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Abstract

Capability to perform activities of daily living (ADLSs) is a major factor in quality of life (QOL). While it can be difficult
for the elderly, disabled, or patients with chronic diseases to deal with ADLs, they need to spend a great deal of money on
healthcare and assistive technologies to keep a good QOL. The situation can be improved if a real-time ADLs monitoring
and recognition system is available to provide health information to physicians, pharmacists, or caregivers to offer timely
diagnosis, prescription, or emergency reaction.

We have developed a wireless wearable motion monitoring system that is suitable for monitoring ADLs involving
limbs. The system consists of six Bluetooth low energy (BLE) transponders that are small and light enough to be mounted
on all limbs. Each transponder, called SensorTag (by Texas Instruments), is equipped with a tri-axial accelerometer, a tri-
axial magnetometer, and a tri-axial gyroscope for motion monitoring. Each SensorTag can be linked to a smartphone for
long-term outdoor monitoring. A graphic user interface is created to acquire signals from BLE receivers, display the sig-
nals in real-time, process data, and store for off-line analysis.

This system was tested in three scenarios, and signals were analyzed off-line using a quaternion-based motion recon-
struction algorithm. First, a SensorTag was examined against a marker-based motion capture system in a linear motion
test. Second, a SensorTag was worn on a subject’s wrist to monitor food-intake trajectory. Finally, six SensorTags were
worn on wrist, knee, and ankle joints of left and right hands to monitor gait on a straight path. Results showed various er-
ror rates in different scenarios, however, the error rates are within an acceptable range, and more importantly the patterns
of the motions are reproducible.
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tivities of daily living (BADLs), which includes self-care
tasks such as bathing, dressing, toileting, brushing teeth,
eating and functional mobility. The other type is the instru-
mental activities of daily living (IADLSs), which allows peo-
1.1. Motivation for monitoring activities of dai- ple to keep an independent lifestyle with additional services,
ly living such as cooking, driving, using telephone or computer,

shopping, keeping track of finances and managing medica-
tion [2, 3]. The ability to perform ADLs is a major factor in
determining one’s quality of life (QOL) [4, 5, and 6]. While

1. Introduction

Activities of daily living (ADLs) are generally categorized
in to two main categories [1]. The first type is the basic ac-
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it can be very difficult for elderly, disabled or chronic dis-
ease patients to deal with ADLs, they also need to spend so
much on healthcare and assistive technologies to keep a rea-
sonable QOL.

The problem becomes more serious as the aging popula-
tion is growing. According to the report by the Population
Division (a contribution to the 2002 World Assembly on
Ageing and its follow-up), the number of aging people in the
world has been increasing every year since 1950 [7]. Muscle
strength, balance and body function declines with aging, and
the possibility of neurodegenerative diseases such as Parkin-
son’s disease (PD) increases [8].

PD patients, for example, have typical symptoms like rest
tremor, bradykinesia, hypokinesia or rigidity [9]. Most
tremors happen at hands or fingers resulting in failed at-
tempts to perform ADLs like holding forks. Apart from the
difficulties in executing ADLs, the therapy relies on the PD
patient’s symptoms [10, 11]. Different dosage should be
prescribed according to the symptom reports, which can be
extracted from the motor features report in diaries. However,
the report can only cover a short period of time. As a result,
researchers have developed various systems to monitor these
symptoms and ADLs. A summary of the state-of-the-art of
the monitoring systems, which can capture the motion, is
explained in the following section.

1.2. Current state-of-the-art of motion moni-
toring technologies and shortcomings

Various technologies have been used for human body moni-
toring. A summary of these technologies with their pros and
cons is shown in Table 1. Human motion monitoring with
markers has been used for human body and body part mo-
tion analysis since Johansson’s (1973) moving light display
psychological experiment [12]. Although the marker-based
optical motion capture (mo-cap) systems provide very accu-
rate motion data, they are expensive to setup and the moni-
toring space is limited [13]. With the development of Mi-
croelectromechanical systems (MEMS) devices, inertial
sensors are used in some simple applications like video
gaming consoles and smartphones for orientation computa-
tion [14]. Wii MotionPlus is a typical remote controller with
more accurate motion sensing abilities, but it can be easily
deceived because it only monitors the player’s hand motion,
and the player can sit on a couch and pretend to play tennis
or golf. In other words the console does not provide whole
body motion monitoring. The advantages of inertial meas-
urement unit (IMU) sensing devices are that they are easy to
setup, small to wear, and they are cheaper than the optical ca
-mera system. However, their information is not as accurate
as mo-cap systems. The sensor data drifts as time progress-
es and there is a lack of a reference system to fix the error
[15].

In IMUs, gyroscope measures the angular rate for orienta-
tion [16]. However, it drifts over time and needs the direc-
tion of gravity (accelerometer) or earth magnetic field (mag-
netometer) as reference for revision [17, 18, and 19]. This
type of sensor that can measure magnetic, angular rate, and
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Table 1. Comparison of marker-based optical motion cap-
ture (mo-cap) system, depth sensing camera or scanner and
inertial sensors mo-cap system.

System type Marker-based optical mo-cap systems
Sensors Image sensor
Pros Accurate in translation measurement
Cons Difficult to setup, indoor
System type Depth sensing camera or scanner
Sensors An infrared projector combined with a
monochrome CMOS sensor
Pros Skeleton trajectory, facial detection and
gesture sensing can all be achieved
Cons Limited vision range, indoor
System type Inertial sensors mo-cap system
(). Inertial measurement unit (IMU)
(ii). IMU and electromyography
Sensors
(EMG) sensor
(iii). IMU and Magnetometer
(i). Easy to setup
Pros (ii). Good gesture sensing ability
(iii). Accurate in orientation
computation
Gyroscope data drifts over time and
Cons accurate translation computation is

hard to achieve with 100Hz or lower
sampling rate

gravity on three axes are often referred to as MARG, and
have been used for advanced monitoring of aircraft attitudes,
including roll, pitch, and yaw [20]. Based on MARG, a qua-
ternion algorithm is developed for the drift compensation
that makes it possible to achieve indoor navigation where
GPS cannot work [21, 22].

Depth camera based systems have also been used for hu-
man motion monitoring. The depth camera measures the
points’ distance of the captured scene, and its price and data
accuracy have become attractive with the invention of Mi-
crosoft Kinect. Unlike the Wii MotionPlus console, Kinect
monitors the whole human body and it requires players to
move the same way instructed by the gaming role. However,
depth camera still has occlusion problem, and can only
measure from a limited distance.

Researches showed that the human body movements can
be estimated with muscle activities using Electromyography
(EMGQG) signal alone or a combination of EMG and IMU to
obtain more details [23, 24]. Myo (Thalmic Labs Inc.),
which provides 8 EMG pods and a 9-axis IMU in an arm-
band, has many applications in motion sensing. Myo has
been used in gesture control experiments. Although it has so
many advantages, it requires eight nodes for each hand that
makes it impractical for users.

For ADLs monitoring, to track trajectory of one’s mo-
tions regardless of indoor or outdoor, a portable or wearable
device is the best choice. In this paper, we have developed a
wearable motion monitoring system using the MARG sen-
sors to track the trajectory of the limbs’ motions. A graphic
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user interface (GUI) is created in LabVIEW (National In-
struments) to collect and process data, and display in real-
time. Stored data were analyzed using a quaternion-based
motion reconstruction algorithm.

2. System overview

2.1. System architecture

Wireless sensor tags are products that combine sensors with
wireless communication to achieve low power wireless
sensing function. Based on the wireless communication
technology, there are four common types of wireless sensor
tags in the market; RFID such as MLX90129, by Melexis
[25], Wi-Fi such as Wireless Sensor Tag Pro, by Cao Gadg-
ets [26], ZigBee such as Z302E Wireless asset tag, by
Netvox technology CO [27], and Bluetooth low energy
(BLE) such as Texas Instrument’s CC2541 SensorTag [28].
MLX90129 doesn’t have motion sensors and it is bulky;
hence, not suitable for monitoring human motions. Both
MLX90129 and Wireless Sensor Tag Pro are used for tem-
perature or humidity monitoring. The power consumption of
Wi-Fi is higher compared to BLE and ZigBee. Finally,
ZigBee is not supported by most of the smartphones while
BLE is.

CC2541 SensorTag is developed to furnish Internet of
Things (IoT) designs [29], and it is the first development kit
using BLE. CC2541 SensorTag has six sensors including
infra-red (IR) temperature sensor, humidity sensor, pressure
sensor, accelerometer, gyroscope, and magnetometer. At full
operation, the SensorTag continuously runs on a 230 mAh
coin cell battery (i.e., CR2032). It is small enough to be
worn, as the length and width of the board are 5.6 cm and
2.5 cm, respectively. The SensorTag development kit, a
USB dongle that connects to computer, and a customized
wristband are shown in figure 1.

The block diagram of the SensorTag is shown in figure 2.
Each SensorTag is composed of a CC2541 that is a system-
on-chip (SoC) module comprising an 8051 microcontroller
(MCU), a wireless transceiver (BLE), and a 12-bit analog to
digital converter (ADC). The MCU not only controls the
BLE module and ADC, but also manages external compo-
nents (six sensors, a side key, LEDs, etc.). In addition,
CC2541 provides 23 general purpose /O lines, six timers
(one 16-bit, two 8-bit, one BLE link layer timer, one watch-
dog timer for reset, and one sleep timer), two universal syn-
chronous /asynchronous receiver/transmitter (USART)
ports, and one I°C bus. Because all the sensors are equipped
with internal ADCs, the information from the sensors is read
by the MCU through the I*C bus [30].

The SensorTag firmware is programmed in the IAR em-
bedded workbench (IAR Systems). The firmware first ini-
tializes the hardware, then enables the interrupts, runs power
on self-test, and at last it starts Operating System Abstrac-
tion Layer (OSAL). OSAL provides scheduling, memory
management and message features for the SensorTag. There
are 11 events in the OSAL scheduling, the first ten events
are executed to enable the BLE, and the eleventh one is
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Figure 1. Number @ to ® show different compo-
nents of a CC2541 SensorTag, which includes the
main tag, coin cell battery (CR2032), CC2540 USB
dongle, plastic cover, enclosure, and cover sewn
on the Velcro strap, respectively.

DC/DC
TPS62730

CC2541

Bluetooth low energy

12C
[l
Accelerometer Gyroscope Magnetometer
KXTJ9 IMU 3000 MAG3110

Figure 2. CC2541 Bluetooth low energy Sen-
sorTag block diagram is shown. There are six
sensors controlled by the CC2541, however, the
developed system only utilizes the accelerometer,
gyroscope and magnetometer.

called the SensorTag event, which handles the system reset
function (press the side key), initializes the sensors, turns on
the BLE advertisement and waits for the connection request
from the dongle. The firmware flowchart is shown in figure
3. After the power is turned on, the SensorTag initializes the
board and executes the OSAL events to start advertisement.
It keeps advertising until receives the connection request
from the dongle, and then the sensors are enabled to send
data. The firmware provides a sampling rate of 50 Hz for the
tri-axial MARG sensors. When the SensorTag receives the
termination commands from the dongle, it stops reading
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from the sensors and returns to advertisement status. By
turning off the power, the SensorTag stops advertising.

We have adopted 6 SensorTags, developed firmware, and
a GUI to simultaneously acquire signals from the MARG
sensors available on the SensorTags. The 6 sensor tags can
be used to cover the whole body or body parts, to create a
wireless body area network (WBAN) for motion monitor-
ing. For each tag, a CC2540 USB dongles is needed on the
base station side to receive data and send information to
GUI for displaying and further processing. The system to-
pology in the context of communicating with a smartphone,
where only one sensor tag can be active at a time, and com-
municating with the base station, where all 6 sensor tags can
operate simultaneously, is shown in figure 4. It’s possible to
connect two or more SensorTags to the smartphone at the
same time as the master device can connect to multiple
(maximum 7) slave devices, although the application used in
this paper can only have access to one SensorTag at a time.

2.2. Graphic user interface

GUI is developed in LabVIEW. The program runs in a flat
sequence structure; it first sets the COM port number, baud
rate and buffer size, and then sends two commands to initial-

SensorTag board initialization

Start OSAL

Execute 11 events
No
Event number
Number 11

Sensor initialization

SensorTag advertisement

No
onnection established
Yes

Enable sensors

Send data

T —

Yes

Disable sensors

SensorTag advertisement l E
op advertising

Yes

Stop

Figure 3. The firmware flowchart is shown. The
firmware first initializes the hardware, then enables
the interrupts and runs power on self-test, at last it
starts Operating System Abstraction Layer (OSAL).
OSAL executes multiple events including schedul-
ing, memory management and message features,
and finally the eleventh which is the SensorTag
event. SensorTag event initializes the sensors, and
waits for commands to perform read and write.
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B[uetooth smart ready

SensorTag 2

jrewsy

Bluetooth smart

Figure 4. System topology is shown. Six SensorT-
ags are tested to work simultaneously with a station-
ary unit (a laptop and 6 BLE dongles connected to it)
via Bluetooth. The smartphone (Bluetooth smart
ready) can connect to the SensorTag and send data
in “CSV” format through email to the user. Although
the SensorTag iOS application of Texas Instruments
can only connect to one SensorTag, it is possible to
develop a customized application to connect to all six
SensorTags.

ize the dongle. After that, it will scan for 10 seconds. If the
SensorTag is advertising, a link would be established, and a
sensor initialization command would be sent out to the Sen-
sorTag. The SensorTag follows the flowchart shown in Fig.
3, and the GUI would receive the signals within 5 seconds.
Finally, when the user presses the stop button, the received
data and timestamp would be stored in the stationary PC,
and the SensorTag would go back to advertising status. The
flowchart of the GUI is shown in figure 5. The front-panel
of the GUI developed in LabVIEW is shown in figure 6.

2.3. Motion reconstruction using a quaterni-
on-based algorithm

There are three main types of orientation estimation algo-
rithms (OEAs). The first OEA benefits from Kalman filter
or extended Kalman filter (EKF), which uses the current
measured signals to predict the certainty of future signals.
This OEA uses Kalman gain as a weighted average to
achieve the efficient optimized tilt calculation. The problem
with Kalman-based OEA is that the frequently updated gain
increases the computational burden [31, 32].

Mabhony et al. (2008) proposed an OEA based on a com-
plementary filter, which applies a low-pass filter to accel-
erometer signals and a high-pass filter to gyroscope signals
to compute the tilt angle [33]. This algorithm has a system
error in computing the angle when the rotation angle ap-
proaches to +x radian [32].

Madgwick et al. (2011) introduced a computationally in-
expensive quaternion-based OEA that is suitable for tri-axial
MARG sensors when the sampling rate is low (e.g. 10Hz)
[34]. Due to efficiency, this OEA can be a practical substi-
tute, especially when the parameters of the algorithm have
been adjusted carefully according to the ADLs monitoring
results [35, 36].
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axes. The magnetometer measurement is not affected in Z
axis as its direction is not vertical unless in geomagnetic
poles. In this paper, the MARG sensors’ data is used to ob-
tain quaternion and rotation matrix to achieve the revision.

Quaternion system is used to represent the orientation in-
cluding three types of deflection angles; roll (), pitch ( 0)
and yaw (0 ). If the position changes from sensor (S) frame
to earth (E) frame, then 3§ can be used to represent the
change in the matrix shown in equation (1), where o is the
frame deflection angle shown in figure 7,1y, 1, and 7; are
MARG sensors’ data in this context. It is assumed that
a, = 0 to obtain equation (2) when the position changes
from sensor frame to earth frame. MARG sensors’ quaterni-
ons are obtained with more complex computation like cross
product and integration using 3§, MARG sensor vectors
(sensor frame) shown from equation (3) to (5), S,,, S,, and
Sm, represent information obtained from gyroscope, accel-
erometer, and magnetometer, respectively. Unit vectors in
earth frame for accelerometer and magnetometer are shown
in equations (6) and (7), E, and E,,, respectively.

Scan and discover SensorTag

Figure 5. The LabVIEW program flowchart is

shown. The program first reads the COM ports and 56 = [41 G G5 Ga]

start scanning for the SensorTags. After the link is « o« o« a
established, it receives configuration information, =|cos7; —hsing  —nsSins T 5”’;] (&)
and enables the sensors. Then the program displays
the signals in real-time. When the “Stop” button is 3G =[1000] 2)
pressed, data would be saved and disconnect from
the SensorTags. Se = [0 wy @y w,] 3)
Gyroscope measures the angular rate for orientation; S, =[0a,a,a,] )
however it drifts over time and needs the directions of gravi- a x Ty Tz
ty (accelerometer) and earth magnetic field (magnetometer)
as references for revision. The accelerometer measures ac- Sm = [0m, my m,] ®)

celeration in three axes, where the z axis comprises a base-
line due to the gravity (g-force = 9.81 m/s® straight up- E,=[0001] (6)
wards), and it can be used to fix the tilting errors in X and Y

Accelerometer Signal

5_

Scanning
S CoM6 |

Data Saving Path
%...\combdata. txt -,

Timestasp Saving Pa!ll’ -5—' s i |
3--- \combtime. txt Ld 00:17:47 Acce|er0metef 3 00:19:27

:Stoo_reudmgmd save Gyroscope Signal

_50—l 1
00:17:48 Magnetometer 3 00:19

Figure 6. The front panel of the SensorTag graphical user interface is shown. User should select the COM
port(s) first, and then run the program. If the wireless link is established between the tag(s) and the base station,
the signals would be displayed.
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Figure 7. Position “A” changes to position “B”,
and “W” axis rotates an angle of “a”.

E,=[0 yx?2+y? 0 2z

Five quaternions, based on equations (3) to (7) are used to
calculate rotation matrices (g&R, aZR, mER, a_unitER and
m_unit4R ) following equation (8). The g&R has inherent
drift problems due to gyroscope technology. By comparing
akR and a_unitER , the errors in X and Y axes can be ob-
tained. By comparing m£R and m_unitER , the errors in Z
axis can be obtained. The errors can be used to revise the
gER to get a more reliable rotation matrix (£R) for the de-
flection angles calculation following equations (9) to (11).
The whole process from quaternion generation to obtaining
deflection angles is shown in figure 8.

@)

20295 — 194) 245 —1+2q5  2(q3q4 + 9192)

2qi —1+2q5  2(q29s + 0:194)  2(q294 — 9193)
iR =
200294 + 0193)  2(q394 — 0192)  2qf — 1+ 24;

cosypcosB cosysinf@sing —sinypcosdp cosypsinbcosp —sinypsing
’sinl/lcose siny sin@sing + cospcos¢ sinysinb cosp — cos ¢ sin 0]
—sin6 cos @ sing cos 6 cos ¢

®)
Y = atan2(2(q.q4 + 4193) , 297 — 1 + 2q3%) )
0 = —sin""2(q2q4 + 9:193) (10)
¢ = atan2(2(q39s — 4192) 2qf — 1 +243) (11)
a= [aZ + a} + a? (12)

Acceleration calculation is shown in equation (12).

The velocity changes every t seconds, and velocity and
distance can be obtained, assuming the initial velocity is 0:
Ve =Vpq + qpq Xt 13)
St =St + Vg Xt (14)
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Quaternion generation

Rotation matrix computation
—
Errors on Z

axis

Errors on X
and Y axes

Revise the rotation matrix

Roll (¢), pitch (8) and yaw ()

Figure 8. The process from quaternion gen-
eration to deflection angles obtainment is
shown.

3. Functional and measurement results

The system was validated in three different scenarios: 1)
linear displacement, 2) eating gesture, and 3) walking on a
straight path. The results for each test are represented in the
following.

3.1. Monitoring linear displacement

For this experiment, an optical marker was attached to a
SensorTag, and the SensorTag was moved by the experi-
menter on a linear path along a 60-cm ruler, inside a motion
capture lab. The data from the SensorTag and motion cap-
ture systems were recorded simultaneously, and stored for
off-line comparison. Figure 9, shows the trajectories from
the two systems. The camera trajectory is almost straight
with 5.18 c¢cm error, while the SensorTag’s curved at about
24.74 cm that caused an error of 9.58 cm. This is due to the
lack of orientation revision in the Y axis. As a result, the
linear displacement of the SensorTag and camera systems
from the start to end points was calculated as 55.2 cm and
58.81 cm, respectively, assuming the distance is equal to

VX% +y? + z2. The error rates (€) that are computed from
equation (15), yield 7.99% error for the SensorTag system,
and 1.99% for the camera system.

|Total true distance — Total calculated distance)|

£ =
Total true distance

X 100%

(15)
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0.04- '—SensorTag
| ——Camera
0.02 > ;K
0 e — ——fe—
< /
& /

g S

-0,10

0.1 0.2 03 4 05 0.6 07

X (m) ‘
Figure 9. Two trajectories based on SensorTag
and camera are shown. The trajectory of camera
system is almost a straight line, and most of it
stayed in X-Y phase. SensorTag system’s trajecto-
ry started around (0, 0, 0), and ended at (0.5213,
0.0312, -0.1787). Both systems demonstrated a
distance travel around 60 cm, however, the Sen-
sorTag OEA didn’t result into a straight trajectory.

3.2. Monitoring food intake gesture

To monitor subjects’ upper limb motions, ‘food intake ex-
periments’ were conducted, where a subject sat on a chair
wearing one SensorTag on the wrist, pretended to “grasp”
food from a table in front of him, and took food into the
mouth. When finished the subject put his hand back to the
armrest of the chair. The experiment was repeated for 20
times for each hand. An example for the food intake trajec-
tory is shown in figure 10. The figure should represent a
closed-loop trajectory as the subject start the task from the
armrest, and finishes in the same place. There are two turn-
ing points, the first one is after the “grasping” gesture (la-
belled as D), and the second one is after the “intaking” ges-
ture (labelled as @). The distance between the starting and
ending points was calculated as 23.13cm. Five trials of the
same gesture, which are plotted in figure 11, showed the
food intake pattern is repeatable. The statistical results from

0.0

X:0 /

v:0 X:0.2283
7:0 Y:-0.03162

002 / Z:0.02305

g

0.4-

=z (m)

- ——
005 X(n) 00 02 05 A

Figure 10. Eating gesture monitoring trajectory
plot is shown. The distance between the starting
point and the ending point is around 23.13 cm.
Turning point @ is after the “grasping” gesture,
and turning point @ is after the “food in-taking”
gesture.
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Ym 0 0.05 0.1 0.15 0.2 0.25 03 035
X (m)

Figure 11. Food intake pattern of five trials is
shown. The “grasping” and “food in-taking” ges-
tures are distinctive.

40 tests are shown in table 2, as mean + standard deviation
(STD). The gyroscope has a higher error in Z axis compared
to X and Y axes, which is due to the drift in the Z-axis
caused by the inherent limitation in the technology used to
build the gyroscopes. This drift is even present in the high-
end gyroscopes used in aviation industry.

Table 2. Eating gesture monitoring resulted from 40 trials on
each hand.

Right hand Mean + STD (cm)
Distance 33.74+6.53
X-axis error 15.07+10.90

Y -axis error 14.294+9.91

Z -axis error 28.75+7.73
Left hand

Distance 35.52+5.92
X-axis error 17.20+8.12

Y -axis error 16.241+6.61

Z -axis error 30.05+7.10

3.3. Monitoring walking on straight path

In this test, a subject wore six SensorTags, one on the wrist,
knee, and ankle joints, of the left and right sides. The subject
was asked to walk on a straight path that was 3.96 meters
(13ft) for 10 times. An example of the reconstructed trajec-
tories of all six joints is shown in figures 12 to 14.

The reconstructed trajectories in figure 12 showed the
end (X, y, z) values as (0.5446, 0.1143, 0.0463) and (0.8717,
0.0169, 0.0526), for the right and left wrists, respectively.
The end values for the right and left ankles were calculated
as (4.4550, -0.0011, 0.2872) and (3.7010, 0.2626, 0.0777),
respectively (figure 13). The trajectory in figure 14 showed
that end points for right and left knee joints were (3.0500,
0.1766, 0.0356) and (2.1810, 0.1113, 0.0802), respectively.
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Figure 12. Wrist joints’ trajectories are shown. The
short distance is due to the fact that the wrist and
knee joints do not necessarily travel as long as the

ankle joints.
(a) 02 —_Right ankle
£
N0 T
- ’—__-'.-F.-'_F.
o ——— — X:4.4550
* | ™ ¥:-0.0011
¥ (m) 0.2 N )
ol 7:0.2872
’ (/, X (m)
(b) ° X0 05 1 15 2 25 3 35 4 45
02\ Y:0 | — Left ankle
E | Z0
N°-1\
X:3.7010
| Y:0.2626
gk 4!’ 7:0.0777
Y (m} 02 e
v:0 / S Xm
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Figure 13. Ankle joints’ trajectories are shown. An-
kle moved straighter and longer than the wrists and
knees. The reason that the ankle joint does not re-
flect the travelled distance is due to the gyroscope
drift that was discussed above.

The reason that the wrist and knee joints moved less than
the ankle joints is partially due to the fact that the wrist and
knee joints do not necessarily travel as long as the ankle
joints. The reason that the ankle joint does not reflect the
travelled distance is due to the gyroscope drift that was dis-
cussed above.

The total displacement of each joint is shown in Table 3.
The error rates of SensorTag translation on the right and left
ankles are computed using equation (15), yield 7.07% for
the right ankle and 12.67% for the left ankle. The statistical
results from the 10 tests are shown in table 4.
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Figure 14. Knee joints’ trajectories are shown. The
distance is longer than the wrists’, but shorter than
the ankles’.

Table 3. The total displacement of the wrist, knee and ankle
joints.

Left or right

Left Right
Joint name
Wrist 0.8734 m 0.5583 m
Knee 2.1849 m 3.0555 m
Ankle 3.6822 m 4.4645m

Table 4. Walking monitoring results on both ankles.

Right ankle Mean+STD
Distance (m) 3.82+1.14
X-axis error (cm) 21.19%£5.30
Y -axis error (cm) 26.96+7.12
Z -axis error (cm) 28.29+6.48
Left ankle

Distance (m) 3.78+0.92
X-axis error (cm) 22.56+6.33
Y -axis error (cm) 26.74+5.72
Z -axis error (cm) 29.41+£6.90

4. Conclusion and future work

In this paper, we have developed a wireless wearable motion
monitoring system that is suitable for monitoring ADLs in-
volving limbs. The system is inexpensive, and utilizes
commercially-available MARG sensors for real-time motion
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data collection. The accuracy of the system was tested in
different scenarios, and compared to a camera-based mo-cap
system or a measurable criterion.

Linear displacement tests demonstrated our system is less
accurate than the camera-based mo-cap systems; however,
the error rate is still under 8%. While the proposed system is
much cheaper than the camera-based mo-cap systems, it is
also easier to set it up, especially in the outdoor scenarios.
This is valuable to monitor activity of subjects while they
are not limited to indoor.

For the food in-take test, we mimicked the process and
reconstructed the food in-take motion pattern. The error in X
and Y axes of 40 tests on each hand are in acceptable range
(less than 20 cm), while the Z axis error reached 30 cm due
to the use of low quality gyroscope.

In the walking test, hands moved back and forth, and the
OEA calculates the relative acceleration, which leads to a
different result from the knee and ankle movements. The
knee and ankle joints’ movements are almost in a straight
line, hence, the motion reconstruction results are more relia-
ble and the error rates of ankle joints in these tests are less
than 13%.

Based on the results, there are three ways to improve the
system in the future. First, utilize a better gyroscope in the
SensorTag to avoid drifting problem. Second, develop a
customized OEA for the ADLs’ monitoring that has im-
proved orientation and displacement calculation. Finally, a
more practical smartphone application could be developed
to connect six or more SensorTags simultaneously, and save
data in higher sampling rates.
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