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Abstract 
Capability to perform activities of daily living (ADLs) is a major factor in quality of life (QOL). While it can be difficult 
for the elderly, disabled, or patients with chronic diseases to deal with ADLs, they need to spend a great deal of money on 
healthcare and assistive technologies to keep a good QOL. The situation can be improved if a real-time ADLs monitoring 
and recognition system is available to provide health information to physicians, pharmacists, or caregivers to offer timely 
diagnosis, prescription, or emergency reaction.  

We have developed a wireless wearable motion monitoring system that is suitable for monitoring ADLs involving 
limbs. The system consists of six Bluetooth low energy (BLE) transponders that are small and light enough to be mounted 
on all limbs. Each transponder, called SensorTag (by Texas Instruments), is equipped with a tri-axial accelerometer, a tri-
axial magnetometer, and a tri-axial gyroscope for motion monitoring. Each SensorTag can be linked to a smartphone for 
long-term outdoor monitoring. A graphic user interface is created to acquire signals from BLE receivers, display the sig-
nals in real-time, process data, and store for off-line analysis.  

This system was tested in three scenarios, and signals were analyzed off-line using a quaternion-based motion recon-
struction algorithm. First, a SensorTag was examined against a marker-based motion capture system in a linear motion 
test. Second, a SensorTag was worn on a subject’s wrist to monitor food-intake trajectory. Finally, six SensorTags were 
worn on wrist, knee, and ankle joints of left and right hands to monitor gait on a straight path. Results showed various er-
ror rates in different scenarios, however, the error rates are within an acceptable range, and more importantly the patterns 
of the motions are reproducible.   
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1. Introduction

1.1. Motivation for monitoring activities of dai-
ly living  

Activities of daily living (ADLs) are generally categorized 
in to two main categories [1]. The first type is the basic ac-

tivities of daily living (BADLs), which includes self-care 
tasks such as bathing, dressing, toileting, brushing teeth, 
eating and functional mobility. The other type is the instru-
mental activities of daily living (IADLs), which allows peo-
ple to keep an independent lifestyle with additional services, 
such as cooking, driving, using telephone or computer, 
shopping, keeping track of finances and managing medica-
tion [2, 3]. The ability to perform ADLs is a major factor in 
determining one’s quality of life (QOL) [4, 5, and 6]. While 
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it can be very difficult for elderly, disabled or chronic dis-
ease patients to deal with ADLs, they also need to spend so 
much on healthcare and assistive technologies to keep a rea-
sonable QOL. 

The problem becomes more serious as the aging popula-
tion is growing. According to the report by the Population 
Division (a contribution to the 2002 World Assembly on 
Ageing and its follow-up), the number of aging people in the 
world has been increasing every year since 1950 [7]. Muscle 
strength, balance and body function declines with aging, and 
the possibility of neurodegenerative diseases such as Parkin-
son’s disease (PD) increases [8]. 

PD patients, for example, have typical symptoms like rest 
tremor, bradykinesia, hypokinesia or rigidity [9]. Most 
tremors happen at hands or fingers resulting in failed at-
tempts to perform ADLs like holding forks. Apart from the 
difficulties in executing ADLs, the therapy relies on the PD 
patient’s symptoms [10, 11]. Different dosage should be 
prescribed according to the symptom reports, which can be 
extracted from the motor features report in diaries. However, 
the report can only cover a short period of time. As a result, 
researchers have developed various systems to monitor these 
symptoms and ADLs. A summary of the state-of-the-art of 
the monitoring systems, which can capture the motion, is 
explained in the following section.  

1.2. Current state-of-the-art of motion moni-
toring technologies and shortcomings 

Various technologies have been used for human body moni-
toring. A summary of these technologies with their pros and 
cons is shown in Table 1. Human motion monitoring with 
markers has been used for human body and body part mo-
tion analysis since Johansson’s (1973) moving light display 
psychological experiment [12]. Although the marker-based 
optical motion capture (mo-cap) systems provide very accu-
rate motion data, they are expensive to setup and the moni-
toring space is limited [13]. With the development of Mi-
croelectromechanical systems (MEMS) devices, inertial 
sensors are used in some simple applications like video 
gaming consoles and smartphones for orientation computa-
tion [14]. Wii MotionPlus is a typical remote controller with 
more accurate motion sensing abilities, but it can be easily 
deceived because it only monitors the player’s hand motion, 
and the player can sit on a couch and pretend to play tennis 
or golf. In other words the console does not provide whole 
body motion monitoring. The advantages of inertial meas-
urement unit (IMU) sensing devices are that they are easy to 
setup, small to wear, and they are cheaper than the optical ca 
-mera system. However, their information is not as accurate 
as mo-cap systems. The sensor data drifts as time progress-
es and there is a lack of a reference system to fix the error 
[15]. 

In IMUs, gyroscope measures the angular rate for orienta-
tion [16]. However, it drifts over time and needs the direc-
tion of gravity (accelerometer) or earth magnetic field (mag-
netometer) as reference for revision [17, 18, and 19]. This 
type of sensor that can measure magnetic, angular rate, and 

Table 1. Comparison of marker-based optical motion cap-
ture (mo-cap) system, depth sensing camera or scanner and 
inertial sensors mo-cap system. 

gravity on three axes are often referred to as MARG, and 
have been used for advanced monitoring of aircraft attitudes, 
including roll, pitch, and yaw [20]. Based on MARG, a qua-
ternion algorithm is developed for the drift compensation 
that makes it possible to achieve indoor navigation where 
GPS cannot work [21, 22]. 

Depth camera based systems have also been used for hu-
man motion monitoring. The depth camera measures the 
points’ distance of the captured scene, and its price and data 
accuracy have become attractive with the invention of Mi-
crosoft Kinect. Unlike the Wii MotionPlus console, Kinect 
monitors the whole human body and it requires players to 
move the same way instructed by the gaming role. However, 
depth camera still has occlusion problem, and can only 
measure from a limited distance. 

Researches showed that the human body movements can 
be estimated with muscle activities using Electromyography 
(EMG) signal alone or a combination of EMG and IMU to 
obtain more details [23, 24]. Myo (Thalmic Labs Inc.), 
which provides 8 EMG pods and a 9-axis IMU in an arm-
band, has many applications in motion sensing. Myo has 
been used in gesture control experiments. Although it has so 
many advantages, it requires eight nodes for each hand that 
makes it impractical for users.  

For ADLs monitoring, to track trajectory of one’s mo-
tions regardless of indoor or outdoor, a portable or wearable 
device is the best choice. In this paper, we have developed a 
wearable motion monitoring system using the MARG sen-
sors to track the trajectory of the limbs’ motions. A graphic 

System type Marker-based optical mo-cap systems 

Sensors Image sensor 

Pros Accurate in translation measurement 

Cons Difficult to setup, indoor 

System type Depth sensing camera or scanner 

Sensors An infrared projector combined with a 
monochrome CMOS sensor 

Pros 
Skeleton trajectory, facial detection and  

gesture sensing can all be achieved 

Cons Limited vision range, indoor 

System type Inertial sensors mo-cap system 

Sensors 

(i). Inertial measurement unit (IMU) 

(ii). IMU and electromyography 

(EMG)  sensor 

(iii). IMU and Magnetometer 

Pros 

(i). Easy to setup 

(ii). Good gesture sensing ability 
(iii). Accurate in orientation  

computation 

Cons 

Gyroscope data drifts over time and  

accurate translation computation is  

hard to achieve with 100Hz or lower  

sampling rate 
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data collection. The accuracy of the system was tested in 
different scenarios, and compared to a camera-based mo-cap 
system or a measurable criterion.  

Linear displacement tests demonstrated our system is less 
accurate than the camera-based mo-cap systems; however, 
the error rate is still under 8%. While the proposed system is 
much cheaper than the camera-based mo-cap systems, it is 
also easier to set it up, especially in the outdoor scenarios. 
This is valuable to monitor activity of subjects while they 
are not limited to indoor.  

For the food in-take test, we mimicked the process and 
reconstructed the food in-take motion pattern. The error in X 
and Y axes of 40 tests on each hand are in acceptable range 
(less than 20 cm), while the Z axis error reached 30 cm due 
to the use of low quality gyroscope. 

In the walking test, hands moved back and forth, and the 
OEA calculates the relative acceleration, which leads to a 
different result from the knee and ankle movements. The 
knee and ankle joints’ movements are almost in a straight 
line, hence, the motion reconstruction results are more relia-
ble and the error rates of ankle joints in these tests are less 
than 13%. 

Based on the results, there are three ways to improve the 
system in the future. First, utilize a better gyroscope in the 
SensorTag to avoid drifting problem. Second, develop a 
customized OEA for the ADLs’ monitoring that has im-
proved orientation and displacement calculation. Finally, a 
more practical smartphone application could be developed 
to connect six or more SensorTags simultaneously, and save 
data in higher sampling rates.  
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