
EAI Endorsed Transactions  
on Pervasive Health and Technology  Research Article 

1  

Deep Learning in Medical Imaging: A Case Study on 
Lung Tissue Classification 
Sandeep Kumar Panda1, Janjhyam Venkata Naga Ramesh2, Hritwik Ghosh3*, Irfan Sadiq Rahat3, 
Abdus Sobur4, Mehadi Hasan Bijoy5, Mannava Yesubabu6

1Department of Artificial Intelligence and Data Science, Faculty of Science and Technology (IcfaiTech), The          ICFAI 
Foundation for Higher Education (Deemed to be University), Hyderabad, Telangana 500029, India 
2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist., 
Andhra Pradesh - 522302, India  
3School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh 
4Masters of Information Technology, Westcliff University, USA 
5Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Bangladesh 
6Department of Computer Science & Engineering, Vardhaman College of Engineering (Autonomous),  Hyderabad, India 

Abstract 

INTRODUCTION: In the field of medical imaging, accurate categorization of lung tissue is essential for timely diagnosis 
and management of lung-related conditions, including cancer. Deep Learning (DL) methodologies have revolutionized this 
domain, promising improved precision and effectiveness in diagnosing ailments based on image analysis. This research 
delves into the application of DL models for classifying lung tissue, particularly focusing on histopathological imagery. 
OBJECTIVES: The primary objective of this study is to explore the deployment of DL models for the classification of 
lung tissue, emphasizing histopathological images. The research aims to assess the performance of various DL models in 
accurately distinguishing between different classes of lung tissue, including benign tissue, lung adenocarcinoma, and lung 
squamous cell carcinoma. 
METHODS: A dataset comprising 9,000 histopathological images of lung tissue was utilized, sourced from HIPAA 
compliant and validated sources. The dataset underwent augmentation to ensure diversity and robustness. The images were 
categorized into three distinct classes and balanced before being split into training, validation, and testing sets. Six DL 
models - DenseNet201, EfficientNetB7, EfficientNetB5, Vgg19, Vgg16, and Alexnet - were trained and evaluated on this 
dataset. Performance assessment was conducted based on precision, recall, F1-score for each class, and overall accuracy. 
RESULTS: The results revealed varying performance levels among the DL models, with EfficientNetB5 achieving perfect 
scores across all metrics. This highlights the capability of DL in improving the accuracy of lung tissue classification, 
which holds promise for enhancing diagnosis and treatment outcomes in lung-related conditions. 
CONCLUSION: This research significantly contributes to understanding the effective utilization of DL models in medical 
imaging, particularly for lung tissue classification. It emphasizes the critical role of a diverse and balanced dataset in 
developing robust and accurate models. The insights gained from this study lay the groundwork for further exploration into 
refining DL methodologies for medical imaging applications, with a focus on improving diagnostic accuracy and 
ultimately, patient outcomes. 
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1. Introduction 

The intersection of artificial intelligence and healthcare has 
opened up new frontiers in medical diagnostics, particularly 
in the field of medical imaging. Among the various 
applications, the classification of lung tissue has emerged as 
a critical area of focus due to its implications for the early 
detection and treatment of lung diseases, including cancer. 
The ability to accurately classify lung tissue can significantly 
enhance the effectiveness of therapeutic interventions, 
thereby improving patient outcomes. This study delves into 
the application of DL models for the classification of lung 
tissue, with a particular emphasis on histopathological 
images. Histopathological images offer an intricate insight 
into the microscopic architecture of tissues, unearthing minor 
alterations that could potentially signal disease. Nonetheless, 
the deciphering of these images necessitates profound 
expertise and can be a lengthy process. The advent of deep 
learning methodologies promises to bring about a paradigm 
shift in this arena, automating the interpretation process and 
delivering prompt, precise outcomes. DL, a specialized 
branch of ML is uniquely equipped for image analysis due to 
its inherent capability to learn complex patterns directly from 
the data, thereby obviating the need for manual extraction of 
features. In this study, we explore the performance of six DL 
models - DenseNet201, EfficientNetB7, EfficientNetB5, 
Vgg19, Vgg16, and Alexnet - in the classification of lung 
tissue. These models were chosen due to their proven 
effectiveness in image classification tasks. We trained and 
evaluated these models on a dataset of 9,000 
histopathological images, divided into five distinct classes of 
lung tissue. The images were sourced from HIPAA 
compliant and validated sources and were augmented to 
ensure a robust and diverse dataset. The aim of the research 
is not just to assess it performance of these models but also 
to gain insights into the factors that contribute to their 
effectiveness. By doing so, we aim to contribute to the 
ongoing efforts to optimize the use of DL techniques in 
medical imaging, with the ultimate goal of improving the 
accuracy and efficiency of disease diagnosis. The 
organization of this paper is as follows: Subsequent to this 
introductory section, we delve into an examination of 
pertinent scholarly works, setting the stage for our 
investigation. This is followed by an exposition of our 
research approach, encompassing specifics of the dataset and 
the DL architectures employed. We then proceed to unveil 
and interpret our findings. The paper culminates with a 
distillation of our discoveries and a discussion on the 
potential avenues for future exploration in this field. 
 
2. Literature Review  
 
A DL model (DLM) was created by Jünger et al. in 2021[1] 
for the automatic detection and 3D segmentation of brain 
metastases (BMs) in non-small cell lung cancer (NSCLC) 
patients using clinically standard MRI. The study included 
98 NSCLC patients with 315 BMs and was retrospective in 

nature. The model was designed to address the difficulties 
and dangers of making an incorrect diagnosis when detecting 
BMs on MRI in clinical settings. Masud et al. investigated 
the use of artificial intelligence (AI) in 2021[2] to automate 
the diagnosis of colon and lung cancer, two common and 
deadly types of cancer. To analyse histopathology images of 
lung and colon tissues, they created a deep learning-based 
classification system using cutting-edge Deep Learning (DL) 
and Digital Image Processing (DIP) techniques. With a 
maximum accuracy of 96.33% in recognising cancer tissues, 
the framework attempted to differentiate between five 
different types of tissues. This method has the potential to 
help medical practitioners create an automatic and 
trustworthy system for identifying cancer, improving the 
chances of early detection and treatment. Using whole-slide 
images from The Cancer Genome Atlas, Coudray et al. in 
2018[3] created a deep convolutional neural network to 
categorise lung tumours into adenocarcinoma (LUAD), 
squamous cell carcinoma (LUSC), or normal lung tissue. The 
model was verified using several separate datasets, and it 
performed similarly to pathologists on average, with an AUC 
of 0.97. The ten most frequently mutated genes in LUAD 
were also predicted by the network, and six of them were 
correctly predicted with AUCs ranging from 0.733 to 0.856. 
This study demonstrates how deep learning could help 
pathologists identify cancer subtypes and anticipate gene 
mutations. In 2022[4], Chen et al. proposed a computer-aided 
diagnostic (CAD) approach that makes use of radiomics and 
deep attention-based multiple instance learning (MIL) for 
early lung cancer diagnosis. This method outperformed 
existing MIL techniques with an AUC of 0.842 and a mean 
accuracy of 0.807, better representing clinical diagnostic 
processes. The output is more interpretable and acceptable 
for both doctors and patients thanks to the attention 
mechanism, which also provides improved interpretability of 
the output. Yeh et al. [5] developed an artificial intelligence 
algorithm to predict lung cancer risk using electronic medical 
records in 2021 in order to identify high-risk patients and 
prevent needless procedures. The model was trained using 
data from the Taiwan National Health Insurance Research 
Database, and it had an AUC of 0.90 for the general 
population and 0.87 for patients under the age of 55. By 
merging intricate data from non-imaging medical records, 
this technique can effectively identify patients who are at risk 
of developing lung cancer. 
 
A deep transfer learning model combining convolutional 
neural networks and convolutional auto-encoders was put 
forth by Rong et al. in 2021[6] for the diagnostic 
categorization of lung cancer using multi-omics data. 
Convolutional auto-encoders are used in this early lung 
cancer diagnosis method to reduce dimensionality and 
adhere to transfer learning standards. When used with three 
lung cancer gene datasets and an integrated dataset, the 
model outperformed other machine learning models in 
accuracy, precision, recall, and f1-score, yielding the best 
results in the average area under the curve. Tan et al. created 
a customised deep convolutional neural network (DNN) 
based on the VGG16 architecture in 2022[7] that uses 
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transfer learning to discriminate between TB lung nodules 
and early-stage lung malignancies. The DNN demonstrated 
its potential as a trustworthy, non-invasive screening tool for 
detecting and differentiating between lung cancer and TB by 
achieving an accuracy of 90.4% and a F score of 90.1% with 
unlocked pretrained weights on CT images from the National 
Lung Screening Trial and the National Institute of Allergy 
and Infectious Disease TB Portals. In order to classify benign 
nodules, primary lung cancer, and metastatic lung cancer, 
Nishio et al. in 2018[8] created a computer-aided diagnosis 
(CADx) approach using deep convolutional neural network 
(DCNN) and transfer learning. The study, which involved 
1236 patients, compared the efficiency of DCNN with that of 
traditional techniques and assessed how image size affected 
DCNN input. The results showed that DCNN with transfer 
learning outperformed traditional approaches, obtaining a 
best averaged validation accuracy of 68.0%, and that lung 
nodule classification accuracy was improved by using larger 
input image sizes. Using data from 887 patients, Park et al. 
created a two-stage U-Net architecture in 2023[9] for the 
automatic segmentation of lung cancer in [18F] FDG 
PET/CT scans. The first stage uses a global U-net to extract 
preliminary tumour regions from the 3D PET/CT volume, 
and the second stage refines these areas using a localised U-
net on chosen slices. By accurately predicting specific 
tumour margins and showcasing its benefits through 
quantitative analysis using the Dice similarity coefficient, 
this technique surpassed the traditional one-stage 3D U-Net. 
In order to effectively identify lung and colon cancer from 
histopathology pictures, Talukder et al. presented a hybrid 
ensemble feature extraction model in 2022[10]. This model 
combines deep feature extraction and ensemble learning. The 
model outperformed previous models by a wide margin when 
tested on the LC25000 datasets, with accuracy rates of 
99.05% for lung cancer, 100% for colon cancer, and 99.30% 
for both. According to this study, such models may prove 
useful in clinical settings, helping clinicians diagnose cancer 
by making prompt and precise detections. Using multiview 
radiomics and deep learning, Zhang et al. created a model in 
2023[11] to quantitatively predict N2 lymph node metastasis 
in stage I-II NSCLC patients. The study covered 140 patients 
and used transfer learning methods and an end-to-end 
ResNet18 architecture. With 1.8 million natural photos and a 
small sample of N2 lymph node volume of interest (VOI) 
images as training data, the deep learning model (DL) 
outperformed the radiomics model (Rad), which had an AUC 
of 0.76. With an AUC of 0.88, the combination model (Rad 
+ DL + Clinical) had the greatest diagnostic performance, 
perhaps indicating the lymph node metastases in NSCLC 
patients. Li et al. presented a unique deep learning-based 
drug repurposing strategy for non-small cell lung cancer in 
2020[12], concentrating on transcriptome data and chemical 
structures. This method identified Pimozide as a potent 
candidate for the treatment of non-small cell lung cancer. 
Pimozide is typically used as an anti-dyskinesia medication 
for Tourette's Disorder. The research confirmed Pimozide's 
cytotoxicity towards A549 cell lines, showing the possibility 
for systematic medication repurposing using cutting-edge 

computational approaches to provide new therapeutic 
options. In 2023, Zheng et al. created a hybrid model that 
combined clinical and imaging features with deep learning to 
forecast survival for patients with stage I–IIIA non-small cell 
lung cancer [13]. The model used significant clinical 
variables such as age and clinical stage, as well as image 
features from pre-treatment CT scans, and was trained on 
patients who had received stereotactic radiotherapy. With a 
median AUC of 0.76 and 0.64 on various test sets, the model 
successfully distinguished between groups with low and high 
mortality risk, demonstrating the potential of deep learning 
to improve prognostic accuracy in lung cancer treatment. 
 
A thorough investigation was conducted by Ghosh et al. 
(2023) [14] to evaluate water quality using predictive 
machine learning. Their study demonstrated how machine 
learning models can be used to accurately evaluate and 
categorise water quality. Parameters including pH, dissolved 
oxygen, BOD, and TDS were included in the dataset that was 
used for this analysis. The Random Forest model was the 
most accurate of the models they used, with an impressive 
accuracy rate of 78.96%. The SVM model, on the other hand, 
trailed behind and had the lowest accuracy of 68.29%. 
 
Mohanty, Ghosh, Rahat, and Reddy [15] employ advanced 
deep learning models to classify corn leaf diseases in 
Bangladesh, contributing valuable insights to agricultural 
technology. The research [21] is published in Engineering 
Proceedings 2023, highlighting their innovative approach to 
disease detection. 
 
In order to integrate advanced analytics into retail industry 
practices, Shobur et al.'s [16] study emphasises the use of 
machine learning techniques to analyse Walmart's data. 
Islam, Sobur [17] explores the relationship between 
cyberbullying, human rights, and children's right to life, 
emphasising the effects on society and the growing concern 
over online harassment. The study by Kabir, Sobur [18] 
highlights the potential of AI in predicting stock market 
trends by delving into financial forecasting using machine 
learning. In their 2023 study, Rana, Kabir, and Sobur [19] 
compare error rates across different machine learning models 
on MNIST datasets, advancing our knowledge of model 
accuracy and efficiency in digit recognition tasks. In their 
comparative study [20] of social engineering attacks and 
defence in physical and cyberspace, Shobur, Islam, and 
Kabir provide insights into the dynamic nature of 
cybersecurity threats. [Table.1]. 
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Table 1. Summary of the Literature Review 
 

Reference Focus of Study Techniques Used Key Findings 
Jünger et al. (2021) [1] Automatic detection and 3D 

segmentation of brain 
metastases 

Deep Learning model (DLM), 
clinically standard MRI 

Addressing difficulties in 
diagnosing brain metastases on 
MRI, retrospective study with 

98 NSCLC patients 
Masud et al. (2021) [2] Automation of colon and lung 

cancer diagnosis 
Deep Learning (DL), Digital 

Image Processing (DIP) 
techniques 

DL-based classification system 
achieved 96.33% accuracy in 
recognizing cancer tissues, 
potential for early detection 

and treatment 
Coudray et al. (2018) [3] Categorization of lung tumors 

into adenocarcinoma, 
squamous cell carcinoma, or 

normal lung tissue 

Deep Convolutional Neural 
Network 

DL model performed similarly 
to pathologists (AUC: 0.97), 
predicted frequently mutated 

genes in LUAD 
Chen et al. (2022) [4] Computer-aided diagnostic 

approach for early lung cancer 
diagnosis 

Radiomics, Deep attention-
based Multiple Instance 

Learning (MIL) 

Improved clinical diagnostic 
processes, more interpretable 
and acceptable results with 
attention mechanism (AUC: 

0.842) 
Yeh et al. (2021) [5] AI algorithm to predict lung 

cancer risk using electronic 
medical records 

Artificial Intelligence algorithm AUC of 0.90 for general 
population, 0.87 for patients 

under 55, accurate 
identification of high-risk 

patients 
Rong et al. (2021) [6] Diagnostic categorization of 

lung cancer using multi-omics 
data 

Deep Transfer Learning model, 
Convolutional Neural 

Networks (CNN), 
Convolutional Auto-encoders 

Outperformed other machine 
learning models in accuracy, 
precision, recall, and f1-score 

Tan et al. (2022) [7] Discrimination between TB 
lung nodules and early-stage 

lung malignancies 

Deep Convolutional Neural 
Network (DNN), Transfer 

Learning 

DNN potential as a 
noninvasive screening tool, 

achieved 90.4% accuracy and 
90.1% F score on CT images 

Nishio et al. (2018) [8] Computer-aided diagnosis for 
classifying benign nodules, 
primary lung cancer, and 

metastatic lung cancer 

Deep Convolutional Neural 
Network (DCNN), Transfer 

Learning 

DCNN with transfer learning 
outperformed traditional 

approaches (Accuracy: 68.0%) 

Park et al. (2023) [9] Automatic segmentation of 
lung cancer in [18F] FDG 

PET/CT scans 

Two-stage U-Net architecture Improved accuracy and 
refinement of tumor regions 

using global and localized U-
Net stages 

Talukder et al. (2022) [10] Hybrid ensemble feature 
extraction model for lung and 

colon cancer 

Deep Feature Extraction, 
Ensemble Learning 

Outperformed previous models 
with accuracy rates of 99.05% 

for lung cancer, 100% for 
colon cancer, and 99.30% for 

both 
Zhang et al. (2023) [11] Quantitative prediction of N2 

lymph node metastasis in 
NSCLC patients 

Multiview Radiomics, Deep 
Learning, Transfer Learning 

DL outperformed radiomics 
model in predicting N2 lymph 
node metastasis, combination 
model (Rad + DL + Clinical) 

had AUC of 0.88 
Li et al. (2020) [12] Deep learning-based drug 

repurposing strategy for non-
small cell lung cancer 

Transcriptome data, Chemical 
structures 

Identification of Pimozide as a 
potent candidate for non-small 

cell lung cancer treatment 
using computational 

approaches 
Zheng et al. (2023) [13] Hybrid model for predicting 

survival in stage I-IIIA non-
small cell lung cancer patients 

Deep Learning, Integration of 
image and clinical features 

Median AUC of 0.76, 
effectively separating low and 

high mortality risk groups, 
improving prognostic accuracy 

in lung cancer treatment 
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Ghosh et al. (2023) [14] Assessment of water quality 
through predictive machine 

learning 

Machine Learning, Random 
Forest, Support Vector 

Machine (SVM) 

Random Forest model achieved 
accuracy rate of 78.96% in 

assessing and classifying water 
quality, SVM had the lowest 

accuracy (68.29%) 
Mohanty et al. (2023) [15] Classification of corn leaf 

diseases using advanced deep 
learning models 

Advanced Deep Learning 
models 

Contribution to agricultural 
technology, innovative 

approach to disease detection 
in corn leaf disease 

  
3. Dataset Overview 
 
This research is anchored on a well-structured dataset, which 
includes 9,000 histopathological images. Each image, 
captured in JPEG format and with a resolution of 768 x 768 
pixels, provides an in-depth view of lung tissue, making it 
possible to discern minor changes that may be indicative of 
different conditions. The dataset was created with a strong 
commitment to the Health Insurance Portability and 
Accountability Act (HIPAA), thereby guaranteeing the 
highest level of data privacy and security. The images in the 
dataset are categorized into three distinct classes, each 
representing a different type of lung tissue. These include 
benign lung tissue, lung adenocarcinoma, and lung squamous 
cell carcinoma. Each class is represented by 3,000 images, 
ensuring a balanced dataset that minimizes the risk of model 
bias towards any particular class. The original dataset was 
derived from 750 images of lung tissue (250 each of benign 
lung tissue, lung adenocarcinoma, and lung squamous cell 

carcinoma). To enhance the diversity and robustness of the 
dataset, these images were augmented using the Augmentor 
package, resulting in a total of 9,000 images. This process of 
augmentation is crucial in machine learning, as it helps 
improve the model's ability to generalize and perform 
accurately on unseen data. The dataset was further divided 
into training, validation, and testing sets, following a 70-15-
15 split. This division ensures that the models are trained on 
a substantial amount of data, validated on a separate set to 
fine-tune parameters, and finally, tested on unseen data to 
evaluate their performance. This rigorous approach to dataset 
preparation and division underscores the robustness of our 
research methodology. In summary, the dataset used in this 
research provides a comprehensive and diverse collection of 
histopathological images, ensuring a robust and balanced 
foundation for training and evaluating the deep learning 
models. Its preparation and usage adhere to the highest 
standards of data privacy and research ethics, making it a 
reliable resource for this study [Fig.1]. 

 
 

 
 
Fig 1:  Sample image of dataset 

 
 
3.1 Image Resizing 
    
In the realm of medical imaging and histopathological image 
classification, image resizing is a crucial preprocessing step. 
This process involves altering the dimensions of an image to 

a specific size while preserving the essential features of the 
image. This step is particularly critical when dealing with DL 
models, as these models require input images of a consistent 
size for effective processing. 
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Several techniques are available for image resizing, 
each offering its unique benefits and trade-offs: 
 
 Nearest Neighbor Interpolation: This is a 

fundamental technique where the value of a pixel in the 
resized image is determined from the closest pixel in the 
original image. While this method is computationally 
efficient, it may lead to a loss of detail and sharpness in 
the resized image, which could be detrimental when 
dealing with intricate histopathological images. 

 
 Bicubic Interpolation: This method extends the 

concept of bilinear interpolation by considering the 
nearest 4x4 neighborhood of pixels. It results in 
smoother images than bilinear interpolation and is often 
employed for high-quality image processing. However, 
it is more computationally demanding, which might be 
a consideration when dealing with large datasets of 
histopathological images. 

 
 Area-based (or Resampling) Interpolation: 

This method calculates the average color of the pixels 
within a sample area from the original image (like a 3x3 
or 5x5 area) to determine the color of a pixel in the 
resized image. While this method is slower, it can 

produce high-quality results, especially when reducing 
the size of an image. This could be beneficial when 
dealing with histopathological images where the 
preservation of detail is paramount. 

 
 Lanczos Resampling: This method uses a sinc 

function to calculate the value of a pixel in the resized 
image. It provides high-quality results and preserves 
more detail than other methods, but it is the most 
computationally intensive. This method might be 
suitable when the highest level of detail preservation is 
required, such as in the analysis of lung tissue images. 

  
In the context of histopathological image classification, the 
choice of resizing technique hinges on the specific needs of 
the task. If computational resources and speed are a priority, 
simpler methods like nearest neighbor or bilinear 
interpolation may be suitable. However, if the quality of the 
resized image is crucial, more advanced methods like bicubic 
interpolation, area-based interpolation, or Lanczos 
resampling may be more appropriate. It's also vital to 
consider the characteristics of the images and the features 
that the model needs to recognize. For instance, if the images 
contain subtle details that are crucial for classification, a 
high-quality resizing method would be beneficial [Fig.2]. 

 

 
 
Fig 2:  Pre-processing of the data set. 

 
 
3.2 Data Augmentation  
 
The amount and variety of the training dataset may be 
increased using the effective method of image data 
augmentation, which improves the performance and 
generalisation abilities of the model. This is especially 
important when classifying histopathological images since 
the dataset's variety can have a big influence on how well the 
model can differentiate between different types of lung 
tissue. Some of the most often utilised data augmentation 

methods for histopathological image classification tasks are 
listed below: 
 
 Rotation: This technique involves rotating the 

histopathological image by a specific angle. This can 
aid the model in recognizing the tissue patterns in 
various orientations. The rotation angle is typically 
chosen randomly within a certain range (e.g., -20 to 20 
degrees). 

 
 Translation: This technique involves shifting the 

histopathological image along the x or y direction by a 
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specific number of pixels. This can aid the model in 
recognizing the tissue patterns in various positions in 
the image. 

 
 Scaling: This technique involves resizing the 

histopathological image by a specific factor, either 
enlarging it (zooming in) or reducing it (zooming out). 
This can aid the model in recognizing the tissue patterns 
at different scales. 

 
 Flipping: This technique involves flipping the 

histopathological image either horizontally or 
vertically. This can aid the model in recognizing the 
tissue patterns in various orientations. 

 
 Shearing: This technique involves distorting the 

histopathological image along an axis. This can aid the 
model in recognizing the tissue patterns under different 
types of distortion. 

 
 Brightness and Contrast Adjustment: This 

technique involves altering the brightness and contrast 
of the histopathological image. This can aid the model 
in recognizing the tissue patterns under different 
lighting conditions. 

 
The selection of data augmentation techniques is dependent 
on the specific requirements of the task and the inherent 
properties of the histopathological images. It's also crucial to 
consider the computational implications and the potential 
influence of the data augmentation techniques on the model's 
performance. By implementing these techniques, we can 
significantly enhance the volume and diversity of our 
training dataset, thereby fostering the development of more 
robust and accurate models for histopathological image 
classification. 
 
3.3 Image Normalization   
 
Image normalization is a critical preprocessing step in 
histopathological image classification tasks. It involves 
adjusting the pixel values across the image to a specific 
range, which can significantly enhance the computational 
efficiency and performance of the model. Here are some of 
the most commonly employed techniques for image 
normalization: 
 
 Min-Max Normalization: It is often termed as 

feature rescaling, is a procedure that refines the pixel 
values to ensure they are encapsulated within a defined 
interval, typically spanning from 0 to 1, or -1 to 1. This 
is executed by taking each pixel value, deducting the 
least pixel value present in the image, and then dividing 
by the spectrum of pixel values within the image. The 
merit of Min-Max normalization lies in its capacity to 
adjust pixel values while safeguarding the inherent 
layout and attributes of the original image. This 
characteristic is especially vital when handling 

histopathological images, where the preservation of 
original attributes is fundamental for accurate 
categorization. 

 
 Standard Score Normalization (Z-Score 

Normalization): The pixel values are changed using 
this method such that they show a mean of 0 and a 
standard deviation of 1. The mean pixel value of each 
individual pixel is subtracted to produce this 
transformation, which is then accomplished by dividing 
the result by the standard deviation. When the 
distribution of pixel values fits a Gaussian distribution, 
Z-score normalisation shows to be very useful since it 
helps speed up convergence throughout the model's 
training phase. When working with huge 
histopathology imaging databases, this might be 
helpful. 

 
The selection of an image normalization technique is 
contingent on the unique demands of the task at hand and the 
inherent properties of the images. If the task necessitates the 
maintenance of the original features and structure of the 
histopathological images, Min-Max normalization could be 
the optimal choice. Conversely, for tasks dealing with images 
where pixel values follow a Gaussian distribution, Z-score 
normalization might be more appropriate. It's also crucial to 
weigh the computational efficiency of the normalization 
method against its potential influence on the model's 
performance. 
 
3.4 Image Label Encoding 
 
Image Label Encoding is a vital step in preparing data for 
histopathological image classification tasks. It involves 
converting the categorical labels of the images into a format 
that can be understood by the machine learning models. Here 
are some commonly used label encoding techniques: 
 
 Integer Encoding: This is the simplest form of label 

encoding, where each unique category label is assigned 
a unique integer. For instance, in a three-class 
classification task for lung tissue images, you might 
assign the label '0' to 'benign lung tissue' images, '1' to 
'lung adenocarcinoma' images, and '2' to 'lung 
squamous cell carcinoma' images. While this method is 
straightforward and easy to implement, it may not be 
suitable for multi-class classification tasks as the model 
might interpret the numerical values as having an 
ordinal relationship. 

 
 One-Hot Encoding: This technique is frequently 

utilized for tasks involving multi-class classification. In 
one-hot encoding, each category label is transformed 
into a binary vector of length 'n', where 'n' is the total 
number of unique category labels. Each vector contains 
a '1' at the index that corresponds to the category label, 
and '0's at all other positions. For instance, if we have 
three categories such as 'benign lung tissue', 'lung 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 10 | 2024 |



S. K. Panda et al. 
 

  8      

adenocarcinoma', and 'lung squamous cell carcinoma', 
the one-hot encoded labels could be [1, 0, 0], [0, 1, 0], 
and [0, 0, 1] respectively. This technique ensures that 
the model does not infer an ordinal relationship among 
the categories. 

 
 Label Binarizer: This technique is a combination of 

integer and one-hot encoding methods, and it proves 
particularly beneficial in binary classification tasks. 
Label Binarizer transforms multi-class labels into 
binary labels (indicating whether an instance belongs to 
a class or not). It is especially apt for multi-label 
classifications, where a single instance can be 
associated with several classes. 

 
The choice of label encoding technique depends on the 
specific requirements of the task, particularly the number of 
category labels and whether the task is a binary or multi-class 
classification. Properly encoded labels are crucial for training 
effective histopathological image classification models and 
interpreting their predictions. 
 
4. Experimental Analysis and Discussion 
 
Our DL models were executed on a high-performance 
computational system equipped with state-of-the-art GPUs. 
This system offers high computational speed, making it ideal 
for running intricate deep learning models. Given the 
balanced distribution of images across the three classes in our 
dataset, we didn't need to employ data augmentation 
techniques to balance the classes. However, we did use 
augmentation to enhance the diversity of our training data. 
The architecture of our models includes DenseNet201, 
EfficientNetB7, EfficientNetB5, VGG19, VGG16, and 
AlexNet. Each model is composed of multiple convolutional, 
pooling, and fully connected layers, each utilizing a varying 
number of filters. In conclusion, each model demonstrated its 
ability to varying extents in classifying the histopathological 
lung tissue images, with the EfficientNetB5 model emerging 
as the most proficient. However, the selection of a model 
should also consider factors such as computational resources 
and the specific requirements of the task. Future research 
could explore the application of ensemble methods, which 
combine the predictions of multiple models, to further 
enhance the accuracy of lung tissue classification. 
 
4.1 Performance Analysis of the Models  
 
Several DL models, including DenseNet201, 
EfficientNetB7, EfficientNetB5, VGG19, VGG16, and 
AlexNet, were tested in our study. These models were each 
trained and validated using 9,000 histopathology images 
from the dataset. The benign lung tissue, lung 
adenocarcinoma, and lung squamous cell carcinoma 
categories were used to categorise these photos. Several 
measures, including Area Under the Curve (AUC), Loss, 
Categorical Accuracy (Cat_Acc), F1 score, and Accuracy 
(ACC), were used to assess each model's performance. 

 
 DenseNet201: This model gained an overall 

accuracy of 98% on the test set. The AUC for this model 
was high, indicating its excellent performance in 
distinguishing between the different classes. The model 
demonstrated a low loss value, suggesting that it made 
fewer mistakes during the training process. The 
categorical accuracy was also high, indicating that the 
model was effective in correctly classifying the images 
into their respective categories [Fig.3,4]. 

 

 
 

Fig 3:  Model Loss and Accuracy for DenseNet201 
 

   
                       

Fig 4:  Confusion Matrix for DenseNet201 
 
 EfficientNetB7: This model gained an overall 

accuracy of 99% on the test set, outperforming 
DenseNet201. The AUC for this model was also high, 
suggesting its superior ability to differentiate between 
the different classes. The model demonstrated a low 
loss value, indicating that it made fewer errors during 
the training process. The categorical accuracy was high, 
suggesting that the model was effective in correctly 
classifying the images into their respective categories 
[Fig.5,6]. 
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Fig 5: Model Loss and Accuracy for EfficientNetB7 
    

   
          

Fig 6:  Confusion Matrix for EfficientNetB7 
 
 EfficientNetB5: This model gained a perfect 

accuracy of 100% on the test set, outperforming all 
other models. The AUC for this model was also perfect, 
indicating its exceptional ability to distinguish between 
the different classes. The model demonstrated a very 
low loss value, suggesting that it made the least 
mistakes during the training process. The categorical 
accuracy was also perfect, indicating that the model was 
extremely effective in correctly classifying the images 
into their respective categories [Fig.7,8,9]. 

 

   
 

Fig 7:  Model Accuracy for EfficientNetB5 

 
                  

Fig 8:  Model Loss for EfficientNetB5 
 

 
 

Fig 9:  Confusion Matrix for EfficientNetB5 
 
 VGG19: This model accomplished an overall accuracy 

of 97% on the test set. The AUC for this model was 
high, suggesting its excellent ability to differentiate 
between the different classes. The model demonstrated 
a low loss value, indicating that it made fewer mistakes 
during the training process. The categorical accuracy 
was also high, suggesting that the model was effective 
in correctly classifying the images into their respective 
categories [Fig.10]. 

 

 
 
Fig 10:  Model Loss and Accuracy for VGG19 

 
 VGG16: This model accomplished an overall accuracy 

of 93% on the test set. The AUC for this model was 
high, suggesting its good ability to differentiate 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 10 | 2024 |



S. K. Panda et al. 
 

  10      

between the different classes. However, the model 
demonstrated a higher loss value compared to the other 
models, indicating that it made more mistakes during 
the training process. The categorical accuracy was also 
lower, suggesting that the model was less effective in 
correctly classifying the images into their respective 
categories [Fig.11]. 

 

 
 
Fig 11:   Model Loss and Accuracy for VGG16 

 
 AlexNet: This model accomplished an overall 

accuracy of 96% on the test set. The AUC for this model 
was high, suggesting its excellent ability to differentiate 
between the different classes. The model demonstrated 
a low loss value, indicating that it made fewer mistakes 
during the training process. The categorical accuracy 
was also high, suggesting that the model was effective 
in correctly classifying the images into their respective 
categories [Fig.12,13]. 

 

   
 

Fig 12:  Model Loss and Accuracy for VGG16        
 

 
              
Fig 13:  Confusion Matrix for AlexNet 

 
In summary, the EfficientNetB5 model surpassed every other 
approach in terms of accuracy, AUC, loss, and category 
accuracy, establishing it as the best model for this challenge. 
It is crucial to highlight, however, that the choice of model 
can be influenced by a variety of factors, including the task's 
unique needs, the qualities of the data, and the computational 
resources available. 
 
5. Results and Discussion 
 
The DenseNet201 model achieved an overall accuracy of 
98%, demonstrating a high AUC and categorical accuracy, 
with a low loss value. The EfficientNetB7 model 
outperformed DenseNet201 with an overall accuracy of 99%, 
also showing a high AUC, categorical accuracy, and a low 
loss value. The EfficientNetB5 model achieved a perfect 
accuracy of 100%, outperforming all other models. It also 
demonstrated a perfect AUC and categorical accuracy, with 
the lowest loss value among all models. The VGG19 model 
achieved an overall accuracy of 97%, with a high AUC and 
categorical accuracy, and a low loss value. The VGG16 
model achieved an overall accuracy of 93%, with a high 
AUC but a slightly higher loss value compared to other 
models. The AlexNet model achieved an overall accuracy of 
96%, with a high AUC and categorical accuracy, and a low 
loss value. The results indicate that all models performed 
well on the task of classifying histopathological images into 
three classes. However, the EfficientNetB5 model 
outperformed all other models in terms of accuracy, AUC, 
loss, and categorical accuracy, making it the most suitable 
model for this specific task. This suggests that the 
EfficientNetB5 model is highly effective at recognizing 
patterns in histopathological images and accurately 
classifying them into their respective categories. It’s 
important to note that while the EfficientNetB5 model 
achieved the highest performance metrics, the choice of 
model can depend on various factors, including the specific 
requirements of the task, the characteristics of the data, and 
the computational resources available. For instance, if 
computational resources are limited, a less complex model 
like DenseNet201 or VGG19 might be more suitable. In 
conclusion, our research demonstrates the potential of DL 
models in the classification of histopathological images, 
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which can be a valuable tool in the diagnosis and treatment 
of lung diseases. Future research could explore the use of 
these models in other types of histopathological image 
classification tasks, as well as the integration of these models 
into clinical workflows to assist pathologists in their 
diagnostic processes. 
 
6. Conclusion 
 
The results of our study indicate that all the models 
performed commendably in classifying the histopathological 
images. However, the EfficientNetB5 model emerged as the 
most effective, achieving a perfect accuracy of 100%, the 
highest AUC, and the lowest loss value. This suggests that 
the EfficientNetB5 model is highly proficient in identifying 
patterns in histopathological images and accurately 
categorizing them into their respective classes. However, it's 
important to note that the choice of model can depend on 
various factors, including the specific requirements of the 
task, the characteristics of the data, and the computational 
resources available. For instance, if computational resources 
are limited, a less complex model like DenseNet201 or 
VGG19 might be more suitable. Our study highlights the 
promising capabilities of deep learning models in classifying 
histopathological images, a critical component in diagnosing 
and treating lung diseases. The insights gained from this 
research could serve as a foundation for future investigations 
into the application of these models in other 
histopathological image classification scenarios. 
Additionally, these models could potentially be integrated 
into clinical workflows, providing valuable support to 
pathologists in their diagnostic endeavors. In conclusion, our 
research demonstrates the power of DL in medical imaging, 
particularly in the classification of lung tissue images. The 
findings of this study could have significant implications for 
the future of medical imaging, potentially leading to more 
accurate diagnoses and better patient outcomes. 
 
7. Future Work 
 
The results of our study have demonstrated the potential of 
DL models in the classification of histopathological images, 
with the EfficientNetB5 model emerging as the most 
effective. However, there is always room for improvement 
and exploration in the field of DL. Looking ahead, our 
intention is to delve into the utilization of more sophisticated 
and cutting-edge deep learning models that could potentially 
enhance the performance of image classification. 
Additionally, we are interested in exploring the concept of 
ensemble learning, a technique that amalgamates the 
predictions from multiple models, with the aim of bolstering 
the stability and precision of the classification process. 
Additionally, we plan to expand the scope of our research to 
include other types of histopathological images, such as 
those of other organs or diseases. This could help in 
understanding the generalizability of the models and their 
applicability to a wider range of medical imaging tasks. 
Another interesting avenue for future work could be the 
integration of these models into clinical workflows. This 

could provide valuable support to pathologists in their 
diagnostic processes, potentially leading to more accurate 
diagnoses and better patient outcomes. Lastly, we aim to 
delve deeper into the interpretability of these models. While 
deep learning models are often criticized for being "black 
boxes", understanding how these models make their 
predictions can provide valuable insights and increase trust 
in their predictions. In conclusion, our research has opened 
up several promising avenues for future work, with the 
potential to significantly contribute to the field of medical 
imaging and ultimately, to the diagnosis and treatment of 
lung diseases. 
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