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Abstract

Various driver’s vigilance estimation techniques currently exist in the literature. But none of them estimates the driver’s vigilance in the
complexity domain. In this research, we propose the recently introduced multivariate multiscale entropy method to fill the above
mentioned research gap. We apply this technique to differential entropy features of electroencephalogram and electrooculogram
signals to detect driver’s vigilance. Also, we employ it to the percentage of eye closure values to analyse the driver’s cognitive states
(awake, tired and drowsy) in the complexity domain. The contribution of this research is to efficiently classify the driver’s
cognitive states using a new feature based on multivariate multiscale entropy. The experimental complexity profile curves show

the statistically significant differences (p < 0.01) among brain electroencephalogram, forehead electroencephalogram and
electrooculogram signals. Moreover, the difference in the multivariate sample entropy across all scales in awake (1.0828 + 0.4664),

tired (0.7841 = 0.3183) and drowsy (0.2938 = 0.1664) states are statistically significant (p <0.01). Also, the support vector

machine, a machine learning technique, discriminates the driver’s cognitive states with a promising classification accuracy of 76.2%.
Therefore, the complexity profile of driver’s cognitive states could be an indicator for vigilance estimation.
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1. Introduction known as Human-Computer Interaction (HCI) [1]. The
purpose of HCI is to provide information for computers
by converting brain activity into control signals so that

the machine can respond simultaneously [2]. If a brain-

Humans possess different mental states through
which they interact with their surrounding complex

environments. Vigilance, which means the ability to
maintain more careful attention for the monotonous
task, especially to notice possible danger, is one of
the mental states of humans. Unfortunately, machines
are incapable of interacting with surroundings and
generally interact with users through a process
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computer interaction system works effectively, it could
assess the high vigilance of the human brain.

Accidents that occur due to the loss of vigilance by
drivers are common phenomena for some occupations
such as driving buses, trucks, high-speed trains and
air planes[1]. In these circumstances, high vigilance
analysis is necessary to prevent the occurrence of
drowsiness, sleepiness or fatigue by continuously
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observing the driver’s mental state [3]. Hence, we can
use the recently introduced multivariate multiscale
entropy (MMSE) method for analyzing high vigilance.

There are various vigilance estimation techniques
based on the video, multi-sensor and physiological
signals [4, 5] in the literature. As the implementation
of video and multi-sensor based approaches is arduous,
researchers consider several physiological signal based
techniques [3, 6-10] for vigilance estimation. Moreover,
physiological signal based methods are considered as
most fruitful, effective, and promising for vigilance
estimation. Also, most of the physiological signals are
an indicator of the transition between wakefulness to
sleepiness. [11, 12].

In addition to the above mentioned methods,
different entropy approaches [13, 14] have already been
studied to determine the alertness of humans. However,
all of these methods have been used in the time domain
instead of the complexity domain. Therefore, we have
introduced the MMSE method in this research and
applied it to a dataset [1] to characterize the driver’s
vigilance in the complexity domain.

The organization of this paper is as follows: In sec-
tion 2, we describe in detail the dataset along with
data processing and the methods. The methods include
multivariate multiscale entropy and multivariate sam-
ple entropy algorithm. We also mention some param-
eters and information to determine the complexity of
multivariate time series. In section 3, we discuss the
results along with corresponding statistical analysis. We
describe the discussion and conclusion in sections 4 and
5 respectively.

2. Materials and Methods
2.1. Dataset

The data used in this research was collected from [1].
The EEG signals (CP1, CPZ, CP2, P1,PZ, P2,PO3,POZ,
PO4, 01, OZ, and O2) from posterior site and the EEG
signals (FT7, FT8, T7, T8, TP7, and TP8) from temporal
site were recorded simultaneously using Neuroscan
system with a 1000 Hz sampling rate according to the
international 10-20 system. The GND electrode was
located posterior to FPz and the REF electrode was
located between Cz and CPz. At the same time, forehead
EOG signals were recorded using Neuroscan system
with a 1000 Hz sampling rate. The downsampling rate
of EEG signals was 200 Hz to reduce computational
complexity.

The EEG signals were preprocessed with a band-
pass filter between 1 Hz and 75 Hz to reduce noise
and artifacts. Short-time Fourier transform with a 8 s
non-overlapping Hanning window was used to extract
five EEG frequency bands: delta(1-4 Hz), theta(4-8 Hz),
alpha(8-14 Hz), beta(14-31 Hz) and gamma(31-50 Hz).
For each frequency band, the differential entropy (DE)
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features [1] (efficient EEG features) were extracted. DE
features were also extracted from the total frequency
band (1-50 Hz) with a 2 Hz frequency resolution.

The five frequency bands might not be able to
capture detailed vigilance dynamics. Therefore, the
spectral features with higher frequency resolution
were also extracted. For avoiding over-fitting with
too high feature dimensionality, choosing a frequency
resolution of 2 Hz was a trade-off. As DE proposed
in [15] showed superior performance for vigilance
estimation compared to conventional power spectral
density features, we used it for vigilance estimation.
The data processing steps mentioned above are shown
in Figure 1. Also, a detailed description of the dataset
will be found in [1].

2.2. Multivariate Multiscale Entropy

The MMSE evaluates multivariate sample entropy over
different time scales and deals with the different
embedding dimensions, time lags, and amplitude
ranges of data channels in a rigorous and unified way.
The MMSE [16, 17] is performed through the following
steps:

Brain EEG Data (from
temporal and posterior
sites)

L ]
1

Forehead EEG and
EOG Data

Pre-processing

I_1

Feature Extraction

! 1
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Figure 1. Data processing
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(i) To define temporal scales of increasing length,
apply the coarse-graining process to the c-
variate time series {xz,i}f\il,l =1,2,..,¢c, where N
denotes the number of samples in each variate
(channel). For a scale factor &, the elements of
the multivariate coarse-grained time series are
calculated as:

k&

1
we=< ) Xy (1)

i=(k=1)&+1

O

where 1 <k < %

(ii) To plot multivariate sample entropy (MSg,)
as a function of the scale factor &, calculate
multivariate sample entropy for each coarse-

grained multivariate ul‘gk.

2.3. Multivariate Sample Entropy Calculation

The MSg, is the prerequisite for performing MMSE
analysis over a number of data channels. For a c-

N

variate coarse-grained time series {Ulék}lle’ 1=1,2,..c
the MSg, [16, 17] is performed through the following
steps:

(i) Form (N’—-n) composite delay vectors U, (i) €
R™(m =Y ;_, m;), where i=1,2,..,N'—n, N' =
% and n = max{M} x max{t}.

(ii) To determine the distance between any two
composite delay vectors U,(i) and U,(j),
define the maximum norm as d[U,(i), U,(j)] =

(iii) Estimate the frequency of occurrence, A}"(r)=
ﬁCi’ and define a global quantity, A™(r) =
o LN AT (r), where d[U,, (i), Uy (j)] < 7,
j#1i, r denotes a threshold value and C;
represents the number of calculated instances.

(iv) Extend the dimension of multivariate delay vector
U, (i) from m; to m;+1 for a specific random
variable I , remaining the dimension of the other
variables unchanged. As a result, a total of ¢ x
(N’ — n) vectors U,,, (i) in R"*! are obtained.

(v) Calculate the frequency of occurrence A;”*l(r) =

in and define a global quantity A™*!

(r) = mzl?g’_n)AT”(r), where Q; denotes
the number of calculated vectors for a given

Upns1(i), such that d[U,,(i), U,,(j)] < r,j = i.

(vi) Finally, for a tolerance level r, Multivariate sam-
ple entropy is calculated by MSg,(M,t,r,N’) =
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A"‘“(r) . .
_ln[AT(r)]’ where M Sg,, denotes the multivariate
sample entropy, M=[my, m,, ..., m.] is the embed-
ding vector, and T =[t{, Ty, ..., T.] represents time

lag vector.

2.4. Selection of Parameter values

While estimating multivariate sample entropy, we
need to chose several parameters by introducing their
constraints. For example, each channel of multivariate
data exhibits different embedding parameters m; and 1;
. Besides, the threshold parameter r needs to be set some
percentage of the standard deviation of the normalized
time series. In this research, we have chosen the value
of r=0.4 x (standard deviation of the normalized time
series) with trial and error for better separation among
MMSE curves.

2.5. Complexity Analysis of multivariate time series

From the MMSE plots (multivariate sample entropy
as a function of the scale factor), the complexity of
multivariate time series [16, 17] can be inferred as
follows:

(i) If the sample entropy values of a multivariate
time series are higher than those of the other
time series for the majority of the scale factors,
the multivariate time series will be more complex
than another one.

(ii) If the signal in hand only contains useful
information at the smallest scale, then the
multivariate entropy values of the signal decrease
monotonically for the scale factors.

3. Results

3.1. EEG (Brain and Forehead) and EOG Based
Vigilance Estimation

This subsection analyses the temporal (FT7, FT8, T7
and T8), posterior (POZ, PO4, O1 and OZ), forehead, a
fusion of temporal and posterior (T7, T8, PO3 and POZ)
EEG and EOG signals in terms of complexity. To analyse
these signals using MMSE, we had to choose the value of
some parameters ([, m,, m3, my]= embedding vector,
[T1, Ty, T3, T4]= time lag vector) as my = 1,my = 1,m3 =
1l,my=1,11=1L,1=1,13=1,14 = 1.

From figure 2(a), 2(b), 2(c) and 2(d), it is noticeable
that the multivariate sample entropy values of forehead
EEG signals are higher compared to the temporal,
posterior, brain (fusion of temporal and posterior) EEG
and EOG signals for the majority of the scale factors.
As the multivariate sample entropy values are higher
for the majority of the scale factors, the forehead EEG
signals contain correlations across multiple time scales
and are, therefore, more complex compared to the

EAI Endorsed Transactions on
Pervasive Health and Technology
Volume 9



Kawser Ahammed and Mosabber Uddin Ahmed

S R

Temporal EEG signals with 2 Hz frequency
resolution
Posterior EEG signals with 2 Hz frequency
resolution

+Forehead EEG signals with 2 Hz frequency
resolution

o

+ Temporal EEG signals with five frequency

bands

+Posterior EEG signals with five frequency
bands

+ Forehead EEG signals with five frequency

bands %

10 15 2
Scale factor

(d)

4+ Brain EEG signals (fusion of posterior and
temporal) with five frequency bands
Forehead EEG signals with five frequency

+ bands

—4-E0G signals

—_

o
<)
o

~

o

—_

o=
o

o

o

Multivariate sample entropy
Multivariate sample entropy

o
o

[
S

10 15
Scale factor

(c)

+Brain EEG signals (fusion of posterior and
temporal) with 2 Hz frequency resolution
Forehead EEG signals with 2 Hz frequency

+resolution

—§-E0G signals

o
o
o
o

1= 1=
= o -
—_ ) w

Multivariate sample entropy
o o>
Multivariate sample entropy

o
o

10 15 2
Scale factor

10 15 2
Scale factor

o
(3]
o
o

Figure 2. MMSE analysis (a) For temporal, posterior and
forehead EEG time series with 2 Hz frequency resolution (b)
For temporal, posterior and forehead EEG time series with
five frequency bands (c) For fusion of temporal-posterior EEG,
forehead EEG with 2 Hz frequency resolution and EOG time
series (d) For fusion of temporal-posterior EEG, forehead EEG
with five frequency bands and EOG time series, each with 885
sample numbers. The points on the curves represent mean value
and error bars represent the standard deviation.

temporal, posterior, brain EEG (fusion of temporal and
posterior) and EOG signals.

3.2. Statistical Analysis of EEG (Brain and
Forehead) and EOG Based Vigilance Estimation

This subsection discusses the statistical analysis of
EEG (Brain and Forehead) and EOG data. Firstly,
we apply the One-way ANOVA (analysis of variance)
test to EEG data to find the statistically significant
difference among the forehead, temporal and posterior
EEG signals. We find statistically significant difference
among the above mentioned signals because of the
ANOVA test results, F = 35.03 > F,;; = 3.24, effective
size=0.64, p < 0.01 (null hypothesis rejection) at 2 Hz
frequency resolution. We also find F = 32.21 > F,;; =
3.24, effective size=0.62, p < 0.01 (null hypothesis
rejection) at 5 Hz frequency resolution.

Secondly, we again apply the One-way ANOVA
test to forehead EEG, Brain EEG (fusion of temporal
and posterior) and EOG data. Similarly, we find the
statistically significant difference among the above
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mentioned signals because of F = 19.09 > F.,;; = 3.16,
effective size=0.40, p < 0.01 (null hypothesis rejection)
at 2Hz frequency resolution and F =54.91 > F,;; =
3.20, effective size=0.42, p < 0.01 (null hypothesis
rejection) at 5 Hz frequency resolution.

3.3. Vigilance Estimation Based on Cognitive States
(Awake, Tired and Drowsy)

In this subsection, we analyse the driver’s cognitive
states (awake, tired and drowsy) in the complexity
domain. According to the percentage of eye closure
(PERCLOS) index [1] shown in Table 1, we use two
threshold values (0.35 and 0.7) to categorize the EEG
data into awake, tired and drowsy states. To analyse
cognitive states using MMSE, we choose the value
of embedding vectors ([my, m;]) and time lag vectors
([t1, ©])asmy =1, my=1and 1 = 1,1, = 1.

Figure 3 shows that the multivariate sample entropy
values of awake state are higher compared to tired and
drowsy state for the majority of the scale factor. As the
multivariate sample entropy values of awake state are
higher compared to tired and drowsy state, the awake
state contains correlations across multiple time scales
and is, therefore, more complex compared to tired and

Table 1. Splitting of EEG data into three classes (awake, tired
and drowsy)

PERCLOS label Cognitive States

0< PERCLOS label <0.35 Awake
0.35< PERCLOS label <0.75 Tired
0.75< PERCLOS label <1 Drowsy
2 ‘
——Drowsy State
—— Awake State
—4-Tired State

'y
(3,
T

Multivariate sample entropy
o
o -

0 1 1 1
0 1 2

Scale factor

w
B

Figure 3. MMSE analysis of awake, tired and drowsy state.
The points on the curves represent mean value and error bars
represent the standard deviation.
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drowsy state. This fact implies that a driver could show
higher vigilance in the awake state compared to tired
and drowsy state.

3.4. Statistical Analysis of Cognitive States

In this subsection, we analyse the cognitive states using
statistical tests. At first, we apply the ANOVA test to
PERCLOS values to investigate whether the cognitive
states are statistically significantly different or not. We
find that cognitive states are statistically significantly
different because of the ANOVA test results, F =
121.18 > F.,;; = 3.26, effective size=0.87, and p < 0.01
(null hypothesis rejection). Also, we apply Student’s t-
test following multiple comparisons to find which two
groups are statistically significantly different. We again
find that the awake and tired states are statistically
significantly different because of the t-test results, t =
5.48 > t.,;; = 2.11. The tired and the drowsy states are
statistically significantly different because of the, t =
8.37 >ty = 2.09. Also, the awake and drowsy states
are statistically significantly different due to t = 20.6 >
topiy = 2.07.

Although the MMSE method efficiently classifies the
cognitive states in the complexity domain (Fig.3), we
justify the classification ability of the MMSE method
using SVM. We use multivariate sample entropy values
of cognitive states as the attributes of SVM. We use
5-fold cross-validation to avoid biased classification
and classification learner APP of MATLAB R2016b to
classify cognitive states using SVM. We use SVM as it
provides a promising classification accuracy compared
to other classifiers. The confusion matrix of SVM is
shown in Table 2 for the cognitive states. From the
confusion matrix, we can say that the SVM has classified
the cognitive states with a promising classification
accuracy of 76.2%. Moreover, the awake state has been
identified with a sensitivity of 57.1% and a specificity of
92.9%. Similarly, the drowsy state has been recognized
with a sensitivity of 100% and a specificity of 85.7%.
The tired state is detected with 71.43% sensitivity
and 85.7% specificity. Besides, we find a statistically
significant difference (p <0.01) in cognitive states using
One way ANOVA test.

Table 2. Confusion matrix of SVM classifier output

True/Predicted Awake Drowsy Tired
Awake 4 1 2
Drowsy 0 7 0
Tired 1 1 5

4. Discussion

In this study, we have developed and applied MMSE
method to EEG, EOG and eye movement data for
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vigilance estimation. Although different types of
research studies [18, 19] have already been performed
for on-road real driving tests, many other scenarios,
such as actor’s performance in the theatre, require
vigilance estimation. In future, we will apply our
method to such kinds of real world scenarios to explore
further application areas of MMSE. Also, the data used
in this study were acquired in the context of driving
rather monotonous a priori (driving on a highway).
Hence, the MMSE method could be limited to this study
context and could be less relevant in driving contexts of
higher mental load (e.g. driving in a city).

The experimental results demonstrate that our
approach can achieve comparable results with the con-
ventional methods [20, 21]. The approaches proposed
in [20, 21] detected the vigilance of drivers with an
accuracy of 83.6% and 88.6% respectively. In this study,
vigilance estimation has been performed without con-
sidering any neurofeedback. In future, we will focus on
neurofeedback in a high vigilance task. Also, we could
explore different optimization algorithms as proposed
in [22, 23] to optimize the support vector machine for
better classification accuracy.

In this research, we propose a novel method based
on complexity science to characterize traditional EEG,
forehead EEG, and EOG. The forehead EEG signals
provide higher complexity compared to others in the
complexity domain. Besides, the awake state shows
higher complexity compared to tired and drowsy states
in the complexity domain. It is also intuitive that
cognitive loads are higher in the awake state compared
to tired or drowsy states. As the signals in tired or
drowsy states become more regular and thus, have
less information, they show lower complexity values.
In future, we could use these complexity features for
building a vigilance estimation system.

5. Conclusion

In this paper, we introduce complexity profile based
on multivariate multiscale entropy for characterizing
driver’s cognitive states (awake, tired and drowsy) along
with brain EEG, forehead EEG and EOG signals. The
MMSE analysis curves clearly show that forehead EEG
signals reveal higher complexity compared to brain
EEG and EOG signals. Moreover, the complexity profile
curves along with statistical tests (t-test and one-way
ANOVA test) demonstrate that the multivariate sample
entropy values of awake state are significantly different
from those of tired and drowsy state. Therefore, the
MMSE method could be utilized practically to monitor
continuous attention.
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