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Abstract 

INTRODUCTION: Prediction of emergency mobility needs to consider more scenarios as Internet of Things (IoT) develops 

at a high speed, which influences the quality and quantity of data, manageable resources and algorithms. 

OBJECTIVES: This work investigates differences in dynamic emergency mobility prediction when facing dynamic 

temporal IoT data with different quality and quantity considering diverse computing resources and algorithm availability. 

METHODS: A node construction scheme under a small range of traffic networks is adopted in this work, which can 

effectively convert the road to graph network structure data which has been proved to be feasible and used for the small-

scale traffic network data here. Besides, two different datasets are formed using public large scale traffic network data. 

Representative widely used and proven algorithms from typical types of methods are selected respectively with different 

datasets to conduct experiments. 

RESULTS: The experimental results show that the graphed data and neural network algorithm can deal with the dynamic 

time series data with complex nodes and edges in a better way, while the non-neural network algorithm can predict the with 

a simple graph network structure. 

CONCLUSION: Our proposed graph construction with graph neural network improves dynamic emergency mobility 

prediction. The prediction should consider the scenarios of availability of computing resources, quantity and quality of data 

among other IoT features to improve the results. Later, automation and data enrichment should be improved. 
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1. Introduction

Emergency medical service is a fundamental requirement in 

modern society. Dynamic relocation of emergency response 

resources is required during emergency transit. 

Conventionally, all transport data is sent to a computer centre 

to calculate traffic status and plan routes as the edge terminals 

lack related capabilities and qualified data. The situation is 

changing. With the rapid development of modern society, 

technology has penetrated everyone’s daily life, ranging from 

national satellites and aviation to smartphones and smart 

homes in every household. The progress of science and 

technology has enriched people’s material life[1]. Internet of 

* Corresponding author: Email:  cse_xuy@ujn.edu.cn

Things (IoT) attracted much attention in recent years[2]. The 

IoT system mainly includes a centre and sub-device 

terminal[3]. The sub-device terminal connects to the centre 

and other devices through Bluetooth or wireless LAN for data 

sharing[4]. The centre is responsible for collecting and 

processing the running data of each sub-device and adjusting 

the working state of the device. The sub-device terminal is 

responsible for receiving the centre signal, performing the 

corresponding work according to the purpose, and outputting 

the corresponding device information to the central 

processor[5]. The Internet of everything has brought great 

convenience to people in the new era, but at the same time, 

people have more and more requirements for the devices of 

the IoT. For a variety of complex work situations, how to 
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coordinate the devices to serve people more effectively has 

always been the focus of relevant personnel[6]. The IoT 

generates a large amount of time series data. Artificial 

intelligence can be used to mine the properties and rules of 

the data itself and accurately detect and predict the data, 

which can greatly improve people’s living efficiency and 

reduce people’s accident risk[7]. 

Taking dynamic road traffic as an example, traffic data is a 

kind of dynamic time series data with large volatility, spatial 

heterogeneity, fast update and huge volume[8]. With the 

establishment of  intelligent transportation systems in first-

tier cities and the arrival of the era of the "Internet of vehicles" 

in the background, relevant traffic data is getting bigger and 

bigger[9]. Getting more cars on the road in the same amount 

of time has always been the ultimate goal in dealing with 

traffic congestion[10]. At the same time, most cities are using 

the traditional traffic signal system, manually setting the time 

of passage[11]. Therefore, if the traffic data can be processed 

and predicted accurately and quickly, urban traffic congestion 

can be greatly improved. Relevant traffic departments can 

effectively dredge traffic by adjusting signal lights, adjusting 

transition lanes and carrying out traffic control, so as to 

facilitate people’s travel route planning and improve people’s 

living efficiency[12]. 

Early studies in related fields mainly used mathematical 

modelling methods to fit the data, such as linear model[13], 

decision tree[14], Auto Regressive Integrated Moving 

Average (ARIMA) model[15], etc. After that, neural 

network-based methods[16] especially deep learning 

algorithms gradually stepped onto the historical stage. By 

stimulating neurons, it can better refine and aggregate data 

information and is widely used in the recognition of image, 

speech and medical information among other domains[17]. 

However, as the complexity of the neural network algorithm 

model is high, with a large amount of data and large memory 

consumption, the computing capacity of computers at that 

time was insufficient, and the development of deep learning 

algorithms was stuck in a bottleneck for a period of time[18]. 

With the breakthrough of computer hardware technology in 

the past decade, the computing power, memory and other 

indicators of computers have been greatly improved. 

Machine learning algorithms based on graph neural networks 

have shown good results in the field of data prediction[19]. 

This work aims to investigate differences in dynamic 

emergency mobility prediction effect when facing different 

dynamic temporal IoT data with diverse computing resources 

and algorithm availability then provide suitable data and 

algorithm advices for dynamic emergency mobility 

prediction considering recent IoT achievements. 

2. Background and Related Work

In this work, the current commonly used and proven temporal 

data prediction algorithms are considered. Conventional and 

neural network machine learning algorithms are compared. 

Non-neural network machine learning algorithms are 

represented by XGBoost[20]and LightGBM[21], which have 

the following characteristics: The algorithm model is small in 

size, easy to construct, and convenient to implement, with low 

requirements for computing power and high speed. Neural 

network machine learning algorithms, represented by the 

convolutional neural network[22], recurrent neural network 

[23] and graph neural network algorithm[19], have the

following characteristics: good prediction effect, high

accuracy, complex model architecture, large requirements for

computing power, suitable for large and complex data. Next,

the two algorithms are introduced in detail respectively.

2.1. Ensemble Learning 

The algorithm composed of a single learner has limited 

application scope. In the face of complex and highly 

fluctuating data, it is often unable to effectively extract data 

features for prediction. Therefore, the concept of the 

integrated learning algorithm is to put forward, and the flow 

chart of the integrated learning algorithm is shown in Figure 

1. 

One ensemble learning algorithm constructs and 

combines multiple weak learners to form strong learners to 

complete the learning task and often achieves more 

remarkable generalization performance than single learners. 

According to different combination methods, they can be 

classified into Bagging, Boosting and Stacking[24]. 

Figure 1. The schematic diagram of integrated learning 

is shown in the figure, which consists of several weak 

base learners and forms a better learner for 

classification or regression prediction. 

XGBoost Algorithm 

XGBoost is a kind of non-neural network machine learning 

algorithm proposed in recent years, and has been proved to 

have a good prediction effect on tabular data. It is widely used 

in medicine, finance, home, robot control and other fields, 

and is often used by researchers to predict all kinds of time 

series data, which is representative to a certain degree. Next, 

the architecture of XGBoost algorithm is described. XGBoost 

2

EAI Endorsed Transactions on 
Pervasive Health and Technology 

08 2022 - 10 2022 | Volume 8 | Issue 4 | e2



Prediction of Emergency Mobility Under Diverse IoT Availability 

algorithm is one of the ensemble learning algorithms built 

with Boosting. The base learner in this algorithm is 

essentially CART (Classification and Regression Tree)[25]. 

CART’s main principle is to recursively divide each 

region in the input space, where the training dataset is stored, 

into two sub-regions and determine the output value of each 

sub-region. Depending on the type of tree, the criteria for 

splitting molecular regions differ. For CART, the squared 

error minimization standard is commonly used, and the loss 

function is provided in the formula below. 

(1) 

The target function of XGBoost is as follows: 

(2) 

The objective function of the XGBoost algorithm is 

composed of the loss function of CART and the 

regularization term. The loss function represents the existing 

deviation of the model, and the regularization term represents 

the existing variance of the model. By adding the 

regularization term, the number of samples in the fitting 

function can be reduced as much as possible to prevent the 

occurrence of over-fitting. The algorithm can be used for both 

regression and classification prediction. 

2.2. Graph Neural Network 

Many researchers consider graph neural network algorithms 

as five types including Graph Convolution Networks (GCN) 

[26], Graph Attention Networks [27], Graph auto-encoder 

[28], Graph Generative Networks[29], Graph spatial-

temporal Networks[30]. 

Graph neural network model mainly studies Graph node 

representation (Graph Embedding), Graph edge structure 

prediction and Graph classification, the latter two tasks are 

also based on Graph Embedding expansion. The types of 

graphs processed are mainly as follows: heterogeneous 

graphs, bipartite graphs, multidimensional graphs, symbolic 

graphs, hypergraphs and dynamic graphs. The type of graph 

constructed in this work is the dynamic graph. 

Dynamic graphs add a whole new dimension: time. The 

dynamic graph neural network algorithm considers both 

spatial coherence and temporal continuity of nodes in the 

graph. When a dynamic graph neural network algorithm is 

dealing with problems, it is in essence to arrange a dynamic 

graph into a series of slice graphs according to the same time 

interval, and realize the prediction of nodes in the graph by 

extracting the features of each slice graph and aggregating 

them. For dynamic graph neural network algorithms, many 

current methods use GCN (Graph Convolutional 

Network)[31] and GAT (Graph Attention Network)[32] to 

capture the node dependence in slice graph, and 

RNN(Recurrent Neural Network)[33], LSTM (Long short-

term memory)[34] and GRU (Gated Recurrent Unit)[35] to 

capture the time dependence. 

Graph Convolutional Network 
GCN mainly obtains the embedding of node characteristics 

through the method of matrix operation, The core formula of 

the algorithm is shown below: 

(3) 

Matrix A refers to the adjacency matrix of the graph, and 

matrix A˜ is represented by the adjacency matrix plus the 

identity matrix, that is, the self-connection of nodes is added 

to the original graph. Matrix D is the row sum of matrix A˜, 

which represents the degree of the node. Matrix H(l) is the 

original feature of each node, and Wis is the learning 

parameter, which is randomly generated and optimized and 

adjusted according to the results. GCN algorithm takes the 

node itself into account through self-connection and then 

takes the information of the connected node into account to 

normalize the node. Matrix HH(l+1) is the feature 

representation of nodes after embedding by the GCN method. 

The dimension of the vector depends on the dimension of the 

w function. GCN method can effectively extract, aggregate, 

and reduce the features of the original node, that is, obtain the 

spatial characteristics in the graph. 

Gated Recurrent Unit (GRU) 

GRU can be considered a simplified version of LSTM and 

can also handle long-term dependency using gates. It can be 

understood that a time axis is added between the originally 

parallel and independent sub-modules to connect them and 

interact with each other. The logic diagram and detailed flow 

chart of the algorithm are shown in Figure 2. 

Figure 2. The figure shows the input and output of the 

GRU module. The input is the information of the 

current node and the feature input of the last time. 

There are two inputs and two outputs in the model. xt is 

the input of the node at the current moment, ht−1 is the input 

of node features at the last moment, Y t is the output of the 

node at the current moment, ht represents the aggregation of 
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node features at the current moment and all previous 

moments, and the same operation will be continued to the 

next node. zt and rt in the figure represent update and reset 

gates respectively. The reset gate determines how new inputs 

are combined with precious memories, and the update gate 

determines how much previous memories come into play. 

The update gate controls how much previous state 

information is taken into the current state while the reset one 

controls how much previous information is taken into the 

current candidate set. ht. A smaller reset gate leads to less 

information taken from the previous state.  

Temporal Graph Convolutional Network (TGCN) 

TGCN is a recently proposed spatiotemporal data prediction 

algorithm based on graph network. The prediction accuracy 

is high and can be applied to a wide range. It is widely used 

in transportation, medicine, education and other fields, and 

has been proved to have a good prediction effect on all kinds 

of data containing both time and space dimensions. In the 

neural network algorithm has a certain representative. Next, 

the concrete architecture of the TGCN algorithm is described. 

TGCN algorithm[36] uses this method, and its flow chart is 

shown in the Figure 3 below: 

Figure 3. The figure shows the core principle of the 

TGCN algorithm, which processes road network and 

traffic data into matrices, extracts spatial features 

through the GCN algorithm, then extracts time features 

through the GRU algorithm, and finally outputs 

prediction results. 

TGCN algorithm, the road network data is processed into 

an adjacency matrix, and the sequential traffic data is 

processed into a series of feature matrices according to fixed 

time intervals. The adjacency matrix and feature matrix are 

combined to obtain data spatial attributes in the GCN model, 

and then the ht obtained is added to the GRU model to obtain 

data time attributes. Finally, the corresponding prediction 

results are output. 

Therefore, in this experiment, XGBoost algorithm is used 

as the baseline of non-neural network machine learning 

algorithm, and TGCN algorithm is used as the baseline of 

neural network machine learning algorithm. But both 

algorithms have some limitations. XGBoost algorithm has a 

simple model architecture, which tends to have low 

prediction accuracy in the face of large amount of data, 

complex data content, and high physical correlation data, 

while TGCN algorithm has some problems, such as complex 

model architecture, low interpretability, slow algorithm 

iteration speed, and high computing power requirements. 

3. Methodology

The overall flow chart of this work is shown in Figure 4. First, 

the original data is obtained from multiple sensor devices, 

followed by preprocessing to ensure accuracy and simplicity. 

Later, according to the physical location and correlation of 

devices, nodes and edges are designed to form a graph 

network. All related data between different devices are 

connected to relevant nodes based on the graph network. By 

setting the time interval, data is generally processed into node 

features, which are output along with the adjacency matrix. 

Finally, the results are predicted using different algorithms to 

guide the further work of the equipment. 

Next, the dynamic road traffic conditions are taken as an 

example to explain the experimental method in detail. 

Figure 4. The figure shows the flow chart of this work. 

The raw data is read first, then the data is 

preprocessed, the processed data is given to the 

algorithm for training, and the prediction results are 

evaluated at last. 

The content of this work mainly includes four aspects. 

Firstly, data collection and acquisition are carried out. Public 

urban road traffic data can be obtained through network 

channels, and unpublicized urban traffic data can also be 

obtained through cooperation with relevant transportation 

departments. After that, the obtained data are preprocessed to 

remove the problematic data, and the road nodes and 

corresponding node features are established. Then the 

algorithm is built and optimized, and the data is given to the 

algorithm for prediction. After obtaining the predicted results, 

evaluate and analyze them. The experiments are done using 

Python programming language. 
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3.1. Data Acquisition 

Many ways can be used to acquire traffic data, such as 

visual tracking[37] or loop detection. The experiments using 

traffic data mainly include two kinds, one is from the related 

work[36], derived from the network public thousands of road 

of Shenzhen city road network data, containing the adjacency 

matrix of all urban roads within one month and the average 

speed of the vehicle. The average speed is taken as the main 

node feature. In this work, it is called large-scale urban road 

network data. As most of the urban traffic data sources are 

common intersection monitoring probes, did not establish 

intelligent traffic networks, so in this work, we chose second 

- and third-tier Chinese cities with the same time number of

coherent intersection traffic monitoring data. The data

include license plate number, vehicle type, through time,

passage direction, etc. In this work, it is called small-scale

urban road network data. The original example data are

shown in Table 1 below.

Table 1. Part of the original data is excerpted in the 

table for display, including Time, Vehicle ID, 

Crossroad, Direction, Lane and other features. 

Time Vehicle ID Crossroad Direction Lane 

2021-08-12 

12:47:24 
7619 1 North to south 1 

2021-08-12 

12:47:30 
6673 1 East to West 4 

2021-08-12 

12:47:35 
5931 1 West to East 3 

2021-08-12 

12:47:39 
0810 1 West to East 4 

2021-08-12 

12:47:46 
0197 1 South to North 2 

3.2. Graphed Node Construction 

Preprocessing is needed as the collected data can be 

contaminated by equipment failure or other factors. For 

example, traffic data often have a large number of errors 

caused by non-motor vehicle driving. These issues affect the 

analysis of motor vehicle data and reduce the prediction 

accuracy of future data. Thus, we first preprocess the original 

data to ensure the cleanliness. 

First a number of coherent intersections are selected and 

each intersection contains four lanes. Lane one is for left 

turning, lane 2 and 3 for going straight, lane 4 for right turning 

respectively. This can accurately distinguish paths for 

specific vehicles and match the driveway data to the 

corresponding road nodes. According to the above 

connections, we set up road nodes and adjacency matrix, as 

shown in Figure 5. 

Figure 5. The figure shows the method of processing 

the traditional intersection nodes into a graph network 

structure, connecting corresponding road nodes 

according to different travel directions. 

For example, node 0 is connected to node 2 through the 

right-turning lane, so the data of the right-turning lane in node 

0 is matched to node 2; meanwhile, node 4 is also connected 

to node 2 through a straight-going lane, so the data of the 

right-turning lane in node 4 is matched to node 2. After the 

above operations, we will process the processed traffic data 

into traffic flow data at a fixed time interval (the time interval 

available in this work is five minutes), and take traffic flow 

data as the main feature of node prediction. The processed 

example data are shown in Table 2 below. 

Table 2. The table shows a small piece of data after 

processing, which contains the traffic flow of each node 

within 5 minutes. 

Time Node 0 Node 1 Node 2 Node 3 

2021-08-12 

12:35:00-12:40:00 
35 42 26 32 

2021-08-12 

12:40:00-12:45:00 
42 45 52 55 

2021-08-12 

12:45:00-12:50:00 
34 20 23 25 

2021-08-12 

12:50:00-12:55:00 
23 12 27 19 

2021-08-12 

12:55:00-13:00:00 
15 21 19 9 

3.3. Lagged Prediction 

For ensemble algorithms, in order to enrich the time features 

of our experiment, we processed lag on the traffic dataset and 

treated traffic data with a five-minute time delay as a lag 

feature, that is, the traffic flow at the intersection in the past 

time as a feature of model learning and as the time feature of 

predicting the traffic flow data at the intersection at the 

current time. Following that, the XGBoost method model was 

built, the data was put into the model for prediction, and the 

results were obtained. The algorithm flow chart is shown in 

Figure 6. Firstly, the data is read, then the relevant features 

are constructed, and then the data is fed to the XGBoost 

algorithm. Finally, the best prediction results are obtained by 

adjusting the algorithm parameters for evaluation. 
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For the TGCN algorithm, the adjacency matrix of road 

nodes processed previously and corresponding timing flow 

data of road nodes are added to the algorithm. Appropriate 

training set proportion, numwalk and other parameters are 

selected for modelling prediction, and the prediction data of 

the final output nodes are evaluated accordingly. 

Figure 6. The flow chart of prediction using the 

XGBoost algorithm in this work. 

3.4. Evaluation Metrics 

The prediction of traffic data is a typical machine learning 

regression prediction, so we use the three most commonly 

used indicators in regression prediction to measure the 

prediction effect. Including (1) Mean Absolute Error (MAE) 

(2) Root Mean Squared Error (RMSE) (3) R Squared (R2).

Assuming that 𝑦
𝑖
 is the real data and �̂�

𝑖
 is the predicted data,

the definition formula of indicators is as follows:

4. Results

In this work, the traffic data of a small area road network were 

added to the two algorithms, and the experimental results 

were obtained as shown in Table 3. 

Table 3. Comparison of prediction algorithms in the 

case of small-scale road network data. 

Metrics XGBoost TGCN 

MAE 5.2557 2.0711 

RMSE 8.2477 3.4833 

R-squared 0.8241 0.7175 

Through the above table, it can be found that, for the 

prediction of small-range road network flow data, the MAE 

and RMSE of the XGBoost algorithm are 5.2557 and 8.2477, 

generally higher than the MAE and RMSE of the TGCN 

algorithm. However, the R2 of the XGBoost algorithm is 

0.8240. In the TGCN algorithm, R2 is 0.7175. In this respect, 

the XGBoost algorithm has a better prediction effect than the 

TGCN algorithm. Later, in order to explore the reasons for 

this situation, we conducted a further analysis of traffic data. 

Table 4. Comparison of prediction algorithms in the 

case of large-scale road network data. 

Metrics XGBoost TGCN 

MAE 3.2777 2.746 

RMSE 8.6005 4.0696 

R-squared 0.7845 0.8388 

We guess that the traffic data is greatly affected by time, 

and the travel demand of people at night and during working 

hours is much less than that of rush hour, so the value range 

of a large part of the traffic data is between 0 and 10. TGCN 

algorithm has high accuracy in predicting this situation, so 

MAE and RMSE values are small. The XGBoost algorithm 

responds better when the data starts climbing or falling 

rapidly (i.e., when the fluctuation becomes more severe), so 

R2 is larger. At the same time, it also indicates that the traffic 

flow data of a small road network pay more attention to the 

traffic characteristics of its nodes in the past period of time. 

The experimental results of large-scale road network 

speed data are shown in Table 4. It is found that the RMSE 

value of the TGCN algorithm is 4.0696 and the MAE value 

is 2.7460, while the RMSE value of the XGBoost algorithm 

is 8.6005 and the MAE value is 3.2777. TGCN has better 

performance. Meanwhile, the R2 value of TGCN reaches 

0.8388, which is closer to 1 than the R2 value of the XGBoost 

algorithm. Experimental results show that the TGCN 

algorithm has a better prediction effect. 
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Figure 7. Non-neural network prediction. 

The figure shows the actual-vs-predicted plot of the 

prediction results of the XGBoost algorithm under two kinds 

of data. On the whole, the prediction data of the algorithm is 

relatively close to the real data. When the value of the real 

data is low, the prediction result is slightly higher, while when 

the real data is gradually rising, the corresponding prediction 

result is slightly lower. 

5. Analysis

Through the analysis of the experimental results, in a wide 

range of road network data, there are more connections 

between road nodes, and the correlation and heterogeneity 

between road nodes are stronger. The importance of main 

roads is different from that of ordinary roads, so the weight 

of edges between nodes is also different. TGCN algorithm 

can better weight allocation and aggregation of information 

between nodes and neighbouring nodes, while the XGBoost 

algorithm cannot define the connection of nodes and cannot 

aggregate node information well. Therefore, the TGCN 

algorithm can show better performance in this kind of dataset. 

When the road network covered by traffic data is larger, the 

graph neural network algorithm is more suitable for 

prediction. When the road network data covered by traffic 

data has fewer nodes, the integrated learning algorithm based 

on the XGBoost can focus more on the characteristics of 

nodes themselves, and the model is easy to build and the 

prediction speed is fast, so it can show better results. This 

method improves universality and scalability, especially for 

processing and predicting time series data of Internet of 

Things. The data scope of this method includes the data 

provided by a single device and the multi-dimensional data 

between multiple devices, especially the data sharing and 

analysis among multiple devices with physical correlation. It 

can be used in transportation, medicine, home and other 

fields. 

6. Conclusion

There are two main contributions in this work. First, a 

graphed node construction is done for intersection traffic 

data. This adopts a node construction scheme under a small 

traffic network with small data, which can effectively treat 

the road as a graph network structure. Second, two 

representative algorithms and distinctive IoT datasets are 

used to evaluate the prediction effect and explore the 

influence of possible time-varying environments applicable 

to the non-neural network algorithm and neural network 

algorithm for dynamic emergency mobility prediction. 

The results prove that graphed node construction is 

feasible and show that the traffic data from a wide range of 

urban road networks with sufficient nodes and edges gives a 

stronger and clearer correlation between nodes within neural 

networks which better distinguishes weights of edges among 

nodes, thus a better information fusion of adjacent nodes. 

This leads to more accurate neural network predictions than 

non-neural ones but with more computing resources 

requirements. However, for a small range of road nodes, the 

connections among nodes are not very sufficient. As the non-

neural modelling method pays more attention to the 

characteristics of nodes themselves, it shows better 

predictions than neural ones. The results give a guide that the 

quality and quantity of IoT data characteristics should be 

considered together with available computing resources on 

edges like ambulances or rode-side equipment to decide on 

processing methods. 

7. Discussion

There are some limitations should be considered. First, the 

targeted data should be enriched as other related information 

may increase the prediction. Second, data cleaning and data 

characterizing can be more automatic. Third, parameters and 

network struct can be optimized in general. 
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