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Abstract

In the current realm of biomedical image classification, the predominant choice remains deep learning networks,
particularly convolutional neural network (CNN) models. However, deep learning suffers from a notable drawback in
terms of its high training cost, mainly due to intricate data models. A recent alternative, known as the Extreme Learning
Machine (ELM), has emerged as a promising solution. Empirical investigations have indicated that ELM can offer
satisfactory predictive performance for a wide array of classification tasks, while significantly reducing training costs
when compared to deep learning networks trained using back propagation. This research paper introduces a methodology
designed to evaluate the suitability of employing the Extreme Learning Machine for biomedical classification tasks. Our
study encompasses binary and multiclass classification across four distinct scenarios, involving the analysis of biomedical
images obtained from both dermatoscopes and blood cell microscopes. The findings underscore the effectiveness of the
Extreme Learning Machine, showcasing its successful utilization in the classification of biomedical images.
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1. Introduction

In the realm of biomedical image classification, deep learning
networks, specifically convolutional neural network (CNN)
models, are the current favorite [1]. These networks utilize
the backpropagation algorithm, introduced by Rumelhart
et al., which iteratively propagates errors from output
nodes to input nodes, providing a fundamental gradient-
based method for parameter optimization. However, deep
learning encounters challenges like slow convergence and
susceptibility to local minima. To address these challenges,
researchers have explored various techniques to enhance the
efficiency and effectiveness of training feedforward neural
networks, including second-order optimization techniques
[2], subset selection methods [3], and global optimization
strategies [4]. Many of these methods, despite their potential
to expedite training or improve generalization compared to
backpropagation, do not guarantee globally optimal solutions.

Recently, a novel approach known as the Extreme Learning
Machine (ELM) has gained prominence as a means to train

∗Corresponding author. Email: francesco.mercaldo@unimol.it

Single Hidden Layer Feedforward Neural Networks (SLFNs)
[5]. ELM introduces hidden nodes in a random manner and
keeps them fixed without iterative adjustments. Importantly,
these hidden nodes in the ELM architecture do not need to
adhere to a neuron-like structure. The only parameters subject
to learning are the connections (i.e., weights) linking the
hidden layer to the output layer. This makes ELM essentially
a linear model in terms of its parameters, simplifying the
process to solving a linear system. Compared to traditional
approaches for training feedforward neural networks, ELM
exhibits remarkable efficiency and tends to converge toward a
global optimum. Theoretical analyses have demonstrated that,
even with randomly generated hidden nodes, ELM retains the
universal approximation capability inherent in SLFNs [6, 7].

When employing common activation functions, ELM
can approach the optimal generalization limit observed
in traditional feedforward neural networks, where all
parameters undergo learning [8, 9]. Empirical evidence
supports the efficiency and generalization performance
of ELM compared to traditional Feedforward Neural
Network (FNN) algorithms across various domains [7,
10]. Notably, ELM exhibits significantly higher efficiency
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compared to Support Vector Machines (SVM) [11], Least
Square Support Vector Machines [12], and other advanced
algorithms. Empirical investigations have shown that ELM’s
generalization capabilities are equivalent to or even superior
to those of SVMs and their variants [7, 13, 14].
Comprehensive comparisons between ELM and SVM can be
found in [15] and [16].

1.1. Recent Developments in Medical Image
Classification

In recent years, there has been an increased utilization of
feedforward neural networks in classifying medical images
[17–20]. Deep learning, a subset of machine learning [21–
23], has gained attention for its ability to create a hierarchy
of features and distinguish lower-level attributes from higher-
level ones. Image classification, a crucial task in computer
vision, involves assigning images to predefined categories.
Deep learning techniques, including multilayer nonlinear data
processing, classification, feature selection, transformation,
and structural identification, have been deployed to address
this challenge. Among these techniques, the Convolutional
Neural Network (CNN) has become the primary framework
for recognizing, classifying, and analyzing various medical
images.

In the past, Support Vector Machines (SVM) were the
conventional choice for biomedical image classification [24].
However, SVM has limitations, including time-consuming
feature extraction from images and lower performance
compared to various alternatives. Therefore, the trend
in biomedical image classification has shifted towards
advocating for deep learning-based approaches [24].

For instance, Ali et al. employed supervised machine
learning techniques to achieve high classification accuracies
on cervical cancer cell datasets [25]. Urushibara et al.
demonstrated the diagnostic performance of deep learning
in cervical cancer using MRI images [26]. Mohsen et al.
utilized deep neural networks for brain MRI segmentation and
achieved promising results [27]. Brain cancer grade detection
was explored by Zia et al., employing deep learning alongside
other techniques [28].

However, deep learning has its limitations, including the
need for a substantial amount of data and resource-intensive
training procedures, necessitating expensive hardware [29].

1.2. Investigating ELM in Biomedical Image
Classification

Given these considerations, this paper investigates the
potential of using ELM in biomedical image classification.
The study spans two biomedical domains: dermatoscopic
and blood cell microscope images, resulting in four distinct
case studies encompassing both binary and multiclass
classification scenarios. These case studies collectively
demonstrate the feasibility of employing ELM in biomedical
image classification.

Furthermore, this study conducts a comparative analysis
between the ELM model and the established AlexNet model
[30], widely used in biomedical image classification [31–33].

To the best of our knowledge, this paper represents the
first exploration of ELM’s application in biomedical image
classification.

1.3. Paper Structure

The paper is structured as follows: the next section introduces
the proposed approach for biomedical image classification
using ELM. Section 3 outlines the four distinct case
studies conducted in the domains of dermatoscopic and
blood cell microscope images. Finally, the concluding
section summarizes the findings and outlines future research
prospects.

2. The Method

In this section, we provide an extensive explanation of our
methodology for employing extreme learning machines in the
classification of biomedical images.

Our approach consists of two main phases. The initial
phase, referred to as the ’Training’ phase (as depicted in
Figure 1), focuses on constructing a model using an extreme
learning machine. The subsequent phase, known as the
’Testing’ phase (illustrated in Figure 2), revolves around
evaluating the classification performance of the ELM model
created during the training phase.

The initial step, as illustrated in Figure 1, involves
the utilization of the ’Biomedical Image Repository.’ It is
essential to highlight that ELM belongs to the realm of
machine learning models, emphasizing their reliance on
data. This underscores the critical need for a substantial
volume of unbiased and accurately labeled data, which is
particularly significant when dealing with biomedical images,
as demonstrated in our case studies.

The subsequent phase focuses on converting images,
especially those originally not in grayscale, into grayscale
format. This conversion is motivated by the idea that color
may not be essential for pathology detection in the biomedical
context, a concept that we will explore more comprehensively
in the case studies. Additionally, this step contributes to
reducing the time required for model development.

After biomedical images are transformed into grayscale,
they undergo resizing to dimensions of 28 pixels in width and
28 pixels in height. Each pixel from these grayscale images is
then organized as an element within a vector. Consequently,
for each image, a vector comprising 28× 28 = 784 pixels is
generated.

Following this transformation, which converts the images
into numerical vectors, the data is prepared for input into the
’ELM network.’

To effectively train the ELM model, it is crucial to split
the previously acquired dataset into two separate sets: one
designated for training and the other for testing.
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Figure 1. The model training step.

We utilize a ’OneHotEncoder’ function to convert our
target values into one-hot encoding and employ the
’MinMaxScaler’ function to normalize the features, ensuring
they fall within the (0, 1) range.

After normalizing the features and converting the targets
to one-hot encoding, the initialization of the ELM network
entails specifying the following elements:

1. The dimensions of the input layer, which align with the
number of input features (in our instance, 28x28).

2. The quantity of hidden neurons (we employ 1000 in our
configuration).

3. The weights connecting the input to the hidden
layer, which are randomly sampled from a Gaussian
distribution.

4. The activation function applied to the hidden layer (we
employ the Rectified Linear Unit (ReLU) function).

The objective of the ELM network is to build the ’ELM
Model.’

Figure 2 illustrates the Testing phase, designed to assess the
performance of the ’ELM model’ established in the preceding
phase for biomedical image classification.

To evaluate the performance of the ELM model, we employ
a dataset of images that were not included in the training
phase. This entails selecting a biomedical image of interest,
which may come from sources such as a dermatoscope or a
microscope. The chosen image is converted into grayscale,
resized to 28x28 dimensions, and subsequently fed into the
’ELM model.’ This procedure leads to the model generating
an output label that corresponds to the image, effectively
accomplishing the classification task.

3. Experimental Analysis

To gauge the effectiveness of the models we put forth, we
calculate four separate metrics: Precision, Recall, F-Measure,
and Accuracy.

In a testing context, Precision indicates the proportion
of true negatives relative to all actual negative cases. It’s
mathematically defined as:

Precision =
tn

tn+ f p

where tn are true negatives and fp signifies false positives.
Recall within the classification context denotes the fraction

of true positive instances among all the actual positive cases.

It can be expressed as:

Recall =
t p

t p+ f n

where tp stands for true positives and fn corresponds to false
negatives.

The F-Measure is a combined metric that considers both
specificity and sensitivity:

F-Measure = 2× Precision×Recall
Precision+Recall

Accuracy, conversely, offers a holistic evaluation encom-
passing both random and systematic observational errors. It
necessitates the attainment of both high precision and high
recall to attain elevated accuracy.:

Accuracy =
tn+ t p

tn+ t p+ f n+ f p

These metrics have been computed to assess the ELM
model’s performance in the context of four specific case
studies. Additionally, as mentioned earlier in the introduction,
we conduct a comparative analysis between the ELM
model and the AlexNet model. AlexNet, which features a
convolutional neural network architecture, consists of a total
of eight layers. The initial five layers are convolutional, some
followed by max-pooling layers, while the last three layers
are fully connected. It incorporates the non-saturating ReLU
activation function, which has demonstrated superior training
performance compared to tanh and sigmoid functions, as
demonstrated in [30]. The AlexNet model is trained for a
single epoch using images resized to dimensions of 224x224
with 3 RGB channels.

For the experimental setup, we employed a computer
equipped with an 8th Generation Intel i7 CPU and 16GB of
RAM, running the experiments in a Windows 10 environment
with Windows Subsystem for Linux.

Both the ELM and AlexNet models were developed using
Python version 3.6.9. In particular, for implementing the
AlexNet model, we utilized Tensorflow library version 2.4.4,
as detailed in [34].

3.1. The Datasets

To assess the suitability of ELM for tasks related to
biomedical image classification, we utilize two separate
datasets sourced from the MedMNIST repository, which can
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Figure 2. The model testing step.

be accessed at 1, as detailed in [35]. This repository offers a
standardized collection of biomedical images captured from
various organs and using different imaging instruments.

Each image undergoes preprocessing to conform to a 2D
format with dimensions of 28 x 28 pixels and is associated
with its corresponding classification label. To be more
specific, our dataset consists of biomedical data obtained
from two equipment categories: dermatoscopes and blood
cell microscopes. This deliberate selection highlights the
versatility of ELM in addressing various biomedical image
classification tasks, including both multiclass and binary
scenarios.

Our analysis begins with the DermaMNIST dataset, which
is a subset derived from the HAM10000 repository, as
explained in [36, 37]. This dataset comprises a diverse
collection of dermatoscopic images featuring common
pigmented skin lesions. In total, the DermaMNIST dataset
includes 10,015 dermatoscopic images, with 8,010 designated
for training and the remaining 2,005 for testing purposes.
These images are categorized into 7 distinct disease
categories, maintaining an 80:20 ratio between the training
and testing sets. The original source images, initially sized
at 3x600x450 pixels, are resized to dimensions of 3x28x28,
resulting in each image having dimensions of 28x28 pixels
with 3 RGB channels.

The DermaMNIST dataset encompasses the following
multiclass classification categories, established to distinguish
between various dermal diseases:

• Label 0: Actinic keratoses and intraepithelial carci-
noma.

• Label 1: Basal cell carcinoma.

• Label 2: Benign keratosis-like lesions.

• Label 3: Dermatofibroma.

• Label 4: Melanoma.

• Label 5: Melanocytic nevi.

• Label 6: Vascular lesions.

For binary classification with the DermaMNIST dataset,
the following labels are considered:

1https://medmnist.com/

• Label 0: Actinic keratoses and intraepithelial car-
cinoma, basal cell carcinoma, benign keratosis-like
lesions, dermatofibroma, melanocytic nevi, and vascu-
lar lesions.

• Label 1: Melanoma (related to the detection of
melanoma disease).

Let us now turn our attention to the BloodMNIST
dataset, which, much like the DermaMNIST dataset, forms
part of the MedMNIST collection. The BloodMNIST
dataset is derived from a dataset mentioned in [38]. This
source dataset comprises individual normal blood cells
obtained from individuals who were free from any infection,
hematologic or oncologic diseases, and had not undergone
any pharmacologic treatment at the time of blood sampling.
The BloodMNIST dataset consists of a total of 17,092
images, with 13,671 allocated for model training and the
remaining 3,412 for model testing. The dataset is categorized
into 8 classes, with an 80:20 split between the training and
testing sets. The original source images, initially sized at
3x360x363 pixels, undergo center-cropping to dimensions
of 3x200x200 pixels before being resized to 3x28x28
dimensions. As a result, the images have dimensions of 28x28
pixels, with each pixel represented in three RGB channels.

The BloodMNIST dataset comprises multiclass classifica-
tion labels, with a primary focus on the identification of blood
cell types:

• Label 0: Basophil.

• Label 1: Eosinophil.

• Label 2: Erythroblast.

• Label 3: Immature granulocytes (including myelocytes,
metamyelocytes, and promyelocytes).

• Label 4: Lymphocyte.

• Label 5: Monocyte.

• Label 6: Neutrophil.

• Label 7: Platelet.

For binary classification with the BloodMNIST dataset, the
following labels are employed:

• Label 0: Basophil, eosinophil, erythroblast, immature
granulocytes, lymphocyte, monocyte, and neutrophil
cells.
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Table 1. DermaMINST binary classification results.

Model Precision Recall F-Measure Accuracy Time
ELM 0.843 0.872 0.854 0.872 0:00:33.65

AlexNet 0.343 0.343 0.320 0.343 0:13:23.77

• Label 1: Platelets.

The goal is to predict whether a microscopic blood image
contains platelets or other types of blood cells.

3.2. Binary Classification Results

In this section, we present the results obtained from our binary
classification experiments involving both the DermaMNIST
and BloodMNIST datasets.

To clarify, our initial binary model focuses on melanoma
detection. In this context, we represent Tdetection as a
label set {(Mdetection, ldetection)}, where each Mdetection
corresponds to a respective ldetection ∈ { 0, 1}. Here, the
value 1 indicates melanoma, while the value 0 represents
other pathologies, including actinic keratoses, intraepithelial
carcinoma, basal cell carcinoma, benign keratosis-like
lesions, dermatofibroma, melanocytic nevi, and vascular
lesions.

We construct a numerical feature vector, denoted as F ∈
Ry, where y represents the number of features used during
the learning phase (y = 784). Notably, for each 28x28
grayscale image under consideration, each pixel is treated as
an individual feature.

Table 1 displays the classification results obtained from
the binary classification process applied to the DermaMNIST
dataset.

Table 1 demonstrates the superior performance of the ELM
model over AlexNet. To be precise, the ELM model attains
an accuracy of 0.872, while the AlexNet model achieves an
accuracy of 0.343. Additionally, the training time for the ELM
model is 33 seconds, whereas the AlexNet model demands
over 13 minutes.

Figure 3 exhibits the associated confusion matrix for the
binary classification of DermaMNIST with the ELM model.

The confusion matrix indicates that the ELM model
accurately classifies 41 images as melanoma and 1709 images
as other dermal pathologies.

Moving on, let’s delve into the classification process
and results achieved in binary classification using the
BloodMNIST dataset. This second case study centers around
platelet detection. In this context, we denote Tdetection as a
label set (Mdetection, ldetection), where each Mdetection label is
associated with a respective ldetection value ∈ 0, 1. Here, the
value 1 represents platelets, while the value 0 corresponds
to other blood cell types, including basophil, eosinophil,
erythroblast, immature granulocyte, lymphocyte, monocyte,
and neutrophil.

Table 2 presents the outcomes derived from the binary
classification conducted using the BloodMNIST dataset.

Figure 3. The DermaMINST binary classification confusion
matrix.

Table 2. BloodMINST binary classification results.

Model Precision Recall F-Measure Accuracy Time
ELM 0.997 0.997 0.997 0.997 0:00:28.73

AlexNet 0.991 0.991 0.990 0.991 0:18:45.48

The findings provided in Table 2 emphasize the strong
performance of both the ELM and AlexNet models. Notably,
the ELM classifier achieves an outstanding accuracy of 0.997,
while the AlexNet model achieves an accuracy of 0.991.
These outcomes underscore the ELM model’s consistently
slightly superior performance compared to AlexNet.

In terms of time efficiency, the ELM model concludes its
training and testing processes in just 28 seconds, whereas the
corresponding timeframe for the AlexNet model extends to
18 minutes and 45 seconds.

Figure 4 visually represents the confusion matrix for the
binary classification of BloodMNIST, utilizing the ELM
model.

Upon examining the confusion matrix depicted in Figure
4, it becomes evident that a total of 464 platelets and 2940
blood microscopic images representing other cell types are
accurately classified.

3.3. Multiclass Classification Results

Now, let us explore the description of the classification
process and the results obtained from multiclass classification
using both the DermaMNIST and BloodMNIST datasets.

In this third case study, we focus on classifying different
dermal pathologies using the DermaMNIST dataset. To
achieve this, we utilize Tdetection as a set of labels (Mdetection,
ldetection), where each Mdetection label is associated with
a corresponding ldetection value ∈ 0, 1, 2, 3, 4, 5,
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Figure 4. The BloodMINST binary classification confusion
matrix.

Table 3. DermaMINST multiclass classification results.

Model Precision Recall F-Measure Accuracy Time (sec)
ELM 0.608 0.674 0.631 0.674 0:00:23.21

AlexNet 0.655 0.317 0.425 0.668 0:26:00.99

6, 7. Specifically, labels 0 to 6 correspond to actinic
keratoses and intraepithelial carcinoma, basal cell carcinoma,
benign keratosis-like lesions, dermatofibroma, melanoma,
melanocytic nevi, and vascular lesions, respectively.

Table 3 presents the results achieved in the multiclass
classification of DermaMNIST.

The classification results presented in Table 3 reveal that
the ELM model shows a slightly enhanced performance,
achieving an accuracy of 0.674, as compared to the AlexNet
model, which achieves an accuracy of 0.668. In terms of
computational time, the ELM model finishes both training
and testing in 23 seconds, whereas the same tasks necessitate
the AlexNet model to run for 26 minutes

Figure 5 additionally presents the confusion matrix for
the multiclass classification of DermaMNIST with the ELM
model.

An analysis of the confusion matrix presented in Figure
5 reveals that a significant portion of dermal images is
correctly classified into their respective classes, providing
strong evidence of the ELM model’s efficacy.

The fourth and final case study introduced here focuses on
multiclass classification using the BloodMNIST dataset. In
this scenario, the objective is to differentiate between various
blood cell types. To accomplish this, we define Tdetection as
a set of labels (Mdetection, ldetection), where each Mdetection
label corresponds to a ldetection value ∈ 0, 1, 2, 3, 4, 5, 6,
7. Specifically, label values ranging from 0 to 7 correspond

Figure 5. The DermaMINST multiclass classification confu-
sion matrix.

Table 4. BloodMINST multiclass classification results.

Model Precision Recall F-Measure Accuracy Time (sec)
ELM 0.700 0.702 0.696 0.702 0:00:39.21

AlexNet 0.984 0.073 0.134 0.269 0:26:00.99

to basophil, eosinophil, erythroblast, immature granulocytes,
lymphocyte, monocyte, neutrophil, and platelet, respectively.

Table 4 presents the outcomes associated with the
fourth case study, which is the multiclass classification of
BloodMNIST.

The outcomes presented in Table 4 illustrate that the
ELM model attains an accuracy of 0.702, whereas the
AlexNet model reaches an accuracy of 0.269. Concerning
computational time, the ELM model completes both the
training and testing procedures in 39 seconds, whereas the
AlexNet model requires 26 seconds.

Figure 6 further provides a visualization of the confusion
matrix for the multiclass classification of BloodMNIST.

In the context of multiclass classification using Blood-
MNIST, it’s evident that a significant portion of instances
is correctly categorized into their respective cell classes,
affirming the effectiveness of ELM in identifying blood cells.

Upon examining the experimental results from the four
case studies, it becomes evident that the ELM model
consistently outperforms the AlexNet network in terms
of accuracy in all scenarios. Additionally, this improved
performance is accompanied by significantly reduced
durations for both model training and testing phases.

4. Conclusion and Future Work

ELM represents an emerging paradigm capable of con-
structing predictive models that achieve comparable, if not
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Figure 6. The BloodMINST multiclass classification confusion
matrix.

superior, performance to CNNs in significantly shorter time-
frames. This study explores the potential of utilizing ELM
for biomedical image classification tasks, an area historically
dominated by deep learning, particularly CNNs. We present
four distinct case studies: the first one employs the Der-
maMNIST dataset for binary classification, the second uses
the BloodMNIST dataset for binary classification, the third
employs the DermaMNIST dataset for multiclass classifica-
tion, and the fourth involves the BloodMNIST dataset for
multiclass classification. Across all four case studies, ELM
consistently outperforms the widely-used AlexNet model,
a prevalent deep learning architecture in biomedical image
classification.

In our future research endeavors, we envision expanding
our experiments to include biomedical images obtained
through alternative imaging systems. While this study
primarily focuses on images captured with dermascopes and
blood cell microscopes, our upcoming work will incorporate
imagery from systems such as optical coherence tomography
and computed tomography.
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