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Abstract 

The precise identification of FLAIR abnormalities in brain MR images is essential for diagnosing and managing lower-
grade gliomas, segmentation continues to be a difficult task. In this research, we develop an exhaustive strategy that 
integrates advanced deep learning models such as DeepLabv3, U-Net, DenseNet121-Unet, ResNet50, Attention U-Net and 
EfficientNet to effectively segment FLAIR abnormalities in a dataset comprising 110 lower-grade glioma patients. The 
cancer Imaging achieve (TCIA), includes genomic cluster data and patient-specific details. Our methodology tackles the 
multi-class data imbalanced by employing a customized loss function, which merges Categorical Cross Entropy (CCE) 
WCE and WMDL functions are used to calculate loss, allowing the network to accurately segment smaller tumor regions. 
By performing dense network training on 3D picture patches, the suggested technique improves detection of border region 
artifacts and efficiently manages storage and system limited resources. We evaluate our strategy’s effectiveness on the 
presented dataset, emphasizing its potential for assisting correct diagnosis and individualized treatment strategies for 
patients with lower-grade gliomas. 
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1. Introduction

Brain tumors result from irregular growth patterns of brain 
cells and can be categorized into primary or metastatic 
carcinomas. Glial cells such as astrocytes, ependymal cells, 
and oligodendrocytes give rise to primary brain tumors and 
may be non-cancerous or benevolent. Secondary brain 
tumors, on the other hand, arise from other regions of the 
body, such as the colon or lungs, and are frequently 
malignant, spreading swiftly through the circulatory system. 
The WHO classifies Gliomas are classified into four types, 
with lower-grade gliomas (LGGs) corresponding to WHO 

grades I and II. LGGs are characterized by slower growth and 
less aggressive behavior compared to high-grade gliomas 
(HGGs). The exact causes of brain tumors remain elusive, 
but genetic mutations, exposure to ionizing radiation, and 
altered cell growth regulation are suspected contributors. 
Brain tumors represent around 2% of all cancer cases, but 
they account for a disproportionate number of cancer-related 
deaths. Every year, around 24,000 new cases of the 
fundamental malignant brain tumors are detected in the 
United States alone, with a five-year survival rate of around 
36% for all brain tumor types. The impact of LGGs and 
HGGs on patients varies depending on the tumor's location, 
size, and growth rate. LGGs may initially cause relatively 
mild symptoms such as headaches, seizures, or cognitive 
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changes but can eventually progress to HGGs if left 
untreated. HGGs, on the other hand, can cause severe 
symptoms and neurological deficits, affecting a person's 
ability to think, speak, and move. Additionally, HGGs are 
more challenging to treat due to their aggressive nature and 
resistance to conventional therapies. Consequently, brain 
tumor diagnosis and classification are crucial for generating 
appropriate treatment options and optimizing patient 
outcomes. Diagnosing brain tumors involves evaluating a 
patient's clinical history, symptoms, and various imaging 
procedures, CT scans, angiograms, and MRI are among 
examples. MRI is the preferred imaging modality for 
detecting gliomas due to its high-resolution capabilities and 
ability to provide detailed information about the tumor's size, 
location, and heterogeneity. FLAIR (fluid-attenuated 
inversion recovery) is an MRI sequence often used in glioma 
detection for its capacity to suppress cerebrospinal fluid 
signals and enhance the visibility of lesions. Manual 
segmentation of tumor areas in MRI scans is the current 
clinical practice standard. This method, however, is time-
consuming and can be vulnerable to inter-observer 
variability. DL methods' quick improvements provide a 
chance to develop automated and accurate methods for brain 
tumor segmentation, localization, and volumetric analysis. In 
this research, we suggest DL-assisted Techniques for 
segmentation of whole tumors in brain MR images with a 
focus on lower-grade gliomas. The suggested approach 
integrates cutting-edge designs, such as DeepLabV, U-Net, 
DenseNet121_UNet, ResNet50, Attention U-Net, and 
EfficientNet. Our significant contributions are as follows: 
The creation of a sophisticated framework for accurately 
locating and segmenting regions that are relevant in brain 
MR images, classifying each 3D pixel/voxel as background 
or whole tumor. Comparative analysis of various DL 
algorithms to identify the most suitable model for lower-
grade glioma segmentation. Addressing the limitations of 
existing methods through advanced techniques including 
patch-based classification, dense data enhancement, and a 
mix of weighted multi-class dice loss and cross entropy loss 
formulation. 

1.1 Epidemiology 

The field of epidemiology examines the distribution, 
frequency, and determinants of health conditions in specific 
populations. When it comes to LGGs and HGGs, 
epidemiological research is focused on understanding the 
prevalence, incidence, risk factors, and potential origins of 
these brain tumors. Gaining insights into the epidemiology 
of LGGs and HGGs is essential for devising prevention 
tactics, early detection methods, and tailored treatments that 
may help alleviate the impact of these diseases. LGGs and 
HGGs are connected through their source and progression. 
Both forms of gliomas arise from glial cells in the brain, and 
untreated LGGs can progress to HGGs. However, LGGs and 
HGGs exhibit differences in their aggressiveness, growth 

speed, and clinical outcomes, with HGGs generally yielding 
a worse prognosis. 

The precise causes of LGGs and HGGs remain unclear. 
Nevertheless, epidemiological studies have pinpointed 
several risk factors associated with these brain tumors. Some 
of these factors include: 

● Genetic factors: Inherited genetic conditions, such as
neurofibromatosis, Li-Fraumeni syndrome, and
tuberous sclerosis, may increase the likelihood of
glioma development.

● Exposure to Ionizing Radiation: High levels of
ionizing radiation exposure, which may result from
radiation therapy for other cancers or work-related
exposure, are correlated with a heightened glioma risk.

● Age: Glioma incidence typically rises with age, with
LGGs more frequently diagnosed in younger adults and
HGGs more common among older individuals.

● Sex: Gliomas are slightly more prevalent in males than
females, with the gap more pronounced for HGGs.

● Immune System Factors: Some research suggests that
individuals with a history of allergies or autoimmune
diseases might have a lower glioma risk, implying that
the immune system could play a role in glioma
development.

Despite identifying these risk factors, most glioma cases 
cannot be traced to specific causes. Ongoing epidemiological 
research aims to discover additional risk factors and potential 
causal links to enhance our knowledge of LGGs and HGGs, 
which could ultimately lead to improved prevention and 
treatment approaches. 

1.2 Diagnosis 

In order to identify LGGs and HGGs, a systematic diagnostic 
process is undertaken. This involves analyzing a patient's 
medical background, conducting a thorough physical 
examination, and performing various diagnostic tests. The 
aim of this process is to confirm a brain tumor's existence, 
establish its grade, and develop an appropriate treatment 
strategy. The following steps are typically taken for an 
accurate diagnosis: 

■ Evaluation of Medical History and Physical
Examination: The doctor initiates the diagnostic
process by reviewing the patient's medical history,
discussing symptoms, and carrying out a physical
examination. During this assessment, neurological
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functions such as vision, hearing, balance, coordination, 
strength, and reflexes may be evaluated. 

 
■ Imaging Studies: When a brain tumor is suspected, 

imaging tests become crucial for determining the 
tumor's size, location, and features. Common imaging 
techniques include: 

 
a) MRI: MRI scans generate detailed brain images and are 

instrumental in detecting gliomas. These scans may 
involve specific sequences like T1-weighted, T2-
weighted, and fluid-attenuated inversion recovery 
(FLAIR) imaging techniques are used to improve tumor 
visualization. 

 
b) Computed Tomography (CT) Scan: Although not as 

detailed as MRIs, CT scans may be used when MRI is 
not suitable or accessible. CT scans can also identify 
calcification, bleeding, or hydrocephalus related to 
brain tumors. 

 
c) PET Scan: PET scans can help distinguish tumor 

grades, assess tumor metabolism, or evaluate the 
efficacy of treatments. 

 
■ Biopsy: A biopsy entails extracting a small tissue 

sample from the tumor for microscopic examination. A 
neuropathologist examines the sample to classify the 
tumor type and grade, which is essential for devising a 
treatment plan. Biopsies can be conducted through: 

 
a) Stereotactic Needle Biopsy: A minimally invasive 

method that uses a needle guided by imaging and a 
frame or frameless system to reach the tumor. 

 
b) Open Biopsy: Executed during a craniotomy, where 

part of the skull is removed to access the tumor. This 
approach is generally employed when surgical 
resection is also planned. 

 
 Molecular testing: Molecular testing offers additional 

insight into the tumor's genetic and molecular 
properties, which can aid in determining treatment 
options or predicting prognosis. 

 
After confirming a glioma diagnosis, the medical team 
considers several factors, such as tumor grade, location, size, 
and the patient's overall health, to create a personalized 
treatment strategy. Contemporary imaging methods, like 
MRS and PET imaging, hold promise for enhancing 
diagnostic capabilities. Nevertheless, the current gold 
standard for diagnosing and grading LGGs continues to be 
the histopathological examination of tissue samples [Fig.1]. 
 
 
 

 
 
          Figure 1. Tumor Location and Brain MRI Image 

2. Related Works 

 
Over the past ten years, there has been a substantial 
advancement in the development of image processing 
algorithms. A Least Squares Support Vector Machine (LS-
SVM) method for segmenting images based on colour and 
texture was demonstrated by Yang et al. [1]. U-Net, a well-
liked Convolutional Neural Network (CNN) model, was 
used by Kumar et al. [2] and Khorasani et al. [3] for brain 
tumour identification and segmentation in magnetic 
resonance imaging (MRI). Both the dual feature extraction 
method and the integration of diffusion-weighted pictures 
improved the model.In the years that followed, researchers 
kept investigating and enhancing the U-Net model's 
application. A clever method for glioma segmentation in 
MRIs was put out by Sohail et al. [4] utilising a modified U-
Net model.  
 
A twofold attention U-Net was created by Li and Ren [5], 
improving the segmentation accuracy. An ACU-Net network 
was suggested by Tan et al. [6] for multimodal MRI brain 
tumour segmentation. The use of U-Net was further 
expanded by Kihira et al. [7] and Dong et al. [8] for the 
automatic detection of brain tumours and glioma, 
respectively. Ronneberger et al. introduced the U-Net 
architecture for biological image segmentation [9]. Içek et al. 
[10] then updated the architecture for dense volumetric 
segmentation. Artificial neural networks were used by 
Isensee et al. [11] to create an automated brain extraction 
approach for multisequence MRI. Kamnitsas et al. [12] 
developed an effective multi-scale 3D CNN with fully 
connected CRF for precise brain lesion segmentation in the 
wake of this study. Using deep neural networks, Havaei et al. 
[13] made additional contributions to the field of brain 
tumour segmentation. By adding expert segmentation labels, 
radiomic characteristics, and brain tumour segmentation 
using CNNs in MRI images, Bakas et al. [14] and Pereira et 
al. [15] concentrated on improving the Cancer Genome Atlas 
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glioma MRI collections. Menze et al.'s creation of the 
Multimodal Brain Tumour Image Segmentation Benchmark 
(BRATS) [16] made a contribution to the area. 
 
Zhou et al. [17] introduced UNet++, a nested U-Net 
architecture for medical image segmentation. Deep 
Convolutional Neural Networks (DCNNs) were used for 
ImageNet classification by Krizhevsky et al. [18]. LeCun et 
al. [19] reviewed deep residual learning for image 
recognition by Kaiming He et al. [21], which was followed 
byDL for large-scale picture recognition by Simonyan and 
Zisserman [20].Szegedy et al.'s [22] proposal for an 
architecture that uses convolutions to get deeper. Batch 
normalisation was introduced by Ioffe and Szegedy [23] to 
quicken deep network training by minimising internal 
covariate shift. The selection of the ideal loss function for 
multi-label emotion classification was the main emphasis of 
Hurtado Oliver et al.'s study [24]. Hinton et al. [25] suggested 
that feature detector co-adaptation might be avoided to 
enhance neural networks. Kingma and Ba [26] introduced 
Adam, a stochastic optimisation technique. Dice proposed 
metrics of the degree of ecological interaction between 
species in his works [27] and [30]. A better N3 Bias 
Correction technique, N4ITK, was created by Tustison et al. 
[28]. Based on a spatial overlap measure, Zou et al. [29] 
produced statistical validation of image segmentation 
quality. With a focus on brain tumour identification and 
segmentation in MRIs, this extensive collection of references 
offers a thorough understanding of the developments in 
image processing and segmentation techniques. U-Net and 
other deep learning models have seen substantial 
improvement and change throughout their growth. 
 

3. Description of the Dataset 

This study's dataset includes brain MR images as well as 
individually segmented FLAIR abnormality masks. These 
images have been obtained from TCIA and include data from 
150 patients who are part of TCGA lower-grade glioma 
collection. Each of these patients has FLAIR sequences and 
available genomic cluster data. The data.csv file 
accompanying the dataset provides essential information on 
tumor genomic clusters and patient-specific data. This 
dataset serves as a valuable resource for the research paper, 
allowing for a comprehensive analysis of lower-grade glioma 
cases and their association with radiogenomic factors. 

3.1 Image Resizing 

 
Image resizing is an essential preprocessing step in which the 
original MR images and their corresponding FLAIR 
abnormality segmentation masks are adjusted to have the 
same dimensions. This process ensures that all images in the 
dataset have the same resolution, allowing for consistent 
processing and analysis throughout the study.Resizing the 

images involves selecting a target dimension (width and 
height) and applying a resizing algorithm to change the size 
of each image accordingly. Common algorithms for resizing 
images include nearest-neighbor interpolation, bilinear 
interpolation, and bicubic interpolation. These techniques 
operate by predicting the intensity measurements for pixels 
in the scaled image based on the values of the pixels of the 
original image. In terms of medical imaging, it is crucial to 
maintain the aspect ratio during resizing to preserve the 
original spatial relationships between anatomical structures. 
Depending on the dataset, isotropic resizing can be applied, 
where the same scaling factor is used for both width and 
height, ensuring that the aspect ratio is preserved. By resizing 
all images in the dataset to a consistent dimension, the 
research paper ensures uniformity across all images, 
streamlining the processing and analysis steps and allowing 
for a more accurate assessment of the categorization model's 
effectiveness. 

3.2 Data Normalization 

 
Data normalization is a crucial preprocessing step in medical 
imaging, addressing variations in MR image intensity values 
caused by differences in devices, acquisition methods, or 
patient factors. It scales intensity values to a standard range, 
such as 0 to 1 or a distribution known as a Gaussian with a 
mean of zero and a standard deviation of one is used thus 
reducing disparities between images and facilitating more 
efficient learning for the segmentation model. Common 
normalization techniques include min-max scaling, standard 
score scaling, and percentile-driven scaling. By normalizing 
the data set's intensity values, the research paper ensures the 
segmentation model's improved performance and enhanced 
accuracy of the results. 
 

3.3 Data Augmentation 

For the dataset used in this research, to boost the diversity 
and amount of the accessible data, data augmentation 
techniques were used. Since the dataset consists of brain MR 
images, the augmentation methods were carefully chosen to 
preserve the essential features and characteristics of the 
images while generating new samples. Some of the applied 
transformations included rotations, translations, scaling, 
flips, and intensity changes. By incorporating these 
augmentations, the model could learn more robust features 
from the dataset and become more invariant to variations in 
the provided data. Consequences Data augmentation reduced 
over fitting and enhanced model generalization, resulting in 
better and dependable segmentation results for the individual 
brain MR images. 
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3.4 Splitting the Dataset 

 
In this research, the dataset of brain MR images was divided 
into three distinct sets to effectively train, validate, and 
evaluate the performance of the segmentation model. The 
dataset was divided into three parts: training, verification, 
and testing. The model for segmentation was trained using a 
training set that contained 70% of the data that was 
accessible. The validation test set, which included 15% of the 
data, was used to track the model's results during training, 
change hyperparameters, and confirm that the model was not 
overfitting. Finally, the remaining fifteen percent of the 
dataset was utilised to evaluate the efficacy of the model on 
previously unknown information, giving an unbiased review 
of the segmentation algorithm's effectiveness. 
 

Feature Encoding 
 
For this study, feature encoding was carried out to effectively 
convert the brain MR images and related segmentation masks 
into a numerical format that the segmentation model could 
process. After preprocessing, resizing, and normalizing the 
MR images to ensure consistent data representation, the pixel 
values of the images were transformed into numerical arrays. 
This step allowed the deep learning model to work with the 
data effectively. Similarly, the segmentation masks were 
translated into a numerical format, with individual pixel 
values denoting the existence or absence of a tumor in the 
image. By doing so, the model was able to extract meaningful 
patterns from the dataset, ultimately enhancing its capacity 
to accurately identify and segment tumors in brain MR 
images. 
 

Feature Selection 
 
In the context of this study, feature selection is an essential 
step to ensure that the most informative and relevant features 
from the brain MR images are utilized by the segmentation 
model. By focusing on the most important characteristics of 
the images, the model's performance can be improved, and 
the risk of overfitting can be reduced. To achieve effective 
feature selection, various techniques can be employed, such 
as statistical methods, filter methods, wrapper methods, or 
embedded methods. These techniques analyze the 
relationship between the features and the target variable (i.e., 
the segmentation masks) to determine which features 
contribute the most to the model's performance. For this 
dataset, an appropriate feature selection method would be 
applied to the pre-processed brain MR images, aiming to 
identify the most significant features that can aid in accurate 
tumor segmentation. By selecting the most relevant features, 
the segmentation model's efficiency and accuracy can be 
maximized, ultimately leading to improved results in the 
identification and segmentation of LGGs in brain MR 
images. 

4. Image Masking 

 
Image masking is an important preprocessing step in the 
analysis of brain MR images for tumor segmentation. It 
involves the process of isolating the region of interest (ROI) 
in the image while hiding or removing the irrelevant areas. 
In this study, image masking is applied to the brain MR 
images to focus on the tumor regions and exclude the 
surrounding non-tumor tissues, thereby improving the 
model's performance in detecting and segmenting the LGGs. 
By applying a mask to the brain MR images, the 
segmentation model can concentrate on the tumor regions, 
reducing the amount of noise and irrelevant information that 
might negatively impact its performance. In this research, an 
image masking technique will be employed to isolate the 
tumor regions in the dataset, and a visual representation of 
the masked images will be provided to demonstrate the 
effectiveness of this preprocessing step. By using image 
masking in conjunction with other preprocessing techniques, 
the model's efficiency and accuracy can be further enhanced, 
ultimately leading to improved results in the identification 
and segmentation of LGGs in brain MR images[Fig.2]. 
 
 
 

 
 
Figure 2. Image Masking 

 
4.1 U-Net 

 
U-Net is a specialized CNN architecture created for 
biomedical image segmentation problems. The U-Net 
architecture is made up of an encoder-decoder arrangement 
with connections that skip, which enable the efficient 
learning of high-resolution features and the precise 
localization of target regions, such as tumors in brain MR 
images. In the context of the provided dataset, U-Net's 
performance was not optimal, with a loss of 0.6900 and a 
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dice coefficient of 0.3504. This may be due to the inherent 
challenges in segmenting lower-grade gliomas or the need 
for model fine-tuning. Nevertheless, U-Net's architecture has 
proven successful in various medical image segmentation 
tasks, and further optimization or adaptation may lead to 
improved results for lower-grade glioma segmentation in 
brain MR images. 

4.2 DeepLabV (versions 1, 2 and 3) 

 
DeepLabV is a series of CNN architectures designed for 
tasks requiring semantic picture segmentation. The 
DeepLabV models employ atrous (dilated) convolutions. 
This allows the models to capture multi-scale contextual 
data as well as precisely identify regions that are intriguing 
in input photos such as tumor regions in brain MR images 
[Fig.3] 
 
❖ DeepLabV1: The first version of the DeepLabV series 

introduced atrous convolutions to capture contextual 
information at different scales. In the provided dataset, 
DeepLabV1 achieved a loss of 0.1845 and a dice 
coefficient of 0.8413, demonstrating its potential in 
segmenting lower-grade gliomas. 

 
❖ DeepLabV2: Building upon DeepLabV1, The second 

version added ASPP to capture more multi-scale 
context information. DeepLabV2 achieved a loss of 
0.2183 and a dice coefficient of 0.8068 on the dataset, 
indicating its effectiveness in segmenting lower-grade 
gliomas. 

 
❖ DeepLabV3: The third version of the series refined the 

ASPP module and incorporated image-level features to 
enhance the model's ability to capture global context. 
DeepLabV3 achieved a loss of 0.2060 and a dice 
coefficient of 0.8177 on the dataset, demonstrating 
improved performance in segmenting lower-grade 
gliomas compared to DeepLabV2. 

 
❖  DeepLabV3+: DeepLabV3+ is an advanced version of 

the DeepLabV series, designed to improve semantic 
image segmentation. Building upon the atrous 
convolutions used in previous DeepLabV models, 
DeepLabV3+ Adds a decoder module to improve 
categorization results, especially at boundaries of 
objects. The decoder module enhances the model's 
ability to capture fine details and accurately delineate 
tumor regions in the provided dataset. However, the 
performance of DeepLabV3+ on the dataset was not as 
strong as some other models, with a loss of 0.3804 and 
a dice coefficient of 0.6517. Despite these results, 
DeepLabV3+ demonstrates potential in brain MR 
image segmentation tasks, and further optimization or 
combination with other models may lead to improved 
performance for lower-grade glioma segmentation. 

 

 
 

 
             

Figure 3. DeepLabV(Version 1,2 and 3) 

4.3 DenseNet121_UNet 

 
The DenseNet121_UNet model is a fusion of DenseNet121, 
a powerful CNN-based image categorization architecture, 
and the U-Net architecture specifically designed for 
segmentation tasks. This hybrid model leverages the 
strengths of both architectures, combining DenseNet121's 
ability to learn complex hierarchical features with U-Net's 
encoder-decoder structure and skip connections, which 
enable efficient high-resolution feature learning and precise 
localization of target regions in the input image. On the 
provided dataset of brain MR images, DenseNet121_UNet 
demonstrated strong performance in segmenting lower-grade 
gliomas. The model achieved a dice coefficient of 0.8523 and 
an IoU of 0.7463 on the validation dataset, indicating its 
effectiveness in accurately delineating tumor regions. The 
DenseNet121_UNet model shows promise as a robust 
solution for lower-grade glioma segmentation tasks, and 
further optimization or integration with other techniques may 
enhance its performance even further [Fig.4,5]. 
 
 
 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

2023 | Volume 9



 
Unraveling the Heterogeneity of Lower-Grade Gliomas: Deep Learning-Assisted Flair Segmentation and Genomic Analysis 

of Brain MR Images 
 

7 

 

                 Figure 4. Accuracy of DenseNet121_UNeT 

 

 
 
 
                  Figure 5. Loss of DenseNet121_UNeT 
 

 4.4 ResNet50 

 
ResNet50 is a deep CNN architecture that employs 
excrescent learning to address the vanishing gradient 
problem commonly encountered in deep networks. By 
incorporating excrescent combinations, which approve the 
network to learn excrescent functions and facilitate the flow 
of information through the network, ResNet50 can learn 
complex hierarchical features and maintain high 
performance even with increased network depth. In the 
context of the provided dataset of brain MR images, 
ResNet50 demonstrated solid performance in segmenting 
lower-grade gliomas. The model achieved a loss of 0.1728 
and a Tversky index of 0.9035, indicating good segmentation 
accuracy and the ability to accurately delineate tumor 
regions. ResNet50's success in this task can be attributed to 
its robust architecture and the benefits of residual learning. 

Further optimization or combination with other models may 
lead to improved performance in lower-grade glioma 
segmentation tasks [Fig.6]. 
 
 
 

 
 
          Figure 6. Loss and accuracy of ResNet50 
 

4.5 Attention U-Net  

 
The Attention U-Net design is an expansion of the 
conventional U-Net structure, incorporating attention 
mechanisms to enhance its segmentation capabilities. 
Attention mechanisms enable the model to concentrate on 
particular areas of interest in the picture input, such as tumor 
regions in brain MR images, by weighting the feature maps 
in the encoder-decoder structure. This allows the model to 
prioritize relevant features and suppress irrelevant 
information, leading to improved segmentation accuracy. In 
the context of the provided dataset of brain MR images, the 
Attention U-Net model demonstrated reasonable 
performance in segmenting lower-grade gliomas. The model 
achieved a loss of 0.0321, a dice coefficient of 0.2757, and 
an IoU of 0.1621. Although the performance metrics are not 
as strong as some other models, the attention mechanisms 
employed by Attention U-Net provide a valuable approach 
to enhance segmentation capabilities. Further optimization, 
adaptation, or integration with other techniques may lead to 
improved performance in lower-grade glioma segmentation 
tasks [Fig.7]. 
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        Figure 7. Loss Function of Attention U-Net  
 

4.6 EfficientNet  

 
EfficientNet is a family of convolutional neural networks 
(CNNs) that leverage a new scaling strategy for balancing 
network depth, size, and resolution. By optimizing the model 
architecture and scaling parameters, EfficientNet achieves 
state-of-the-art performance in various CV tasks, including 
image classification and segmentation. In the context of the 
provided dataset of brain MR images, EfficientNet 
demonstrated strong performance in segmenting lower-grade 
gliomas. The model achieved a training loss of 0.00189, a 
validation loss of 0.00669, an IoU of 0.8955, and a dice 
coefficient of 0.9237. These performance metrics indicate 
that EfficientNet is highly effective in accurately delineating 
tumor regions within the dataset.EfficientNet's success in 
this task can be attributed to its balanced architecture and 
optimized scaling, which allows the model to learn complex 
hierarchical features while maintaining computational 
efficiency. Further optimization or combination with other 
models may lead to even better performance in lower-grade 
glioma segmentation tasks [Fig.8]. 
 

 
 
Figure 8. Training Loss and Validation Loss of 

EfficientNet  
 

 
A detailed comparison of the varied models' efficiency on the 
lower-grade glioma segmentation task using the provided 
dataset of brain MR images reveals that some models 
performed better than others. EfficientNet demonstrated the 
best dice coefficient success of 0.9237 and an IoU of 0.8955, 
making it the top-performing model for the task. ResNet50 
showed strong performance with a Tversky index of 0.9035, 
suggesting good segmentation accuracy. 
DenseNet121_UNet achieved a dice coefficient of 0.8523 
and an IoU of 0.7463, demonstrating reasonable 
segmentation capabilities. DeepLabV1 ranked fourth in 
performance with a dice coefficient of 0.8413 and a loss of 
0.1845. DeepLabV3 and DeepLabV2 achieved dice 
coefficients of 0.8177 and 0.8068, respectively. Attention U-
Net, with a dice coefficient of 0.2757 and a loss of 0.0321, 
ranked seventh in performance, while U-Net had the lowest 
performance among the compared models with a dice 
coefficient of 0.3504 and a loss of 0.6900. In summary, 
EfficientNet and ResNet50 outperformed the other models in 
segmenting lower-grade gliomas in brain MR images 
[Fig.9]. However, each model has its own strengths and 
limitations, and further optimization or integration with other 
techniques may lead to improved performance in lower-
grade glioma segmentation tasks. 
 
 

 
 

Figure 9. Presents examples of 
different      MRI image weights and 

corresponding masks 

5. Result 

 
We researched the efficacy of several DL models in this 
study, including DeepLabv3, U-Net, DenseNet121-Unet, 
ResNet50, Attention U-Net, and EfficientNet, for 
segmenting FLAIR abnormalities in brain MR images of 
lower-grade gliomas. The dataset comprised 110 lower-
grade glioma patients, obtained from The Cancer Imaging 
Archive (TCIA), with accompanying genomic cluster data 
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and patient-specific details. We employed a customized loss 
function, which combined Categorical Cross Entropy (CCE) 
loss, WCE, and WMDL to address the multi-class data 
imbalance and improve segmentation accuracy for smaller 
tumor regions. The results demonstrated that some models 
performed better than others in terms of dice coefficient, IoU, 
and loss values. EfficientNet emerged as the top-performing 
model with a dice coefficient of 0.9237 and an IoU of 0.8955, 
followed closely by ResNet50 with a Tversky index of 
0.9035. DenseNet121-Unet, DeepLabv3, and DeepLabv1 
also showed reasonable segmentation capabilities. However, 
U-Net and Attention U-Net exhibited lower performance 
metrics compared to the other models. Our proposed strategy 
successfully detected border region artifacts and efficiently 
managed memory and system resource limitations by 
implementing dense network training on 3D image patches. 
The performance comparison of different segmentation 
methods revealed the potential of our approach in supporting 
accurate diagnosis and individualized treatment strategies for 
patients with lower-grade gliomas. Further optimization or 
integration of these models with other techniques may lead 
to even better performance in lower-grade glioma 
segmentation tasks in the future. 

6. Conclusion 

 
Finally, this work looked into the effectiveness of various DL 
models for segmenting lower-grade gliomas in brain MR 
images. This study used brain MR images with customized 
FLAIR abnormality segmentation masks gained from TCIA 
and corresponding to 150 patients with lower-grade gliomas. 
The models compared included EfficientNet, ResNet50, 
DenseNet121_UNet, DeepLabV1, DeepLabV2, 
DeepLabV3, Attention U-Net, and U-Net. Our findings 
revealed that EfficientNet and ResNet50 were the top-
performing models in this task, demonstrating the efficient 
of DL techniques to improve the segmentation of lower-
grade gliomas in brain MR images. Although some models, 
for example Attention U-Net and U-Net, demonstrated lower 
performance, they still have the potential for improvement 
through further optimization or integration with other 
techniques. The findings of this study help to the ongoing 
research in the field of medical image analysis, particularly 
in the context of brain tumor segmentation. The insights 
gained from the performance comparison of these models 
can help guide future research towards developing enough 
accurate and efficient techniques for lower-grade glioma 
segmentation. This, in turn, can contribute to better treatment 
planning, improved patient outcomes, and more effective 
clinical decision-making in the management of lower-grade 
gliomas. 
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