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Abstract 

INTRODUCTION: Cancer has become one of the most prevalent diseases with the highest mortality rate in the world, and 
timely detection and early acceptance of medical therapeutic interventions are effective means of controlling the 
progression of cancer patients and improving their post-intervention outcomes. 
OBJECTIVES: To make the defects of incomplete features, low accuracy and low real-time performance of current 
tumour diagnosis methods. 
METHODS: This paper proposes a tumour diagnosis method based on the improved MRFO algorithm to improve the 
optimization process of DBN network parameters. Firstly, the diagnostic features are extracted by analysing the tumour 
diagnosis identification problem; then, the manta ray foraging optimization algorithm is improved by combining the good 
point set initialization strategy, the adaptive control parameter strategy and the distribution estimation strategy, and the 
tumour diagnostic model based on the improved manta ray foraging optimization algorithm to optimize the parameters of 
the depth confidence network is constructed; finally, the high accuracy and real-time performance of the proposed method 
are verified by the analysis of simulation experiments. 
RESULTS: The results show that the proposed method improves the accuracy of the diagnostic model. 
CONLUSION: Addresses the problem of poor accuracy and real-time availability of tumour diagnostic methods. 
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1. Introduction

Oncology and cancer have become the major causes of
death worldwide, and have become a major public health 
problem, seriously affecting the quality of life and health of 
human beings [1]. Although the global mortality rate of 
oncology cancer has shown a decreasing trend due to early 
screening and the continuous improvement of 
comprehensive treatment, the incidence of oncology cancer 
has been increasing year by year, and there is a trend of 
rejuvenation, and the epidemiological situation is not 
optimistic [2]. Oncology cancer has become one of the 
highest prevalence and mortality rates in the world, and 
timely detection and early acceptance of medical 

therapeutic interventions are effective means of controlling 
the progression of oncology cancer patients and improving 
their post-intervention [3]. Therefore, exploring effective 
ways to improve oncology cancer census and exploring 
effective ways to improve early diagnosis rate are of great 
significance to improve the survival rate and mortality rate 
of oncology cancer patients [4]. At the same time, accurate 
diagnosis of tumour cancers is a particularly important 
advance in curing tumour cancers, and being able to 
accurately diagnose tumour cancers has an extremely 
important significance in prolonging the survival time of 
patients and improving their quality of life [5]. 

Tumour cancer diagnosis is essentially a classification 
and recognition problem [6], by taking X-ray photographs 
of the tumour cancer, acquiring ware medical images, then 
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extracting features from the region of interest, and finally 
using certain algorithms to classify the extracted features, 
so as to differentiate whether the tumour is benign or 
malignant, and thus determine whether it is suffering from 
tumour cancer [7]. Currently, tumour cancer diagnosis and 
recognition methods include region-based methods, contour 
evolution-based methods, machine learning-based methods, 
statistical-based methods, and methods based on multi-
resolution analysis [8]. Machine learning based methods are 
mainly divided into generative model based methods and 
discriminative model based methods [9]. Generative model-
based methods include Markov Random Fields, Gaussian 
Mixture Models [10]; discriminative model-based methods 
include Support Vector Machines, Random Forests, Deep 
Neural Networks [11]. Literature [12] used traditional 
statistical clustering methods to cluster patient case data to 
solve the problem of classification prediction of diseases; 
Literature [13] used correlation analysis to explore the 
relationship between disease recurrence and basic patient 
indicators; Literature [14] proposed an incremental decision 
tree algorithm based on the fast decision tree algorithm to 
deal with a large amount of routine medical data; Literature 
[15] used KNN, neural network, decision tree and Bayesian
classification methods to explore the heart disease data and
conducted a method comparison test; Literature [16]
applied the association rules and neural network
classification methods in data mining to the prediction
problem of breast tumour, and the experimental analysis
yielded a good prediction result; Literature [17] proposed a
medical data clustering classification based on the
combination of neural network, genetic algorithm and fuzzy
classification algorithm algorithm, and analysed the
characteristic data structure and features of medical data;
Literature [18] used the LSSVM method to solve the
classification problem of tumour diagnosis and
identification in medical data; Literature [19] proposed a
method combining SVM with autoregressive integrative
sliding average model for predicting the patient's blood
glucose value; Literature [20] applied the support vector
machine algorithm, random forest algorithm, CatBoost
algorithm to the breast tumour diagnosis and identification,
through analysis and comparison of the results of different
algorithms, CatBoost algorithm has the best performance.

In response to the above literature analysis, the 
existing oncology cancer diagnostic methods have the 
following shortcomings: 

1) the traditional expert system diagnostic methods are
subjective, and the diagnostic results are unscientific [21]; 

2) the existing oncology cancer diagnostic methods
based on machine learning algorithms are unable to reflect 
the non-linear relationship between pathological features 
and whether or not one has breast cancer, and are unable to 
establish an accurate diagnostic model [22];  

3) the existing diagnostic models have robustness is
poor and lacks generalisation [23]. 

Deep Belief Networks (DBN)[23] DBN algorithm is a 
type of neural network for machine learning, which can be 
used for both unsupervised and supervised learning.DBN is 

a probabilistic generative model as opposed to the 
traditional discriminative model of neural networks, where 
the generative model creates a joint distribution between 
observations and labels. By training the weights between its 
neurons, the whole neural network can be made to generate 
training data according to the maximum probability. The 
group intelligent optimization algorithm mainly simulates 
the group behaviours of insects, beasts, birds and fish, 
which search for food according to a certain cooperative 
way, and each member of the group constantly changes the 
direction of the search by learning from its own experience 
and the experience of the other members, which achieves 
the effect of obtaining the global optimal results [24]. The 
combination of deep confidence network and intelligent 
optimization algorithm makes the tumour cancer 
recognition effective, which makes the research of tumour 
cancer recognition model based on intelligent optimization 
algorithm optimization to improve the deep confidence 
network become the hotspot of experts' research. 

Aiming at the problems existing in the current tumour 
cancer recognition method, this paper proposes a tumour 
cancer recognition method based on the intelligent 
optimization algorithm optimizing the improved deep 
confidence network. The main contributions of this paper 
are:  

1) extracting the features of tumour cancer diagnosis
and recognition by describing the problem of tumour cancer 
diagnosis and recognition, and constructing the feature 
system of tumour cancer diagnosis and recognition;  

2) constructing the tumour cancer diagnosis and
recognition model by combining the improved intelligent 
optimization algorithm and the deep confidence network;  

3) verifying the method of this paper through
simulation, which has a higher recognition accuracy and 
recognition real-time performance. 

2. Analysis of the problem of diagnostic
identification of tumours

2.1. Data sources 

This paper carries out research on tumour diagnosis 
recognition methods for breast tumour diagnosis problems. 
Breast tumour diagnostic data comes from the UCI machine 
learning library, with a total of 569 samples, of which the 
benign breast tumour data samples are 357 cases and the 
malignant breast tumour data samples are 212 cases. Each 
diagnostic sample data contains 30 feature data and 1 
diagnostic result of benign and malignant classification, 
which are associated with the benign and malignant 
classification of breast tumour tumours. The examination 
method applied for this diagnosis is cell sectioning of the 
lesion area of breast tumour patients in order to obtain 
microscopic images of the nuclei of multiple cells in the 
section of the lesion part [25]. 
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2.2. Diagnostic Characterisation Data 

In this paper, firstly, the nuclear microscopic images of 
multiple lines of eight sections of the same lesion site were 
processed separately to obtain the radius of the nucleus, 
texture of the nucleus, perimeter of the nucleus, area of the 
nucleus, smoothness of the nucleus, compactness of the 
nucleus, convexity of the nucleus, number of points of the 
nucleus, symmetry of the nucleus, and the degree of nuclear 
fracture of the nucleus in the nuclear microscopic image of 
each cell [26]. Then the nuclear micrographic image data of 
multiple cells belonging to the same lesion site section were 
averaged, standard deviation and worst value [27], i.e., the 
required 30 feature data.The 30 feature data include mean 
value of nucleus radius X1, mean value of nucleus texture 
X2, mean value of nucleus circumference X3, mean value 
of nucleus area X4, mean value of nucleus smoothness X5, 
mean value of nucleus compactness mean value X6, 
nucleus concavity mean value X7, nucleus depression point 

mean value X8, nucleus symmetry mean value X9, nucleus 
fracture mean value X10, nucleus radius standard deviation 
X11, nucleus texture standard deviation X12, nucleus 
perimeter standard deviation X13, nucleus area standard 
deviation X14, nucleus smoothness standard deviation X15, 
nucleus compactness standard deviation X16, standard 
deviation of nucleus concavity X17, standard deviation of 
nucleus concavity point X18, standard deviation of nucleus 
symmetry X19, standard deviation of nucleus fracture X20, 
worst value of nucleus radius X21, worst value of nucleus 
texture X22, worst value of nucleus perimeter X23, worst 
value of nucleus area X24, worst value of nucleus 
smoothness X25, worst value of nucleus compactness X26 , 
worst value of nucleus concavity X27, worst value of 
nucleus concavity point X28, worst value of nucleus 
symmetry X29, worst value of nucleus breakage X30. The 
principle of influencing factors selection is shown in Figure 
1. 

Figure 1. Diagnostic features of breast cancer

3. Deep confidence network (D CN)

Deep Belief Networks (DBN) [28] consist of multiple
Restricted Boltzmann Machines (RBM) layers, a typical 
type of neural network is shown in Figure These networks 
are restricted to a visible layer and a hidden layer with 
connections between the layers but not between the units 
within the layers. The hidden layer units are trained to 
capture the correlation of higher order data exhibited in the 
visible layer, the exact structure of which is shown in 
Figure 2. As can be seen from Figure 2, the input layer v  

and the hidden layer 1h  constitute the first layer of the
RBM, and the input data is mapped through the activation 

function to the hidden layer 1h  , which is input to the 

second layer of the RBM (the hidden layer 1h  and the 

hidden layer 2h  ), and the data is passed through the hidden 
layer sequentially to reach the output layer. 
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Figure 2. DBN structure 

(1) Calculate the RBM energy function. Assuming that
( ), ,θ ω= a b  is the DBN network parameter, the energy

function of RBM is expressed as: 

( )
1 1 1 1

, θ ω
= = = =

= − − −∑ ∑ ∑∑
n m n m

i i j j i ij j
i j i j

E v h a v b h v h (1) 

Where, ( ),v h  is the state value of DBN, ω  is the
connection weight of the visible and hidden layers, a  and
b  are the bias of the visible and hidden layers respectively, 
and the hidden and visible layer states are binary states, i.e.

{ }0,1∈v  and { }0,1∈h  .
(2) The stochastic gradient method is used to solve the

DBN network parameters θ  . The corresponding 

parameters *θ  are obtained by solving the maximum of the
log-likelihood function: 

( ) ( )*

1
arg max arg max lnθ θθ θ θ

=

= = ∑
K
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where K is the number of training samples. 
(3) The joint probability distribution function can be

determined from the energy function: 

( )
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(4) Determine the state of the visible layer. The
activation probability of the jth network node of the hidden 
layer is 

( )
1

1 ,θ ω
=

 = = + 
 

∑
n

j j i ij
i

p h v sigmoid b v  (5) 

(5) Determine the hidden layer state. The activation
probability of the ith network node of the visual layer is 

( )
1

1 ,θ ω
=

 = = + 
 

∑
n

i i j ij
i

p v h sigmoid a h  (6) 

(6) According to Gibbs sampling theorem, the RBM
parameterθ  is updated with the following formula: 

( ) ( )log
ω ε

ω
∂

∆ = = −
∂ij i j i jdata predict

ij
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v h v h

(7) 
( ) ( )log

ε
∂
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( ) ( )log
ε

∂
∆ = = −

∂j j jdata predict
j

p v
b h h

b
(9) 

where ε  denotes the learning rate,
data

  is the 

expectation of training after input data, and predict
  is the 

expectation of the model itself. 

4. Improvement of the MRFP algorithm

4.1. Standard MRFP algorithm 

Manta Ray Foraging Optimization (MRFO) [29] is a 
population-based meta-heuristic optimization algorithm that 
solves the optimization problem by modelling three 
foraging behaviours of manta rays. These three foraging 
behaviours are: chain foraging, spiral foraging and 
somersault foraging. Similar to other population-based 
algorithms, MRFO also generates individuals randomly in 
the search space to form an initial population. The 
mathematical models for each of the three foraging 
behaviours are presented next. 

Chain foraging 
Manta rays form a foraging chain by connecting their 

heads and tails in a line. While the first individual moves 
only towards the food, the rest of the individuals move not 
only towards the food, but also towards the individuals in 
the foraging chain located in front of them. The 
mathematical model of chain foraging is described as 
follows:
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Figure 3. Chained foraging
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Where, denotes the position of the ith individual in 
generation t. The values of , , , and are uniformly distributed 
random vectors. t

iX 1r , 2r  , 3r  , 4r  are uniformly
distributed random vectors with values ranging from 0 to 1.

t
bestX  denotes the plankton with the highest concentration, 

i.e., the optimal individual. NP is the population size, and
α  is the weighting coefficient.

Spiral foraging 
When manta rays find plankton in deep water, they 

form long foraging chains and then move in a spiral towards 
the food. This behaviour is similar to the whale optimisation 
algorithm, but in addition to spiralling closer to the food, 
they also follow the individual in front of them. The 
mathematical model of spiral foraging can be given by the 
following equation: 

Figure 4.Spiral foraging

( ) ( )
( ) ( )

51

6 1

1

2,3, ,

t t t t t
best best i best it

i t t t t t
best i i best i

X r X X X X i
X

X r X X X X i NP

β

β
+

−

 + ⋅ − + ⋅ − == 
+ ⋅ − + ⋅ − = 

(3)

( )
max

7
max

1

72 sin 2
iter iterr

itere rβ π
− +

⋅

= ⋅  (4) 

where 5r  , 6r  are uniformly distributed random vectors

with values ranging from 0 to 1. 7r  is a uniformly 

distributed random number. β is a weight factor. maxiter
and iter  are the maximum number of iterations and the
current number of iterations, respectively. 

Food sources (optimal individuals) were mainly used 
as reference points for spiral foraging, which helped to fully 

exploit the space around the optimal individuals. In addition, 
randomly generated locations in the search space were used 
as reference locations for spiral foraging in order to extend 
the search range. This allowed all individuals to search 
areas away from their current optimal position. The 
stochastic spiral foraging mechanism focuses primarily on 
exploration, allowing MRFOs to perform extensive global 
searches. The specific mathematical model is described 
below: 

( )8randX lb r ub lb= + ⋅ − (5)
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+ ⋅ − + ⋅ − = 

(6)

where randX  is the randomly generated reference 

position in the search space. 8r 9r  and 10r  are uniformly

distributed random vectors with values ranging from 0 to 1.
ub  and lb  are the upper and lower boundaries of the 
search space, respectively. 
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Somersault foraging 
In this stage, the food position is considered to be a 

fulcrum. Each individual flips around the pivot point, thus 
finding a new location. The mathematical model of this 
stage is represented as follows: 

Figure 5. Somersault type foraging 

( )1
11 12 , 1, 2, ,t t t t

i i best iX X S r X r X i NP+ = + ⋅ ⋅ − ⋅ = 

(7) 

Among them, S  is the coefficient affecting the 
rollover range of manta ray, which usually takes the value 
of 2. 11r  and 12r  are uniformly distributed random vectors,
which take the value of 0~1. 

The MRFO algorithm regulates the exploration and 
exploitation behaviour by controlling the variation of

maxiter iter  . When maxiter iter rand<  , MRFO 
mainly performs the exploration behaviour, generating 
random food sources as reference points in the search space. 
When maxiter iter rand≥  , the MRFO algorithm utilises 
the optimal individual as a reference point, which facilitates 
the exploitation of the algorithm. In addition, a random 
number is used to select either chain foraging or spiral 
foraging. After that, somersault foraging is performed. 

4.2. Improvement strategies 

In order to enhance the full-domain exploration 
capability of the MRFO algorithm and avoid the algorithm 
from falling into a local optimum, this paper adopts a good 
point set initialisation strategy [30], an adaptive control 
parameter strategy [31] and a distribution estimation 
strategy [32] to improve the manta ray foraging 
optimisation algorithm. 

Good point set initialisation strategy 
The quality of the initialised population of MRFO 

algorithm affects the solution optimisation speed of the 
algorithm, and an excellent population initialisation strategy 
can make the individuals of the population traverse the 

whole search space more evenly, increase the population 
diversity and improve the convergence speed of the 
algorithm. In order to improve the population search 
diversity and make the population uniformly distributed in 
the search space, this paper proposes a good point set 
initialisation strategy to improve the initialisation method of 
MRFO algorithm. Suppose sG  is a unit cube in s-

dimensional Euclidean space, if sr G∈ , for: 

( ) ( )( ) ( )( ) ( )( )1 2, , , ,1n n n
n sP k r k r k r k k n = ⋅ ⋅ ⋅ ≤ ≤ 

(8) 

Its deviation is satisfied: 

( ) ( ) 1,n C r nεφ ε −=  (9) 

Then ( )nP k  is called the set of good points and r  is

the good point. ( )( )1
nr k⋅ represents the fractional part,ε  is 

any positive number, ( ),C r ε  is a constant related only to
,r ε  , n  denotes the number of points, and r  is:

( ){ }2cos 2 ,1r k p k sπ= ≤ ≤  (10)

where p  is the smallest prime number satisfying

( )3 2p s− ≥  . The initialised population distribution
graph using the set of good points is shown in Figure 3. 

Figure 6. Distribution of initialised populations in the 
good point set 

Adaptive control parameter strategy 
The MRFO algorithm regulates exploration and 

exploitation behaviour by controlling changes in

maxiter iter  . maxiter iter The change of  is a linearly 
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increasing variable that does not accurately reflect and 
adapt to the complex nonlinear search process. Nonlinear 
parameter control strategy style is an effective measure to 
prevent the algorithm from maturing prematurely. In this 
paper, an adaptive control parameter strategy with a mixture 
of sine and cosine functions is proposed, as shown in Figure 
7, and the specific mathematical model is as follows: 

( )( )3
max2.5cos

max

sin
2

iter iter
iterCoef

iter
π ⋅

=  
 

(11) 

Figure 7. Different control parameters 

As can be seen from Figure 7, the new strategy focuses 
more on global search in the early stages to avoid the 
algorithm from falling into a local optimum. In the later 
stages, the algorithm performs more local exploitation 
behaviour, which helps the algorithm to accelerate 
convergence. When MRFO performs somersault foraging, 
the parameter S  is constant, which is not conducive to the 
effective execution of the algorithm. In the early stages of 
optimisation, the algorithm performs more exploratory 
behaviour, so the parameter S  needs to become large 
enough to search more space. In the later stages of iteration, 
the algorithm needs to be more precise in its exploitation, 
and smaller values of the parameter S  are required. 
Therefore, this paper proposes a linearly decreasing strategy 
for the parameter S  with the following mathematical model: 

( )min max max maxS S S iter iter S= − ⋅ + (12) 

Where minS  and maxS  are the minimum and maximum 

values of the parameter S  . 

Distribution estimation strategy 
The chained foraging strategy of the standard MRFO 

algorithm uses the optimal individual and neighbouring 
individuals for position updating, which can easily lead to 
premature convergence of the algorithm. If the optimal 
individual has already fallen into the local optimum, the 
chaining rule will cause all subsequent individuals to 
approach the local optimal individual. In order to improve 
the performance of the algorithm, this paper proposes a 
distribution estimation strategy with the following 
mathematical model: 

( )1 0,t
iX mean y y N Cov+ = +  (13) 

( ) 3t t
esp mean imean X X X= + + (14) 

( ) ( ) ( )
2

1

0

1
2

NP Tt t t t
i mean i mean

i
Cov i X X X X

NP
+

=

= − × −∑
(15) 

2

1

NP
t t
mean i i

i
X Xω

=

= ×∑ (16) 

( ) ( )

( ) ( )
2

1

ln 2 0.5 ln

ln 2 0.5 ln
i NP

i

NP i

NP i
ω

=

+ −
=

+ −∑
(17) 

where t
meanX  denotes the weighted position of the 

dominant population,ω  denotes the weighting coefficients 
in the dominant population in descending order of fitness 
values, and Cov  denotes the weighted covariance matrix of 
the dominant population. The distribution estimation 
strategy with chained foraging measurement class was 
randomly selected for execution. 

4.3. Improvement of MRFP algorithm step by 
step process 

Based on the improvement strategy and optimisation 
process, the GoodADMRFO algorithm (MRFO based on 
Good point set, Adaptive control parameter strategy and 
Distribution estimation strategy) pseudo-code is shown in 
Figure 8 with the following steps. : 
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Figure 8. Pseudo-code of GoodADMRFO algorithm 

Step 1: Initialise the population position using the good 
point set strategy, set the maximum number of iterations 
and other parameters; 

Step 2: Calculate the fitness value and record the 
current optimal individual; 

Step 3: Update the mean and Cov of the distribution 
estimation strategy; 

Step 4: Population position update based on spiral 
foraging with improved chain foraging strategy. If rand<0.5 
and Coef>0.5, spiral foraging strategy based on optimal 
individuals is used; if rand<0.5 and Coef<=0.5, spiral 
foraging strategy based on random individuals is used; and 
if rand>=0.5, chained foraging strategy based on 
distribution estimation strategy is used; 

Step 5: Control the position boundary, calculate the 
fitness value and update the optimal individual; 

Step 6: Location update based on somersault foraging 
strategy; 

Step 7: Control the position boundary, calculate the 
fitness value and update the optimal individual; 

Step 8: Determine whether the number of iterations 
reaches the maximum number of iterations. If the maximum 
number of iterations is reached, carry out the output of the 
optimal solution and optimal value; otherwise, go to step 3. 

5. Ideas for tumour diagnosis methods
based on the GoodADMRFO algorithm for
optimising deep confidence networks

Combining GoodADMRFO and deep confidence 
network, this section proposes a tumour diagnosis method 
based on GoodADMRFO algorithm to improve DBN 
network. 

5.1. Decision variables and objective 
functions 

The traditional iterative approach to DBN network 
optimisation can easily cause the optimisation of DBN 
network parameters to fall into local optimum. In order to 
overcome the above problems, this paper adopts the 
GoodADMRFO algorithm to optimise the DBN network 
parameters. The optimisation decision variable of the 
GoodADMRFO algorithm is ( ), ,θ ω= a b  .

In order to overcome the DBN training accuracy, the 
Error, F-score, and FPR functions are used as the objective 
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functions of the GoodADMRFO-DBN algorithm and are 
calculated as follows: 

( ) 1min Fitness X Error FPR
F score

α β γ= ⋅ + ⋅ + ⋅
−

(18) 
1Error Accuracy= − (19) 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
(20) 

FPFPR
TN FP

=
+

(21) 

TPPrecision
TP FP

=
+

(22) 

Among them, 1α β γ+ + =  ; 0.4α =  , 0.4β =  ,

0.2γ =  .

5.2. Steps and processes 

The tumour diagnosis model based on GoodADMRFO 
algorithm optimized DBN network is mainly based on the 
mapping relationship between features and recognition 
types with tumour diagnostic features as input and 
diagnostic recognition types as output. The flowchart of the 
tumour diagnosis method based on GoodADMRFO-DBN 
algorithm is shown in Figure 9. The specific steps are as 
follows: 

Step 1: According to the state of the tumour, the 
tumour diagnostic features are extracted; the features are 
dimensionality reduced using principal component analysis; 
the dataset is divided into a training set, a validation set and 
a test set; 

Step 2: The GoodADMRFO algorithm is used to 
encode the initial DBN parameters, and also initialise the 
algorithm parameters such as the population parameters and 
the number of iterations; the population is initialised and the 
objective function value is calculated; 

Step 3: Update the mean and Cov of the distribution 
estimation strategy; if rand<0.5 and Coef>0.5, use the spiral 
foraging strategy based on the optimal individual; if 
rand<0.5 and Coef<=0.5, use the spiral foraging strategy 
based on the random individual; if rand>=0.5, use the chain 
foraging strategy based on the distribution estimation 
strategy of chain foraging strategy; calculate the fitness 
value and update the optimal solution; 

Step 4: Based on the somersault foraging strategy, the 
position is updated; the fitness value is calculated and the 
optimal solution is updated; 

Step 5: Determine whether the termination condition is 
satisfied, if so, exit the iteration, output the optimal DBN 
network parameters, and execute step 3, otherwise continue 
to execute step 6; 

Step 6: Decode the GoodADMRFO-based optimised 
DBN parameters, obtain the optimal DBN parameters, and 
construct the GoodADMRFO-DBN-based tumour diagnosis 
model; 

Step 7: Diagnose and identify the current test set using 
the trained tumour diagnostic model, and output the 
corresponding diagnostic results. 

Figure 9. Flowchart of GoodADMRFO-DBN based tumour diagnosis approach
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6. Experiments and analysis of results

In order to verify the accuracy and timeliness of the
tumour diagnostic model proposed in this paper, five 
diagnostic algorithms were selected for comparison, and the 
specific parameter settings of each algorithm are shown in 

Table 1.The data were mainly obtained from the sample 
data of breast tumour diagnostic cases in the UCI Machine 
Learning Library. The experimental simulation environment 
is Windows 10, CPU is 2.80GHz, 8GB memory, 
programming language Matlab2017b. 

Table 1. Parameter settings of English teaching quality evaluation methods 

arithmetic parameterisation 
DBN Three hidden layers with 100, 100, 100 nodes in each layer 

MRFO-DBN 
Three hidden layers, with the number of nodes being determined by Section 6.1 and the number of 
populations being determined by Section 6.1 

MRFO-1-DBN 
Three hidden layers, the number of nodes is determined by Section 6.1, the number of populations is 
determined by Section 6.1, and MRFO does not use a good point set initialisation strategy 

MRFO-2-DBN 
Three hidden layers, the number of nodes is determined by section 6.1, the number of populations is 
determined by section 6.1, and MRFO does not use an adaptive control parameter strategy 

MRFO-3-DBN 
Three hidden layers, the number of nodes is determined by Section 6.1, the number of populations is 
determined by Section 6.1, and the MRFO does not use a distribution estimation strategy 

GoodADMRFO-
DBN 

Three hidden layers, the number of nodes is determined by Section 6.1, the number of populations is 
determined by Section 6.1, and MRFO does not use a good point set initialisation strategy 

6.1. Parameter setting analysis 

In order to analyse the impact of the population size of 
MRFO algorithm and the number of hidden layer nodes of 
DBN network on the tumour diagnosis method, this paper 
compares and analyses the performance of the tumour 
diagnosis method under the conditions of different 
population sizes and different numbers of hidden layer 
nodes of the network, respectively. Figure 10 gives a graph 
of the impact of different population sizes and different 
numbers of network hidden layer nodes on diagnosis 
accuracy, and Figure 11 gives a graph of the impact of 
different population sizes and different numbers of network 
hidden layer nodes on diagnosis time. 

As can be seen from Figure 10, as the number of 
populations of the optimization algorithm increases, the 
accuracy of tumour diagnosis also gradually increases; as 
the number of DBN hidden layer nodes increases, the 
accuracy of tumour diagnosis also gradually increases; 
when the number of populations increases to 70, the 
increase in the accuracy of tumour diagnosis becomes slow, 
and even the performance decreases; when the number of 
hidden nodes of the DBN network increases to 80, the 
effect of the increase in the accuracy of tumour diagnosis is 
not obvious. As can be seen from Figure 11, with the 
increase in the number of populations of the optimization 

algorithm, the tumour diagnosis time also increases 
gradually; with the increase in the number of hidden nodes 
of DBN, the tumour diagnosis time also increases gradually; 
when the number of populations is increased to 90, the 
tumour diagnosis time change no longer increases and tends 
to be stable; when the number of hidden nodes of DBN 
network is increased to 80, the tumour diagnosis time 
increases more quickly. In summary, the intelligent 
optimisation algorithm selected in this paper has a 
population size of 80 and the number of hidden nodes of 
DBN network is 90. 

Figure 10 gives the results of tumour cancer diagnosis 
based on each algorithm. As can be seen from Figure 10, 
comparing the GoodADMRFO-DBN and DBN algorithms 
shows that the optimisation and improvement strategy 
improves the diagnostic accuracy of the DBN and MRFO-
DBN algorithms; comparing the MRFO-DBN and MRFO-
1-DBN algorithms shows that the good point set
initialisation strategy improves the diagnostic accuracy of
the MRFO-DBN; comparing MRFO-DBN and MRFO-2-
DBN shows that the adaptive control parameter strategy
improves the MRFO-DBN diagnostic accuracy; comparing
MRFO-DBN with MRFO-3-DBN shows that the
distribution estimation strategy improves the MRFO-DBN
diagnostic accuracy. Meanwhile, GoodAD-based MRFO-
DBN has the highest diagnostic identification accuracy.
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Figure 10. Effect of different population sizes and number of hidden nodes on diagnostic accuracy 

Figure 11 Effect of different population sizes and number of hidden nodes on diagnosis time 

6.2. Experimental prediction performance analysis 

In order to verify the effectiveness and superiority of 
the tumour cancer diagnosis method based on the 
GoodADMRFO-DBN algorithm, GoodADMRFO-DBN is 
compared with five other models such as DBN, MRFO-

DBN, MRFO-1-DBN, MRFO-2-DBN, MRFO-3-DBN, and 
the performance results of each model are shown in Figure 
12,  Figure 13and Figure 14. 
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(a) DBN

(b) MRFO-DBN

(c) MRFO-1-DBN
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(d) MRFO-2-DBN

(e) MRFO-3-DBN

(f) GoodADMRFO-DBN
Figure 12. Tumour cancer diagnosis results based on each algorithm 

In order to further verify the superiority of the tumour 
diagnosis method based on the GoodADMRFO-DBN 

algorithm, the results of the diagnostic performance of each 
algorithm are statistically given in this section, as shown in 
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Figure 13 and Figure 14. From Figure 13, it can be seen that 
the diagnostic accuracy mean value of GoodADMRFO-
DBN algorithm based on GoodADMRFO-DBN algorithm 
is larger than other algorithms, and the accuracy standard 
deviation is smaller than other algorithms, and the 
diagnostic effect is better than other algorithms; the 
diagnostic time mean value of GoodADMRFO-DBN 
algorithm based on GoodADMRFO-DBN algorithm is 
smaller than DBN and MRFO algorithms, but larger than 

MRFO-1-DBN and MRFO-2-DBN, MRFO-3-DBN 
algorithms, and the standard deviation of time is better than 
the other algorithms, which shows that the stacking of the 
three strategies may increase the computational burden, but 
the robustness becomes better. In conclusion, the tumour 
diagnosis method based on GoodADMRFO-DBN algorithm 
works better than other algorithms and meets the real-time 
requirements.

Figure 13. Comparison of tumour diagnosis accuracy and time analysis based on each algorithm 

As can be seen from Figure 14, the diagnostic 
optimisation process based on the GoodADMRFO-DBN 
algorithm is better than MRFO-DBN, MRFO-1-DBN, 
MRFO-2-DBN, MRFO-3-DBN, with a faster convergence 

speed and better convergence accuracy than the other 
algorithms. In conclusion, the optimisation of tumour 
diagnosis based on GoodADMRFO-DBN algorithm has 
faster convergence speed and better convergence accuracy. 

Figure 14. Convergence curve analysis of tumour diagnosis accuracy based on each optimisation algorithm 
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7. Conclusion

Aiming at the defects of incomplete features, low
accuracy and low real-time performance of tumour 
diagnosis methods, this paper proposes a tumour diagnosis 
method based on the improved MRFO algorithm to improve 
the optimization process of DBN network parameters. The 
method extracts diagnostic data features by analysing the 
tumour diagnosis identification problem. The manta ray 
foraging optimisation algorithm is improved by combining 
the good point set initialisation strategy, adaptive control 
parameter strategy and distribution estimation strategy, and 
the parameters of the depth confidence network are 
optimised using the improved manta ray foraging 
optimisation algorithm to construct a tumour diagnosis 
model. Simulation experiments are carried out using breast 
tumour diagnostic feature data, and the following 
conclusions are drawn: 

(1) By comparing the diagnostic performance of the
MRFO-DBN and DBN algorithms, the MRFO algorithm 
can improve the diagnostic accuracy of DBN; 

(2) By comparing the diagnostic performance of
GoodADMRFO-DBN with MRFO-DBN, MRFO-1-DBN, 
MRFO-2-DBN, and MRFO-3-DBN algorithms, and 
optimising the improvement strategies to further improve 
the diagnostic model accuracy; 

(3) GoodADMRFO-DBN diagnostic time meets real-
time requirements. 

The time performance of the diagnostic model 
proposed in this paper is not good, and further improvement 
of GoodADMRFO-DBN diagnostic time is the next 
research focus. 
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