transfer, and
‘5’ means they probably won’t make it, how acute is the
patient?”

Certainty about Acuity During the semi-structured
interviews, nurses indicated that sometimes they could
not assess acuity, because their patient had not
arrived. Others mentioned that regularly scheduled
measurements, such as lab results and scans, indicated
the effectiveness of treatments. We hypothesize that
certainty of patient acuity (1) starts low, when a patient
initially arrives, (2) increases when fresh results arrive,
and (3) reduces when a new treatment is administered.
While acuity is the main focus of this study, we
gathered nurse certainty perception on a 1-to-5 scale,
‘5" representing complete certainty.

Patient Busyness During our interviews, nurses
frequently pointed out that, contrary to intuition, some
patients at low risk of mortality require more time and
attention than patients who face higher risk, and vice-
versa. In order to ensure that nurses did not report
busyness instead of acuity, we asked them to assess
patients on both dimensions. We asked, “On a scale of
1 to 5, where ‘1’ means the patient can take care of
themselves, and ‘5’ means you must constantly watch
them, how busy is the patient?”

Identified By Others If nurses who are not assigned
to the patient are able to reliably indicate which
patients in the unit are most acute, then indicators
of patient acuity that are visually observable are bet-
ter candidates for use in heuristics. We observed that
nurses communicate patient details in informal con-
versations. However, nurses cited visual observations,
rather than conversations, when asked how they knew
that another nurse’s patient was highly acute. We asked
nurses, “Which patients in this unit are most acute?”
and tallied their responses.

Has Coded In hospital vernacular, “to code” means
“to enter a rapidly declining physiological state,
requiring emergency measures.” During a code, there
is a high likelihood of patient mortality. We asked
nurses whether their patient had coded in the last 24
hours. They answered “yes” in only 4 of 54 cases. We
considered this an insufficient quantity from which to
draw conclusions, and discarded this variable prior to
analysis.

Medication Questions Nurses frequently cited their
patients’ medications as evidence of acuity. Interviews
suggested that medication class and dosage indicate
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acuity. For example, many patients have one vasopres-
sor line, and nurses do not consider this an indicator
of high acuity. If, on the other hand, a patient has six
vasopressor lines, a nurse may infer that the patient is
highly acute.

However, there are many medications, and many
dosage scales, which are adjusted to account for
additional factors, such as weight and age. Such
multidimensionality demands more data than one may
gather in this study. Instead, we gathered the following
3 measures, in order to broadly characterize medication
consumption:

1. Relative Medication Quantity. For purposes of
keeping the human “in the loop,” it is necessary to
consider whether nurses have an accurate mental
model of the quantity of medications they are
administering to their patients. We asked, “On a
scale of 1 to 5, ‘1’ being very few medications
and ‘5’ being the most you have ever seen, how
would you rate the quantity of the medications
this patient is on?”

2. Actual number of medications. After estimating
relative medication quantity, we asked nurses to
retrieve the exact number of unique medications
administered in the last 24 hours from the
Electronic Health Record.

3. Number of intravenous medication drips. We asked
nurses, “How many drips does this patient have,
including saline, but not including food? If they
have more than one line for the same medication,
this counts as more than one drip.”

Number of Watch Variables We asked nurses, “What
variables are you watching that indicate the progression
of this patient?” Nurses indicated a range of variables
as evidence of acuity. We identified the following
categories: Arterial, Fluids, Labs, Medication Dosages,
Neuromotor Status, Oral Intake, Pain, Respiratory Status,
Scans, Temperature, Urinary Output, Visuosensory Cues,
Vitals, and Wounds.

Invasive Equipment We took note of whether the
following were present in the patient’s room: Ventilator,
Chest Tube, Balloon Pump, and CRRT (Continuous
Renal Replacement Therapy). Nurses indicated these as
evidence of acuity. However, we did not observe any
Balloon Pumps or CRRTs during our study, and only
observed a chest tube twice, so we discarded these two
categories prior to analysis.

3.3. Questionnaire Administration Phase

In order to administer the questionnaire, we visited
the ICU for 5 additional 2-hour visits. At that point,
we had gathered 54 observations, and we felt that
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this was enough for an exploratory analysis. We
interviewed all nurses who were present and willing
to participate during each visit. Visits took place on
both weekday and weekend afternoons, to sample a
variety of contexts. Each nurse was administered the
questionnaire described above.

4. Analysis and Results

In this section, we report on the analysis of nurse
responses in terms of certainty in acuity assessments,
how well nurses assess the quantity of their patients’
medications, whether nurses who are not assigned to a
patient know which nearby patients are highly acute,
and how well each of the viable candidate factors
predict acuity.

The ordered logistic regression relies on the parallel
regression assumption, so we accompany these with
Brant [5] tests of this assumption. Low Brant p-
values indicate that the assumption is likely violated.
In practice, models may still be useful even if this
assumption is violated. For an explanation of this
assumption, consult [23], page 150.

Nurses expressed complete certainty, ‘5°, in their
acuity assessments in 72% of cases, and never reported
a certainty below ‘3. An ordered logistic regression
found no correlation between certainty and busyness (8
=0.07, p = 0.87, S.E. = 0.40), and passed the Brant test
(p=0.63).

’

Estimated Relative Medication Quantity We ran
an ordered logistic regression between number of
medications and nurse-estimated medication quantity
to determine whether nurses have a well-developed
mental model of medication quantities. We eliminated
categories 4 and 5, because they contained only 3
datapoints in total. Figure 1 plots the data. We found
a significant positive correlation in support of this
hypothesis ( = 0.16, p = 0.001, S.E. = 0.05), Brant test
withstanding (p = 0.29).

10 15 20 25

ST,

Number of Medications

0

1 2 3 4 5
Nurse-Estimated Medication Quantity

Figure 1. An ordered logistic regression indicated that nurse
estimates of relative medication quantity predict actual number
of medications. Larger dots indicate overlapping datapoints. We
excluded categories 4 and 5 from the analysis due to data paucity.
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Predicting Acuity In order to define the terms acute
and most acute, we split acuity into approximate
percentiles, as shown in Table 1. We aimed to define
the top 50% as acute, and the top 25% as most acute.
Categories 3-5 represented the top 57%, and categories
4-5 represented the top 22%.

We split number of medications into approximate
percentiles, as shown in Table 2. Patients had up to 29
medications, so this independent variable has a precise
granularity. Reducing its granularity in this way makes
the results easier to interpret, since its odds ratios are
more directly comparable with those of other predictor
variables.

Nurses reliably identified the most acute patients in
the unit, as evidenced by a logistic regression between
most acute and identified by others (Odds ratio = 1.80, p
= 0.05, S.E. = 0.55). A Brant test is not applicable here,
since the dependent variable is binary.

Figure 2 shows the marginal probabilities. In order
to obtain these marginal probabilities, we calculated
the marginal probabilities of not being most acute, then
subtracted them from 1. This was necessary because the
most acute patients are defined as uncommon, resulting
in a small sample of most acute patients.

We ran an ordered logistic regression to determine
the extent to which each candidate predictor variable
indicated acuity (Table 3). Ventilator presence, number of
drips, and number of medications quartile are promising
predictors.

1

0.8

0.6

0.4

0.2

Probability of Most Acute

0

0 1 2 3 4
Num. Nurses Identified Patient as Most Acute

Figure 2. Nearby nurses tend to know who is most acute. This
chart shows the probability of a patient’s acuity being a ‘4’ or a
‘5, as assessed by their assigned nurse, given that a number of
nurses have identified them as the most acute in the unit.

Table 1. Definitions of acute and most acute. We chose the
cateqgory ranges that came closest to the top 25% and 50% to
define these terms.

Acuity Cumulative Acute Most Acute
5 11.11% o
4 2222%  Top57%  LOP22%
3 57.41%
2 68.52%
1 100.00%
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Table 2. Percentile definitions of number of medications. Ranges
are boundary-inclusive.

Number of Medications Cumulative
2-5 20.37%
6-10 50.00%
11-15 75.93%
16-29 100.00%

Table 3. Ordered logistic regression results show the ability
to predict if a patient is acute (OR = Odds Ratio, SE. =
Standard Error, C.I. = Confidence Interval, Qtl. = Quartile, Vrs.
= Variables)

Predictor OR  p-value S.E. 95% C.I.
Ventilator 13.84 0.03 16.61 1.32-145.43
# Drips 2.27 0.10 1.13 0.85-6.05
# Meds Qtl. 1.12 0.16 0.09 0.95-1.31
# Watch Vrs.  1.02 0.96 0.40 0.47 - 2.20
Constant 0.11 0.03 0.10 0.02-0.73

5. Exploring Potential Heuristics

In this section, we compare the accuracy of ordinal
logistic regression models with fast-and-frugal tree
models, a common cognitive heuristic [9]. We provided
the rationale and explanation for designing heuristics
in Section 2.1. We trained our heuristic models to
distinguish between patients who were and were not
acute, as defined in Table 1.

In order to conduct the comparison, we split the data
9 ways by selecting every 9" datapoint in all 9 possible
ways. This resulted in 9 combinations of training and
testing sets, each with 48 training datapoints and 6
testing datapoints. In order to generate fast-and-frugal
trees, we used Kass’s [16] decision tree algorithm,
implemented in Stata by Luchman [24]. Figure 3 shows
the resulting trees.

We trained and tested the two models on each of the
9 segment pairs using each of 4 sets of independent
variables:

1. Ventilator presence only.
2. Ventilator presence and number of drips.

3. Ventilator presence and medication quantity quar-
tile.

4. All 3 variables.

We compared accuracy between the ordinal logistic
regression and the fast-and-frugal tree models using
the Wilcoxon test of pairwise comparisons. Jaimes et. al
[14] also used this method to compare logistic models
with neural networks. As Table 4 shows, there is little
reason to believe that the models differ in accuracy.
We defined 57% of patients as acute (see Table 1), so
a naive classifier would classify all patients as acute,
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achieving 57% accuracy. As Table 4 shows, both models
performed significantly better than chance.

6. Discussion

In previous sections, we explored and analyzed
nurse’s mental models of patient acuity, proposing
heuristic models to mimic the structure of their acuity
assessment process. Here, we discuss the results in
detail.

6.1. Certainty

Nurses expressed high certainty in their acuity
assessments. Nurse assessments of acuity are a reliable
predictor of mortality risk [20], so this confidence may
have been well-placed. Overconfidence bias [8] may
have played a role as well. In our interviews, two
nurses reported that they face pressure from family
members and physicians to express confidence, even
when they feel uncertain, since expressing uncertainty
is met with consequence from both parties. Indeed,
Taylor [39] found that nurse confidence is key to
patient-perceived competence. While we, the observers,
were not physicians or family members, nurses may
present confidence habitually.

Additionally, we hypothesized in Section 3.2 that
patients tend to arrive in an uncertain state, and that
certainty is repeatedly recovered and reduced as new
observations are taken and treatments are attempted.
While this is not the focus of this studyj, it is still worth
noting, especially because, in our study, nurses with
new patients who had just arrived quickly became too
busy to participate. This could explain the clustering
of certainty in the higher categories. While there does
not appear to be a correlation between certainty and
busyness, this may be due to the paucity of low-certainty
samples.

6.2. Estimates of Medication Quantity

Overall, nurse perception of relative patient medication
quantity coincided well with actual quantity. However,
most did not readily report a medication quantity.
They tended to find the measure unintuitive, and
most appeared to conduct a mental inventory before
reporting an answer. Several nurses carried around a
sheet of handwritten paper that listed “to-do” notes
and medications to administer?; these nurses seemed
to report relative medication quantity more quickly,
sometimes even without looking at their paper.

In contrast to the number of medications, nurses
seemed to report the number of drips and the presence
of a ventilator quickly. We hypothesize that the mental

2These may be the “brain” artifacts observed by others (e.g., [30], [27])

< EAI

EUROPEAN ALLIANCE FOR INNOVATION

availability of these variables is affected by observation
frequency, perhaps due to the effect of spaced repetition
on retention [2].

6.3. Predicting Acuity

Nurses were able to identify the most acute patients
in the unit, even though they were not specifically
assigned to those patients. Nurses frequently stated
that they were only aware of nearby patients. This may
be because physiological monitors are configured to
display the nearest patients, as shown in Figure 4. Some
nurses stated that they were only aware of their own
patients; we suspect that nurses with particularly busy
patients tended to respond this way.

Vitals are a strong predictor of acuity, as evidenced
by the APACHE II model [18]. Because of the physical
configuration of the unit, vitals, like ventilator presence
and the number of drips, are visually available. This
explains the assertion that nurses are most aware of
the status of nearby patients: they are aware of the
information available within their horizon of observation,
as identified by Hutchins [13] (p. 268). Further work
would determine whether nurses are typically only
aware of nearby patients.

Surprisingly, the number of variables that nurses
were watching was not a significant predictor of patient
acuity. While it is possible that the number of variables
being watched has no relationship with patient acuity,
it is also possible that this is due to the measure. Two
expert nurses pointed out that several variables are
watched for all patients. Both reported that vitals are
watched for all patients; one also reported watching
urinary output for all patients. Nevertheless, as shown
in Table 5, vitals were the most-reported watched
variable. Nurses with more expertise may have only
reported the distinctive watch variables. Additionally,
if two variables were listed in the same category, this
was counted as one variable. However, we saw this as
necessary, because sometimes, participants would list
the category, such as “vitals,” but other times, they
would list items within that category, such as “heart
rhythm.” While this reduced the granularity of the
measure, we do not believe that it reduced the quality
of the data. Presumably, if there were a relationship
between the number of variables watched and acuity,
the watched variables would be spread out among
several categories (e.g. “I am watching vitals and two
lab values”), rather than clustered into one (e.g. “I am
watching four lab values and ignoring vitals entirely”).

Reporting low acuity in circumstances of certain
mortality, however, is consistent with the definition
of “acuity” given by an expert nurse participant: the
time and attention that a patient requires. Coincidentally,
this is how we defined “busyness.” In future work,
we recommend avoiding the term “acuity” altogether,
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Ventilator? Ventilator? Ventilator? Ventilator?
No Yes No Yes No Yes No Yes
‘ Not Acute ‘ ‘ Acute ‘ Any Drips? ‘ ‘ Acute ‘ >5Meds" ‘ ‘ Acute >5Meds‘7 ‘ Acute
/ \ / Yes N(/ \:{es
‘ Not Acute Acute ‘ ‘ Not Acute ‘ Acute ‘ ‘ Not Acute ‘ Any Drips? ‘
N‘(/ w‘es
‘ Not Acute ‘ ‘ Acute ‘

Figure 3. These fast-and-frugal trees heuristically determine whether a patient is acute. As shown in Table 4, they are correct
approximately three-fourths of the time, about as often as ordered logistic regression models.

Table 5. The number of observations in which each watch variable

opting instead to refer to “likelihood of mortality was listed. Categories not listed in this table had a frequency of

and “busyness,” in order to more closely match

nurse vernacular, improving researcher-participant £ero.
communication.
It is still possible that medication class and dosage, Frequency Watch Variable
which we did not measure due to feasibility limitations, 30 Vitals
15 Respiratory
14 Labs
7 8 9 10 11 12 12 Neuromotor
S DUNSE DS DN NS - 7 Urinary
6 i 14 5 Temperature
3-9 4 g 9-17 ii > Pain
5 5 15 1 Scans
i 1 Wounds
1-8 L 1-19 -
T B g D
Desk:
S esks i 17
) Breakroom I 18 predict acuity. Further research would determine
Ii whether this is the case. However, much like medication
1 B 1-18 19 quantity, these parameters are largely invisible to

emergency-responding staff. In the interest of keeping
all actors “in-the-loop,” we recommend only using
visually available parameters. We discuss this further
in Section 8.

Figure 4. Mapping of monitors to rooms. There is one patient
and monitor per room (not shown). The monitors on the outer
desk typically show vitals from the six nearest patients. When
an alarm occurs, all monitors sound the alarm, and display the
corresponding raw data. Not drawn to scale.

Table 4. Comparison of ordered logistic regression and tree models to identify acute patients. The low baseline p-values indicate that
the models are more accurate than chance. The high Wilcoxon model comparison p-values indicate that the models are unlikely to
differ in accuracy. “Meds” is short for Medication Quantity Quartile.

t-test Comparison with

Independent Variables Aceuracy u Accuracy 0 57% Baseline (p-values) Model Sgﬂlg Sarlson
Logit Tree Logit Tree Logit Tree p
Vent 79.26% 77.78% 13.82% 14.43% 0.0007 0.0014 0.92
Vent and Drips 79.63% 77.16% 16.20% 8.98% 0.0017 0.0001 0.55
Vent and Meds 71.48% 77.16% 17.09%  9.58% 0.0193 0.0001 0.34
Vent, Drips, and Meds 81.48% 77.78% 15.47% 7.97% 0.0008 0.0000 0.39
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7. Cost-Benefit Analysis

In Section 2.1, we briefly mentioned Wickens’ [42]
second guideline for reducing alarm fatigue: “Raise
automated beta slightly.” In other words, make the
alarm system slightly less sensitive. Here, we address
a key question: How far is it appropriate to adjust beta?
In this section, we frame the choice of the automated
monitor’s sensitivity as a cost-benefit optimization
problem.

7.1. Overview of Signal Detection Theory

We start with a brief overview of Signal Detection
Theory (SDT), which is often used to address problems
where there is a stimulus one is trying to detect, and
there is noise to distinguish it from [42]. As shown
in Figure 5, the signal and noise are approximated
as Gaussian distributions. The distance between the
peaks is called d’. One sets a threshold X, classifying
a stimulus level above X as “signal,” and a stimulus
below as “noise.” The choice of X determines the
distribution of hits (H), misses (M), false alarms
(FA), and correct rejections (CR). The ratio of the
probabilities of the amount of evidence X given signal
or noise is called f.

. X.
Noise .C

P(X|NorS)

Evidence (X)

Figure 5. Visual overview of signal detection theory.

To maximize accuracy, one may set the threshold
Xc such that g =p"=1, where the distributions
meet. However, in many cases, such as this one, the
probabilities and costs of hits, misses, false alarms,
and correct rejections are different, so they must be
considered if one wishes to minimize cost. Macmillan
and Creelman [25] provide the following formula to
determine optimal likelihood ratio f, accounting for
costs and benefits:

p(noise)
p(signal)

S R(CR) - R(FA)
ﬁoptlmul = R(H) - R(M) *
Where:

(1)

* p is the a priori probability of a noise or signal
event, and

* R is the reward for each event-response combina-
tion. Penalty “rewards” are negative.
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In the next section, we will discuss the complexity
introduced by the human operator’s response to
automated p. This will prepare us to expand on
Equation 1.

7.2. Operator Response to Automated Beta

As discussed in Section 2.1, the operator adjusts their
own responses, reacting to automated f. For example,
when the number of false alarms is too high (automated
B is too low), we observe alarm fatigue; the operator
adjusts their own $ upward, resulting in an uptick in
misses!

This complicates the overall behavior of the work
system. Unfortunately, despite a thorough search of the
literature, we have not found a rigorous mathematical
model that predicts operator p as a function of
automated B, in order to account for operator responses,
such as alarm fatigue.

Automation complacency is another operator response,
which we discussed in Section 2.1. It may arise when
an alarm is highly accurate, reducing the beneficial
effects of redundant error-checking. However, this effect
means that an operator’s response conforms to the
automated response, rather than deviating from it.

7.3. Derivation

In reality, both d’ (peak-to-peak distance) and g (related
to the alarm threshold) determine the proportions of
hits, misses, false alarms, and correct rejections. For
this analysis, we are holding d” constant, and choosing
automated f.

We will use terminology appropriate to this context.
Where classical SDT refers to the operator, we will
instead refer to the care “team.” For the team:

* A “hit” is an attempt to rescue
e A “miss” is a failure to rescue (FTR)
* A “false alarm” is an unnecessary intervention (U)

* A “correct rejection” is normal operation

For parsimony, we will assume that the costs and
benefits associated with normal operation, as well as
needful attempts to rescue, are assumed by the work
system, so they are zero. Failures-to-rescue may result
in a loss of life or function to the patient [40]; these
are passed on to the hospital as legal costs. Unnecessary
interventions immobilize resources that could be better
allocated to patients in need, and present risks of
complications that may also injure the patient [40]. Both
mistakes may create emotional distress and relationship
strain among team members [17]. We will refer to these
costs as Cprg and Cyj.

We define team beta as a function of automated beta:
Br(Ba). Then, optimal team beta is given by:
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Cy p(patient OK)
Crrr  pl(patient not OK)

Br, opt = Pr(Ba) = (2)

Where:

* “Patient OK” means that the patient does not
require intervention, and

* “Patient not OK” means that they do.

To optimize team response, automated f should be:

Cy p(patient OK)
Crrr  plpatient not OK)

(3)

-1
Ba, opt = Br

In other words, the optimal threshold is the one that
minimizes the costs incurred by the operator’s response.
Additionally, in order to use this equation, one must
quantify the costs of an unnecessary intervention and
a failure-to-rescue. We discuss such practical matters in
the following section, as well as in Sections 9 and 10.

7.4. Optimization and Best Practices

In this section, we pursued an analytical approach
to choosing an optimal alarm sensitivity. There are,
however, certain barriers that will affect how further
research will progress. It is unlikely that it will be
possible to gather team response for a wide range of
beta — testing inappropriate monitor settings in-the-
wild presents serious ethical considerations — but it may
be possible to measure (and then model) team response
over a smaller, more local range. In fact, Graham and
Cvach [11] raised automated beta within an acceptable
range in a hospital unit to alleviate alarm fatigue,
without apparent consequence.

In their paper, Graham and Cvach [11] make no
mention of using an analytical approach to determine
how far to raise automated beta. We surmise that they
relied on expert judgment instead. Additionally, the
best-practices that they describe involve customizing
monitor alarm thresholds to each patient, and further
adjusting thresholds as the patient’s status changes.
This is an artful task, relying on nurse expertise and
judgment, and we do not believe it can be fully
automated away without consequence — we elaborate on
this in Section 8.

8. Design

Previously, we developed constraints for improved
patient monitor design. In this section, we propose
design alternatives that may meet these constraints.
Further research will be able to answer some of the
questions that arise from inspecting these proposals.
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8.1. Alarm Limit Customization

As noted in Section 7.4, nursing best-practices for
addressing alarm fatigue currently involve manually
customizing alarm thresholds on a per-patient basis,
and modifying the thresholds as the patient’s condition
changes [11]. Interestingly, Li et al. [22] found that
manually adjusting alarm limits is a complicated and
user-unfriendly task. They proposed that a direct link
to the threshold-setting page could be presented to
the nurse after they explicitly ignore 5 consecutive
alarms. We believe that consecutive ignores may be
a good indicator that the patient’s condition has
changed, so this would make it easier to follow Graham
and Cvach’s [11] recommendations. We additionally
propose that threshold adjustment be easy to access
at any time; a nurse need not be bothered by several
irrelevant alarms if they judge that the patient’s status
has changed.

One might be tempted to entirely automate the
process of periodically setting alarm thresholds. As
mentioned in Section 7.4, however, we would be
reluctant to do this. This is because, first and foremost,
periodically changing alarm thresholds to match
patient status without informing the nurse could incur
serious consequences — we speculate that, with such
a design, a patient could slowly decline without the
nurse’s awareness. Second, nurses who apply Graham
and Cvach’s best-practice methods might use these
alarm limits to represent, reinforce, or communicate
the patient’s status. In our observations, for example,
when there is nothing more that the team can do for
a patient, their alarms are disabled. It is important to
understand artifact usage before changing its behavior
through automation [45].

Thus, while some automation might save the nurse
the trouble of determining baseline values, nurses
should have some degree of control in the process. How
much control is appropriate? We discuss this further
in Section 8.3, using Sheridan and Verplank’s [37]
supervised-automation scale (Table 6) as a guide.

At least some patient monitoring systems already
feature automatic alarm limit customization [32],
although whether these features are being used -
and how well they suit the needs of the healthcare
environment — remains to be seen.

8.2. Changing Behavior Based on Acuity

How should the monitor’s interactive behavior differ
between patients who are acute or non-acute? We
address this question in this section.

We briefly mentioned that some monitors can take
some of the manual work out of customizing alarm
thresholds to each patient. For example, the Philips
IntelliVue monitor’s manual [32] states that it can set
alarm limits based on the patient’s current readings.
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Table 6. Levels of automation scale (after Sheridan and Verplanck [37])

suggests one alternative

— N Wk 0T 0O O

The computer decides on everything, acts autonomously, ignoring the human
informs the human only if the computer decides to

informs the human only if asked, or

executes automatically, then necessarily informs the human, and

allows the human a restricted time to veto before automatic execution, or
executes the suggestion if the human approves, or

narrows the selection down to a few, or
the computer offers a complete set of decision/action alternatives, or
the computer offers no assistance: human must take all decisions and action

This seems to make sense — a monitor should inform the
nurse if the patient’s condition changes. The monitor
also features “narrow” and “wide” threshold settings.
The manufacturer recommends that nurses use the
“narrow” limits for more acute patients, since they need
to be watched more closely.

Since we are already considering enabling the
monitor to identify acute patients, we might consider
automatically setting narrower limits on more acute
patients, and wider limits on less acute patients.
However, it may make sense for the more frequent
alerts that will result from narrower limits to be
presented as notifications, rather than as alarms. This
may ensure that nurses understand the intention of
these more frequent alerts — to help them “keep
an eye” on the patient, rather than to indicate the
presence of a dangerous situation. This is consistent
with Wickens’s [42] (p. 25) fourth guideline, “Improve
operator understanding of false alarms,” explained in
Section 2.1.

8.3. Handling Reclassification Transitions

Sometimes, a patient’s condition will change while they
are in the ICU - it may become more or less serious.
When the monitor reclassifies the patient as more or
less acute, it makes sense to change how their alarms are
managed and presented. But how should this transition
happen?

Sheridan and Verplanck [37] have constructed an
automation scale (Table 6). It would be worthwhile to
explore designs that allocate more or less control to
automation, to determine what is most appropriate.
We have illustrated two example designs along this
automation scale in Figure 6.

8.4. Notifying the Nurse about Reclassification

When a condition change is detected, the monitor
should inform the nurse. It is worth discussing how this
might be done. Should the monitor interrupt the nurse
with both visual and audio notifications? Should it
inform the nurse via mobile phone notification? Should

2 EAI
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it avoid interrupting the nurse, by simply displaying
a silent notification banner (such as the one shown in
Figure 6) until the nurse dismisses the notice?

We do not believe that patient reclassification is a
particularly urgent task, and it is known that too many
low-priority interruptions in healthcare can create
patient safety risks [33]. This is particularly the case
for smartphone interruptions [10]. Thus, at this time,
we believe that the notification should be a persistent
notification banner that the monitor displays until the
nurse handles the transition. Further research will be
able to corroborate or contradict this tentative design
recommendation.

Less Automation

Condition change detected.
Tap here to adjust alarm settings.

Adjust Alarm Settings

| detected that the
patient’s condition has
worsened. Shall | make
the limits narrower?

ECG [Rationale]

SPO2 |[Suggested limits and controls] |

ASNASNASNIY

More Automation

Alarms auto-adjusted.
Tap,here to undo or adjust.

Undo Auto-Adjustment?

| detected that the
patient’s condition
worsened, and
narrowed their limits.

G|

ECG [Rationale]

SPO2 |[New limits]

N S J]92

Figure 6. Two alternate designs that could be implemented to
handle changes in patient acuity. In the top story, the monitor
prompts the nurse to change the alarm limits, and then suggests
new limits, which the nurse may modify. In the bottom story,
the monitor changes the limits automatically, then allows the
nurse to undo this, adjust the limits manually, or accept the new
limits. We discuss options for the rationale that will appear in
the “Rationale” panels in Section 8.5.
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8.5. Revealing the Rationale

Our goal is to keep nurses “in-the-loop” by revealing
why the automated system is doing what it is doing.
This involves revealing the decision heuristic, how the
monitor applied the heuristic to the patient, and the
action the monitor took based on that assessment.

It is not immediately obvious what form of rationale
will be adopted most readily by nurses. This is why we
chose to leave the “Rationale” panels empty in Figure 6.
However, we discuss some possible forms below:

¢ The monitor could reveal the entire heuristic as a
tree diagram (much like those shown in Figure 3),
and the path to the end. However, if the decision
tree becomes too complex, this diagram could
become unwieldy.

* Reveal part of the heuristic as a diagram - for
example, the monitor could show the terminating
step, or the last three steps. Nurses might develop
a tacit understanding of the overall decision
structure over time.

* Reveal the entire or a part of the heuristic
as a worded narrative. For example, “Although
the patient is not on a ventilator, they have 6
medications, so I believe they are acute.”

Further work will be needed to determine which
presentation will most effectively convey the monitor’s
decision rationale to nurses.

9. Outlook

The evidence suggests that designers of the next
generation of monitors may be able to reduce alarm
fatigue while avoiding over-trust by prioritizing alarms
in a way that nurses understand. In this paper, we
suggest constructing a cognitive heuristic for alarm
prioritization, and we identified variables of interest
that may be incorporated into such a heuristic. This
addresses some of the Joint Commission’s concerns.

In future work, we plan to build a more accurate
model, by integrating physiological measurements into
our heuristics. We also plan to gather a larger number
of observations, to accurately identify the extent to
which each variable predicts acuity, as well as to
gather sufficient data in rare categories, such as balloon
pumps, CRRTs, and chest tubes.

After collecting the data, we plan to construct
a heuristic that balances accuracy with complexity.
Further work will be needed in order to determine how
complex this heuristic may be made before nurses no
longer find it to be usable.

We observed that, during critical events, many actors
respond. The room quickly becomes noisy, with many
people speaking at once. This has been independently
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observed [34]. Thus, we believe it is important that
actors are able to visually gather the information they
need to assess the validity of each new alarm. We
recommend using variables that are directly observable
in the current technological environment in this
heuristic.

In Section 8, we explored how different interactive
designs might realize different levels of nurse control,
as well as present the monitor’s heuristic rationale to
nurses. These interactive designs should be tested in
realistic settings, to determine the appropriate level of
automation, as well as the most effective presentation
style.

It is widely understood that stress negatively
affects human performance [6]. This presents two
special considerations. First, data should be gathered
from stressful situations; because these contexts place
extensive demand on nurse attention and cognition, we
recommend using video recording to gather the data.
Other researchers have been able to do this in the
past (e.g. Sarcevic [35]). In our experience, because of
the perceived risks posed by patient privacy laws, this
requires strong trust between hospital leadership and
researchers. Second, the performance of constructed
heuristics in high-stress situations, in addition to real-
world environments, will need to be studied. Due to
the difficulty in sampling cases where a patient requires
continuous attention, understanding performance in
high-stress contexts will likely require testing in
simulated care environments.

Finally, in Section 7, we laid the foundation for a cost-
benefit analysis to determine the alarm threshold that
will minimize risk. An economic analysis is needed,
to quantify the expected costs of an unnecessary
intervention, as well as failure-to-rescue, since the
analysis depends on these costs. Also, testing is needed
to model nurse response to the automated alarm limits,
since this is still unknown. There is reason to believe
that different interfaces might influence the nurse’s
understanding of the alarm system — in the words of
Wickens et al. [42] (p. 25), they might “improve operator
understanding of alarm false alarms.” We addressed
this briefly in Section 8.2, through our intention to
present more frequent alerts as notifications, intended
to help nurses “keep an eye” on more acute patients.
Thus, it may be difficult to the effects of automated beta
and the interface on the nurse’s response, so they may
need to be tested together.

10. Conclusion

In this paper, we identified several visually available
factors that predict patient acuity. We propose that
these, and others, be used to construct a cognitive
heuristic to prioritize patients, and improve alarm
management. We also recommend that these heuristics
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be considered in the design of future alarm systems
in the ICU. By using an understandable mechanism to
prioritize alarms, nurses will be able to better identify
misprioritized alarms, giving rise to an appropriate
level of trust in the automated monitoring system, and
avoiding over-trust. We recommend testing multiple
levels of automation, multiple styles of decision
rationale presentation, and heuristics of multiple
complexity, to determine what interface is most
appropriate. We also recommend testing nurse response
to different automated alarm thresholds and interface
designs. An economic analysis is needed to determine
what automated alarm threshold would minimize costs
incurred by adverse alarm-related events.
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