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Abstract 

INTRODUCTION: Heart disease has been a major health challenge globally; therefore the development of reliable and 
real-time heart disease monitoring methods is crucial for the prevention and management of heart health. The aim of this 
study is to explore a flexible wearable device approach based on wavelet transform and support vector machine (SVM) to 
improve the accuracy and portability of heart disease monitoring. 
OBJECTIVES: The main objective of this study is to develop a wearable device that combines wavelet transform and 
SVM techniques to achieve accurate monitoring of physiological signals of heart diseases. 
METHODS: An integrated method for heart disease monitoring was constructed using flexible sensor technology 
combined with a wavelet transform and support vector machine. The Marr wavelet transform was applied to the ECG 
signals, and the feature vectors were constructed by feature parameter extraction. Then, the radial basis kernel SVM was 
utilized to identify the three ECG signals. The performance of the algorithm was optimized by adjusting the SVM 
parameters to improve the accurate monitoring of heart diseases. 
RESULTS: The experimental results show that the proposed wavelet transform and SVM-based approach for flexible 
wearable devices achieves satisfactory results in heart disease monitoring. In particular, the algorithm successfully 
extracted feature vectors and accurately classified different ECG signals by skilfully combining the wavelet transform and 
SVM techniques for the processing of premature beat signals. 
CONCLUSION: The potential application value of the wavelet transform and SVM-based flexible wearable device 
approach in heart disease monitoring is emphasized. By efficiently processing ECG signals, the method provides an 
innovative and comfortable solution for real-time monitoring of cardiac diseases. 
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1 Introduction 

The rise of wearable sensors has revolutionized the 
medical field. While traditional medical monitoring usually 
requires patients to travel to hospitals or clinics, wearable 
sensors enable real-time monitoring of health conditions in 
patients' daily lives, greatly improving the convenience and 
efficiency of monitoring. Additionally, these sensors are 

capable of monitoring a wide range of physiological 
parameters, including blood pressure, oxygen saturation, 
heart rate, and more. By giving medical professionals 
timely and accurate data, they can better understand their 
patients' conditions and determine the best course of 
treatment. A completely new era of health management and 
medical monitoring has been made possible by the 
introduction of flexible, wearable sensors. These sensors 
monitor not only key biosignals such as pulse rate, 
respiratory rate, body temperature, movement, and blood 
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pressure in real time but also provide timely and accurate 
health assessments and early warnings through data 
analytics and algorithmic processing, which can help in the 
early detection and diagnosis of important diseases such as 
heart disease. Behind wearable devices, the continuous 
development and convergence of the fields of materials 
science, sensing technology, wireless technology, and the 
Internet of Things (IoT) play a crucial role [1]. Highly 
flexible and flexible materials, sophisticated sensor 
technologies, advances in wireless communication 
technologies, and the construction of IoT platforms have 
collectively contributed to the performance enhancement 
and functionality expansion of wearable devices. This 
interdisciplinary fusion of innovations has endowed 
wearable devices with a wider and deeper range of 
application scenarios, making them an important tool for 
maintaining a healthy life, and wearable devices have a high 
market demand [2]. Wearable devices for health monitoring 
are usually miniaturized with rigid circuit boards and block 
power supplies embedded in them to ensure that the device 
is lightweight and comfortable and can be worn 
continuously without interfering with daily activities. The 
wrist is one of the most common wearable positions, as the 
wrist area is ideal for monitoring physiological metrics such 
as heart rate, exercise, and sleep [3]. Dynamic data from the 
wrist can provide important information about physical 
activity, resting state, and overall health [4]. In recent years, 
significant research progress has been made in PVC 
(premature heartbeat) signal recognition methods based on 
wavelet feature extraction [5]. The application of SVM is 
particularly prominent when flexible wearable devices are 
used in the field of heart disease monitoring. By using SVM 
algorithms to analyze and classify the collected biosignal 
data, accurate assessment and timely warning of heart 
health can be achieved [6]. This data-driven approach can not 
only help healthcare professionals better understand 
patients' cardiac conditions but also provide an important 
reference for personalized treatment plans, thus improving 
treatment outcomes and patients' quality of life. In this 
study, SVM is applied to classify the extracted PVC signal 
features for automatic detection and monitoring of heart 
diseases. Its rigorous mathematical theoretical foundation 
and excellent generalization ability enable SVM to perform 
well in processing complex biosignal data and provide 
reliable classification performance for the monitoring 
system. 

2 Related Theories 

2.1 Wavelet theory 

The mother wavelet ψ(t) has an important place in 
wavelet analysis and can be used to obtain a series of 
wavelet functions by stretching and translating. This 
process involves the parameters a and b, where a represents 
the scaling factor and b represents the translation factor [7]. 
The scaling factor (a) is used to adjust the scale of the 

wavelet function, and by increasing or decreasing the value 
of a, the wavelet function can be made to change 
accordingly in either the time or frequency domain. Smaller 
values correspond to higher-frequency wavelets, while 
larger values correspond to lower-frequency wavelets [8]. 
The translation factor (b) is then used to control the 
translation of the wavelet function on the time axis. By 
varying the value of b, the wavelet function can be shifted 
left and right on the time axis, thus capturing local features 
of the signal at different time points. Specifically, by 
transforming the mother wavelet, the following wavelet 
function is obtained: 

  (1) 

Here, ψ a,b (t) denotes the adjusted wavelet function. 
ψ a,b (t) is introduced to make wavelet analysis a flexible 
and powerful tool that can provide detailed information in 
the time-frequency domain at the same time, which 
provides more choices and possibilities for signal 
processing and analysis. For specific application scenarios, 
effective capture and analysis of different types of signals 
can be achieved by skillfully selecting and adjusting a and b. 

For a function f (t) ∈ L2  (R), its continuous wavelet 
transform is a powerful mathematical tool that provides the 
ability to gain insight into the local characteristics of a 
signal at different scales and frequencies. Mathematically, 
L2  (R) denotes the space of integrable squared functions on 
the real number axis, where the integral of the square of f (t) 
is finite, and the mathematical form of the continuous 
wavelet transform is 

  (2) 

Where a is the scale factor, and b is the translation 
factor. 

The constant Q property of the wavelet transform, i.e., 
the Q-value (the ratio of the bandwidth to the center 
frequency), endows wavelet analysis with a unique time-
frequency localization capability. When a small scaling 
factor a is chosen for high-frequency analysis, the resulting 
wavelet function exhibits a narrow time window in the time 
domain and a wide frequency window in the frequency 
domain [9]. This essentially corresponds to a detailed view of 
the signal using a high-frequency wavelet, allowing us to 
analyze the rapid changes and local details in the signal 
more finely. In contrast, when a larger scaling factor a is 
chosen for low-frequency analysis, the resulting wavelet 
function exhibits a wide time window in the time domain 
and a narrower frequency window in the frequency domain. 
This is actually equivalent to using low-frequency wavelets 
to generalize the signal, which better captures the overall 
structure and trend of the signal. 

If the Lie index of f(t) at a singularity is α, then there 
exists a constant A such that the modulo maxima of the 
continuous wavelet transform at scale a with respect to this 
singularity can be expressed in the following form: 
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  (3) 

The wavelet transforms of signals near singularities at 
various scales exhibit unique conical features, which 
provide an effective way to detect singularities in signals. 
By performing wavelet transforms at different scales, it can 
be observed that singularities exhibit conical localized polar 
structures in the transformed coefficients. To further 
process these wavelet transform coefficients, thresholding is 
often used, where the smaller values in the coefficients are 
set to zero by setting an appropriate threshold. This 
processing step helps to reduce the effect of noise and 
highlight important features in the signal. Structures and 
features in the signal can be traced through the results of the 
wavelet transform to locate singularities more accurately. 
The linear phase property makes the wavelet transform an 
effective tool for creating mappings between the time and 
frequency domains, providing more intuitive and 
interpretable results for signal analysis. 

2.2 Support Vector Machines 

Statistical learning theory provides a solid theoretical 
foundation for SVMs by analyzing the statistical properties 
of the sample space to derive performance guarantees for 
learning algorithms. VC-dimensional theory provides 
theoretical bounds on the complexity and generalization 
performance of the learning model. The design of SVMs 
within these theoretical frameworks allows for superior 
performance when dealing with complex problems with 
small samples, high dimensional spaces, and nonlinear 
decision boundaries. SVMs construct an optimal 
classification hyperplane, a strategy that is advantageous 
because it allows the SVM to take advantage of linear 
classification even when dealing with nonlinear problems. 
By choosing different kernel functions, SVMs are able to 
adapt to a variety of complex data structures, thereby 
improving classification accuracy and generalization. 

For n m-dimensional linearly indivisible samples: 

  (4) 

The optimal hyperplane constructed in a higher 
dimensional space satisfies: 

  (5) 

Transform the problem into a quadratic programming 
problem: 

  (6) 

where C is the penalty factor, and ξ is the relaxation 
factor. 

Solving the above quadratic programming problem, 
the final decision function is as follows. 

  (7) 

For Support Vector Machines (SVMs), the classes of 
the samples to be classified are completely determined by 
the support vectors, which is their unique classification 
property. It is particularly noteworthy that SVMs were 
originally designed to solve binary classification problems, 
but the author can extend their application by constructing 
decision binary trees to make them suitable for 
multiclassification problems. Decision binary trees are a 
common approach in multicategorization problems that 
divide the dataset layer by layer, with each node 
representing a classifier. This hierarchical structure allows 
SVMs to focus on different classes at different nodes, thus 
realizing the goal of multiclassification. The LIBSVM 
toolbox developed by Chih-Jen Lin provides convenient 
tools and interfaces to realize this extension, and this paper 
also mainly uses this LIBSVM toolbox. 

3 Application of flexible wearable devices 
in heart disease monitoring 

Flexible sensors show sensitivity in monitoring human 
physiological signals [10]. can be divided into two categories: 
biophysical and biochemical signals. 

3.1 Temperature 

Changes in body temperature can reflect the body's 
metabolic state, immune function, and environmental 
adaptability. By monitoring body temperature regularly, the 
author can find out whether our body is in a healthy state or 
whether there are potential health risks [11]. Temperatures 
between 36.5°C and 37.1°C are normal, and abnormal 
temperatures are often a sign of a threat to the patient's 
health. It is essential for metabolism, immunological system 
enzyme activity, and circulation to keep the body 
temperature within a healthy range. Certain disorders 
frequently exhibit irregular temperature fluctuations, and 
doctors can precisely determine the efficacy of a treatment 
based on a patient's body temperature. Because of this, body 
temperature is a crucial and essential signal for healthcare 
surveillance. 

Researchers have developed a flexible temperature 
sensor array with great sensitivity and accuracy that is made 
of single-walled carbon nanotubes. Under the impact of the 
external environment, the sensor array retains its 
mechanical properties, and its flexible substrate of 
polyaniline nanofibers conforms tightly to the skin. The 
sensor reaction time is accurate to 1.8 seconds with good 
resistance sensitivity through the incorporated electrical 
connection mechanism. The flexible temperature sensor 
system's integrated design reduces the sensor's overall size 
and complexity by tightly integrating the energy supply and 
temperature sensing capabilities into one single unit. The 
sensor system's structure is made simpler by this integrated 
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design, which also increases the system's stability and 
dependability. A transparent, flexible smart patch with an 
autonomous function is shown in Figure 1A [12]. The sensor 
precisely detects variations in the ambient temperature 
outside in addition to tracking variations in the temperature 
of the human body. Because of its adaptability, the sensor 
may be utilized in a variety of situations and is more 
versatile. In the realm of health monitoring, for instance, the 
sensor's real-time ability to track variations in a person's 
body temperature enables users to assess their own health 
and take necessary action. In the field of environmental 
monitoring, sensors can be used to monitor the temperature 
changes in the surrounding environment, providing 
important data support for climate change research and 
environmental protection. 

3.2 Heart rate and pulse 

Heart rate and pulse are important indicators of heart 
activity and have an irreplaceable role in cardiovascular 
health monitoring. Heart rate is the number of times the 
heart beats per minute, while the pulse is the beat produced 

in the arteries when blood is pumped by the heart. 
Monitoring changes in heart rate and pulse provides insight 
into how the heart is functioning, how the blood is 
circulating, and the health of the cardiovascular system. In 
its early stages, cardiovascular disease often has no obvious 
symptoms but can cause changes in the arterial pulse, 
resulting in an altered pulse waveform at the wrist. 
Conventional cuff sphygmomanometers do not allow for 
continuous monitoring, and in order to address this issue, an 
innovative, flexible blood pressure monitoring device has 
been clinically designed. The device utilizes an ultralight 
and thin graphene tattoo sheet that can be easily attached to 
the body surface. (Figure 1B shows a flexible blood 
pressure monitoring device with a schematic diagram of the 
Z-BP measurement method.) By positioning this tattoo 
sheet at the wrist's artery site and applying a little current to 
the skin to measure the bioimpedance, blood pressure 
variations can be monitored. A database for continuous 
blood pressure monitoring can be developed by analyzing 
the link between bioimpedance and changes in blood 
pressure using machine learning models. 

 
 

Figure 1. Example of wearable, flexible sensors for temperature and blood pressure monitoring [13] 
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Electrocardiogram (ECG) signalling is a commonly 
used method for detecting and monitoring the electrical 
signals of heart activity in the human body. Conventional 
ECG monitoring methods typically use Ag/AgCl electrodes 
that require gel-assisted adhesion to the surface of the body, 
which is then passed through a conductive gel to ensure 
good signal transmission. However, this traditional method 
has some drawbacks, such as cumbersome operation, 
unsuitable for prolonged wear, and prone to cause skin 
allergic reactions. Flexible skin contact ECG sensors have 
come to the fore in recent years to address these issues. 
These sensors are made of soft materials that fit more 
comfortably on the surface of the skin, reducing discomfort 
and the potential for skin irritation. The design of the 
flexible sensors allows users to easily wear them for 
extended periods of time, resulting in longer-lasting 
monitoring, which is especially important for patients who 
need to track their heart health over time. In addition to 
improved comfort and wear time, the Flexible Skin Contact 
ECG Sensor is also highly flexible and adaptable, allowing 
it to fit different shapes and sizes of skin surfaces for a more 
accurate and stable signal [14]. This is a huge advantage for 
people of different ages and sizes, especially for special 
groups such as infants, children, and the elderly. In addition, 
flexible dry electrodes are attracting attention as an 
emerging technology. Compared to traditional gel-based 
electrodes, flexible dry electrodes are more convenient 
because they do not require the use of gels or other liquid 
media. The user only needs to fit the sensor to the skin's 
surface, eliminating any inconvenience that would arise 
from taping or cleaning, thanks to the flexible wearable 
electrodes' design, which simplifies ECG signal monitoring. 
Although volume tracing and ultrasonography are 
frequently used to track heart rate and pulse, they are not 
appropriate for use as wearable sensors due to their heavy 
weight and short range of usage. Flexible strain sensors 
have recently been proposed for real-time pulse monitoring. 
These sensors are lightweight, simple, and easily affixed to 
the skin[15]. High sensitivity and adaptability are provided 
by patch-type sensors that use polyaniline to efficiently 
measure pressure changes brought on by blood flow. The 
newly developed flexible pressure sensor combines 
contemporary sensor technology with conventional pulse 
theory to monitor three pulse positions concurrently. Three-
dimensional pulse mapping is made possible by an array of 
ionogel pressure sensors based on PET flexible substrates. 
This allows the presentation of pulse waveform and 
intensity as a map, mimicking the feeling of a physician 
touching a patient's pulse. Excellent pulse monitoring 
performance is achieved by another effective flexible sensor 
based on PVDF-TrFE, which can detect a weak pressure of 
10 kPa and amplify the electrical signal by a factor of 10. 

3.3 Human Movement 

This study is unique in that it utilizes a biomechanical 
analysis of knee motion to guide the sensor design process. 
By delving into the motion characteristics of the human 

knee, researchers are able to better understand the 
challenges that sensors may face during motion and design 
and optimize them accordingly to ensure that the sensors 
work accurately and stably. To minimize errors, the sensing 
elements are encapsulated, which protects them from the 
external environment and improves their stability and 
reliability. This encapsulation design not only reduces 
sensor errors but also extends their service life, making 
them more suitable for long-term monitoring and real-time 
tracking. Another notable feature is the personalized design, 
which means that the sensors can be tailored to the needs of 
different wearers. Skin characteristics and comfort needs 
can vary from person to person, so personalization ensures 
that the sensors provide optimal comfort and fit while being 
worn. In addition, by avoiding the use of metal electrodes, 
this personalized design can also effectively prevent skin 
problems that may arise from long-term use, providing 
users with a safer and more reliable monitoring experience 

[16]. Friction nanogenerator (TENG) yarn was used to 
produce a human motion detecting device with exceptional 
skin friendliness and washability. It combines an 11×11 
array sensing fabric for multi-channel sensing and a five-
layer construction with internal coil springs to monitor 
motion through flexible TENG fabric connected to the arms, 
knees, and other body parts. For the production of surface-
parallel TENGs intended for large-scale energy harvesting, 
polytetrafluoroethylene yarns are employed. This invention 
offers substantial backing for ongoing bodily movement 
tracking and has numerous potential uses in the field of 
medical monitoring in the future. In addition to monitoring 
the movements of the knees and wrists, the subtle 
movements of the eyes are also important. To prevent eye 
diseases, piezoelectric sensors are used to monitor blinking 
activity and alert users to take timely breaks. Non-invasive, 
attachable to the skin, and connected to the temple area via 
a flexible piezoelectric film, this sensor is small, non-
invasive, highly sensitive, and promises to continuously 
monitor eye movements. The piezoelectric sensors can be 
used to alert the eye when it is overloaded by blink 
monitoring. Figure 2A shows a sensor attached to the skin 
using a flexible piezoelectric film to monitor blinking. 

3.4 Respiratory rate 

The thoracic impedance method is a commonly used 
technique for monitoring respiratory rate and is widely used 
in clinical and scientific research. In impedance volumetric 
tracing, respiratory activity is monitored by placing 
electrodes on specific parts of the body (usually the chest 
and abdomen) in order to measure impedance changes 
between the electrodes [17]. This technique is based on the 
volumetric changes in the chest and abdomen during 
respiratory movements, as the expansion and contraction of 
the lungs during respiration results in changes in the 
impedance of the body tissues. Specifically, as the volume 
of the lung’s changes, the conductivity of the body tissue 
changes accordingly, which affects the impedance between 
the electrodes. Fiber optic grating sensors monitor 
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respiratory rate using two main methods: The first involves 
tracking variations in chest volume, and the second involves 
spotting variations in temperature and humidity during 
breathing [18]. A recently proposed sensor for monitoring 
workers' respiratory rates in high-pressure environments 
uses fiber optic grating attached to a smart clothing system 
with polyimide (PI) as the fiber coating. This improves the 
sensor's performance by encasing the FBG in a flexible 
substrate that can be adjusted to fit individuals of varying 
body sizes. 

4 Experimental results and analysis 

The MIT-BIH arrhythmia database is an important 
database of ECG signals containing 48 records, and eight of 
these records (T103, T106, T119, T207, T208, T209, T214, 
and T222) were selected for the study, from which full 
samples were obtained. These samples were taken primarily 
by extracting the signal in the first lead. This study focused 
on the analysis of ECG bands to understand the 
characteristics of arrhythmias [19]. Recordings covering 
different types of beats were specifically selected, including 
T103, T106, T119, T207, T208, T209, T214, and T222. Of 

these, T106, T208, and T214 recordings contained more 
premature ventricular contractions (PVC) recordings, while 
T209 and T222 recordings contained more atrial premature 
contractions (APB) recordings. In order to synthesize the 
different types of beats, a total of 2800 samples were 
selected, of which 1150 were used for training and the rest 
for testing. Such sample selection and distribution aim to 
create a representative dataset for a more comprehensive 
understanding of the problem of arrhythmia recognition and 
classification. 

The LIBSVM toolbox, a potent support vector 
machine implementation tool, is used for the trials, and 
Matlab R2010b is employed as the experimental platform. 
The test samples are forecast, and various kernel functions 
are used to investigate the support vector machine's 
performance. The linear kernel, polynomial kernel, and 
RBF radial basis kernel function are the three different 
kernel functions that are tested. These three kernel functions 
are essential to the support vector machine and have a big 
influence on the model's decision boundary shape, which in 
turn affects the model's classification performance. The 
experimental results are shown in Figure 3.

 

Figure 2 Comparison of test results of three kernel functions 
 

By looking at Figure 3, it is clear that among the three 
kernel functions, the radial basis kernel function performs 
best in classifying the three types of ECG signals. The 
application of the radial basis kernel function in SVM is 
usually better able to capture complex nonlinear 
relationships, which may be the reason why it achieves the 
best classification accuracy in this problem. The SVM's 
kernel function width σ and penalty factor C were 
optimized using the Particle Swarm Optimization (PSO) 
algorithm. The PSO method searches iteratively until it 
finds the ideal set of parameters, which is C = 100 and σ = 
0.1. The PSO method, which emulates the behavior of 
swarm intelligence, is essential to this process since it 
continuously updates the particle's position and velocity in 
order to identify the best solution in the parameter space. 
With the obtained ideal parameters, the SVM model 
performs optimally on the current dataset [20]. Under this 

optimized condition, the SVM model achieved an average 
classification accuracy of 92.61%. This means that the 
model was able to correctly identify 92.61% of the samples 
when classifying the three types of ECG signals [21]. Such a 
high classification accuracy provides strong support for the 
classification of ECG signals using the SVM algorithm, 
indicating that after parameter tuning, the model performs 
more accurately and reliably in recognizing different types 
of heartbeats. 

As the width of the kernel function σ increases, the 
classification accuracy improves. The existence of a σ 
allows the classification accuracy to reach an optimal value, 
i.e., at which point the model is better able to adapt to the 
features of the data. However, continuing to increase σ may 
lead to an overlearning phenomenon, where the model 
focuses too much on the details of the training data, thus 
reducing its ability to generalize to new data. This 
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phenomenon may manifest itself in the form of the model 
performing well on the training set but degrading its 

performance on the test set. The effect of kernel function 
width σ on the classification results is shown in Figure 4.

 

Figure 3 Curve of the effect of σ on the classification result 
 

Observation of the above figure reveals the existence 
of a stable region of σ (the bandwidth parameter of the RBF 
kernel function). Within this stable region, the RBF kernel 
SVM has relatively better classification results for the test 
samples, and the impact of the penalty factor on the 
classification results is relatively small. This indicates that 

the model exhibits better generalization performance in 
processing the test samples within a specific range of σ 
values. To further understand the performance within this 
σ-stable region, detailed test results using RBF kernel SVM 
on the test samples are provided, as shown in Table 1.

 
Table 1 Test results of the RBF-SVM classifier 

 
Category Number of test samples RBF-SVM accuracy (%) 

N 900 93.44 
APB 350 90.29 
PVC 400 92.75 

 
After a detailed analysis of the test results, it was 

found that the samples with discrimination errors were 
mainly concentrated on record T207. The main reason for 
this phenomenon is that some of the waveforms in this 
record are dense and show disorder. Misdetection or 
omission of detection may lead to the inaccuracy of the 
subsequent feature extraction, which in turn affects the final 
classification results. In the T207 record, due to the dense 
and disordered waveforms and the similarity between the S-
T segment and the R-wave peak amplitude, the traditional 
adaptive thresholding method may fail in the R-wave 
detection, resulting in false detection. Therefore, to further 
improve the accuracy of the classifier, it is crucial to 
achieve accurate and real-time identification of R-wave 
peaks. Possible improvements include adopting a more 
flexible R-wave detection algorithm that combines 
waveform features and time-frequency domain information 
for comprehensive analysis to cope with the complex and 
variable waveform situations in T207 records. Meanwhile, 
considering the waveform differences between different 
records, customized processing strategies may positively 
improve the classifier performance. 

5 Conclusion 

Flexible sensors have demonstrated compelling 
advantages in cardiac vital signs monitoring, offering 
unrivaled advantages over traditional rigid sensors in 
portability, comfort, low cost, and convenience. This makes 
flexible sensors ideal, especially for wearable devices, for 
real-time monitoring of cardiovascular vital signs, including 
metrics such as heart rate, blood pressure, oxygen saturation, 
and blood glucose. In this paper, advanced flexible 
wearable sensors for non-invasive real-time cardiac vital 
signs monitoring are systematically demonstrated and 
discussed to obtain reliable biosignals related to cardiac 
diseases. The Marr wavelet transform was used to process 
the signals for cardiac diseases, and feature vectors were 
constructed using a feature parameter extraction algorithm. 
This algorithm is simple and intuitive and can better 
characterize the differences between heart diseases. A radial 
basis kernel SVM was built from the extracted feature 
vectors to recognize the three ECG signals, and the effect of 
SVM parameters on the classification results was 
investigated, which showed that the radial basis kernel 
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SVM had the highest recognition accuracy of more than 92% 
in this task. 

References: 
[1] Liu, J.; Liu, M.; Bai, Y.; Zhang, J.; Liu, H.; Zhu, W. Recent 

Progress in Flexible Wearable Sensors for Vital Sign 
Monitoring. Sensors 2020, 20, 4009. 

[2] Shahandashti, P.F.; Pourkheyrollah, H.; Jahanshahi, A.; 
Ghafoorifard, H. Highly Conformable Stretchable Dry 
Electrodes Based on Inexpensive Flex Substrate for Long-
Term Biopotential (EMG/ECG) Monitoring. Sens. Actuators 
A Phys. 2019, 295, 678–686. 

[3] Xiong P, Xu M, Lei YJ. Recognition of premature 
ventricular contractions (PVCs) based on wavelet transform 
and BP neural network[J]. Chinese Journal of Medical 
Physics,2010,27(2):1762-1764. 

[4] Bong, K.-H. Comparison of SVM classification kernel 
function and parameter selection[J]. Computer Engineering 
and Applications,2011,47(3):123–125. 

[5] Zhan, Z.; Lin, R.; Tran, V.-T.; An, J.; Wei, Y.; Du, H.; Tran, 
T.; Lu, W. Paper/Carbon Nanotube-Based Wearable Pressure 
Sensor for Physiological Signal Acquisition and Soft Robotic 
Skin. acs Appl. Mater. Interfaces 2017, 9, 37921–37928. 

[6] Lim, C.L.; Byrne, C.; Lee, J.K. Human Thermoregulation 
and Measurement of Body Temperature in Exercise and 
Clinical Settings. Ann. acad. med. Snap. 2008, 37, 347–353. 

[7] Chen, X.; Ren, Z.; Guo, H.; Cheng, X.; Zhang, H. Self-
Powered Flexible and Transparent Smart Patch for 
Temperature Sensing. Appl. Phys. Lett. 2020, 116, 043902. 

[8] Haji, S.A.; Movahed, A. Right Ventricular Infarction-
Diagnosis and Treatment. Clin. Cardiol. 2000, 23, 473-482. 

[9] Huang, Y.; Song, Y.; Gou, L.; Zou, Y. A Novel Wearable 
Flexible Dry Electrode Based on Cowhide for ECG 
Measurement. Biosensors 2021, 11, 101. 

[10] Jiang Xi, Zh Guoxing, Qin Jucun. A modulated signal 
recognition method based on wavelet neural network[J]. 
Journal of Guilin University of Electronic Science and 
Technology, 2012, 32 (2):122-124. 

[11] Qiao Zengwei, Sun Weixiang. A multi-class classifier based 
on support vector machine decision tree[J]. Computer 

Application and Software,2009,26(11):227-230. 
[12] Allison, R.D.; Holmes, E.L.; Nyboer, J. Volumetric 

Dynamics of Respiration as Measured by Electrical 
Impedance Plethysmography. j. Appl. Physiol. 1964, 19, 
166–173. 

[13] Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, 
Q.; Zhang, L.; Yu, R.; Ma, G.; et al. Multi-Shelled Hollow 
Micro-/Nanostructures. Chem. Soc. Rev. . 2015, 44, 6749–
6773. 

[14] Wang, L.; Lou, Z.; Jiang, K.; Shen, G. Bio-Multifunctional 
Smart Wearable Sensors for Medical Devices. adv. intell. 
syst. 2019, 1, 1900040. 

[15] Min, S.D.; Yun, Y.; Shin, H. Simplified Structural Textile 
Respiration Sensor Based on Capacitive Pressure Sensing 
Method. IEEE Sens. J. 2014, 14, 3245–3251. 

[16] Akhmed-Zaki, D. Zh., Mukhambetzhanov, T. S., 
Nurmakhanova, Zh. M., &   Abdiakhmetova, Z. M. (2021). 
Using wavelet transform and machine learning to predict 
heart fibrillation disease on ECG. IEEE. 57, 11-25 

[17] Ambhore, S. Early detection of cardiovascular diseases using 
deep convolutional neural network & Fourier wavelet 
transform. Materials Today: Proceedings, 2021,p. 127, 121-
155. 

[18] Nahak, S., Pathak, A., & Saha, G. (a). Fragment-level 
classification of ECG arrhythmia using wavelet scattering 
transform. Expert Systems With Applications, 2023,224, 
120019. https://doi.org/10.1016/j.eswa.2023.120019 

[19] Venkatesh, S., Moffat, D., Kirke, A., Shakeri, G., Brewster, 
S., Fachner, J., Odell-Miller, H., Street, A., Farina, N., & 
Banerjee, S.  Artificially synthesizing data for audio 
classification and segmentation to improve speech and music 
detection in a radio broadcast. 2021,313, 145–177. 
https://doi.org/10.1109/ICASSP39728.2021.9413597 

[20] Saad, S., Kareem, D. H., & Jassim, M. H.  EEG motor-
imagery BCI system based on maximum overlap discrete 
wavelet transform (MODWT) and cubic SVM. 2021,27, 
121-155 

[21] Sheng, Yonggang Zhang, K.  Applications in bearing fault 
diagnosis of an improved Kurtogram algorithm based on 
flexible frequency slice wavelet transform filter bank. 
Measurement, 2021,174(1),33, 45–89.

 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 10 | 2024 |




